
R. Dale et al. (Eds.): IJCNLP 2005, LNAI 3651, pp. 993 – 1003, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Case-Based Reasoning Approach
for Speech Corpus Generation

Yandong Fan and Elizabeth Kendall

School of Network Computing, Faculty of IT, Monash University, Australia
yandong.fan@infotech.monash.edu.au

Kendall@infotech.monash.edu.au

Abstract. Corpus-based stochastic language models have achieved significant
success in speech recognition, but construction of a corpus pertaining to a
specific application is a difficult task. This paper introduces a Case-Based
Reasoning system to generate natural language corpora. In comparison to
traditional natural language generation approaches, this system overcomes the
inflexibility of template-based methods while avoiding the linguistic
sophistication of rule-based packages. The evaluation of the system indicates
our approach is effective in generating users’ specifications or queries as 98%
of the generated sentences are grammatically correct. The study result also
shows that the language model derived from the generated corpus can
significantly outperform a general language model or a dictation grammar.

1 Introduction

Stochastic language models have achieved significant success in speech recognition
since the last decade [1, 2]. The main underlying technique in stochastic approaches is
the use of corpora. The successful utilization of corpora has been proven by many
researchers [3,4,5]. However, construction of a corpus pertaining to a specific
application is a difficult task, given that there is no pre-knowledge on how users
might communicate with the application before the deployment of a system. Research
[6] has been conducted to explore the effectiveness of Web-based text corpus
generation. Although the proliferation of eText has made the collection of textual
material easier than ever, Thompson [7] argues that actually locating eText
appropriate to your needs can be quite difficult. Moreover, in the context of
conversational systems, the suitability of corpora purely collected from the Internet is
controversial due to the difference of written text and spoken language.

Although generally there is a lack of spoken material pertaining to a new
application, ample transcriptions do exist in some well-established domains, such as
the Air Traffic Information System (ATIS) domain. User modeling has been studied
for long and conversations between users and agents of spoken language systems
have been recorded and accumulated for decades in these domains. In our project, we
seek to develop a speech-enabled mobile commerce application, which we called the
MCCS (Mobile Car City system). The system allows a mobile-phone user to specify
preferences or initiate queries by speech at the beginning of the conversation. Then all

994 Y. Fan and E. Kendall

car models conforming to the preferences or queries are retrieved to guide the user in
finding specific car models that meet his/her needs. Through carefully examining the
spoken transcriptions from the ATIS domain, we believe that user specifications or
queries in the MCCS system should share significant similarity in sentence syntactic
structure with their counterparts in the ATIS domain. Motivated by this assumption,
we believe that the MCCS system can learn a set of sample sentences from the ATIS
domain, which can then be used as the knowledge base for case-based reasoning
(CBR) to generate a speech corpus pertaining to the MCCS domain.

NLG (Natural Language Generation) research has been dominated by two
approaches in the past three decades: template-based and rule-based [8, 9]. Some
claim that template-based approaches are not flexible enough while others criticize
the sophistication of linguistic grammars implemented in rule-based approaches [8].
A new strand in the arena is learning-based NLG, in which the objective is to learn
the mapping from semantics to surface realization through sample sentences.
Research [10, 11, 12] suggests that learning-based approaches can balance the
inflexibility of template-based methods and the linguistic sophistication of rule-based
NLG packages when developing domain-specific generation systems.

In this paper, we explore an incremental learning approach for speech corpus
generation. Firstly, a set of sample sentences pertaining to user specifications or
queries in the MCCS application are learnt from the ATIS domain. Secondly, a CBR
system is built to generate a corpus based on those sample sentences. Finally, an n-
gram language model is derived from the corpus by learning the statistical distribution
of tokens. The paper is structured as follows. Section 2 introduces the general
structure of the corpus generation system. Detailed implementation of the system is
described through Section 3-5. Section 6 presents the evaluation results of the
generated corpus. Related work is discussed in Section 7. We conclude the study and
briefly discuss potential future work in Section 8.

2 System Overview

Our aim is to develop a case-based, domain-specific generation system that can
significantly reduce complexity in comparison to rule-based solutions. Case-based
reasoning (CBR) systems have long been applied for problem solving in many areas,
such as classification, diagnosis, configuration and design, and planning, but only
recently has it attracted significant attention from researchers in NLG. Like any other
CBR system, a CBR-based NLG system has to include the following components:

• Sample sentence set (Case Base)
• Schema for sentence structure, includes semantic and syntactic (Knowledge

Representation)
• Similarity measurement (Acceptance Function)
• Sentence generation (Case Retrieval and adaptation algorithms)

Figure 1 represents the overall structure of our CBR-based corpus generation
system. The system implements a pipeline architecture consisting of three stages.
Firstly, an initial sample sentence set is created manually to integrate an ATIS
sentence base (ASB) and a MCCS phrasal base (MPB). The ASB is a collection of

 A Case-Based Reasoning Approach for Speech Corpus Generation 995

sentences from a well-established corpus in the ATIS domain. The MPB collects
phrases in describing car model features, which are abstracted from car
manufacturers’ websites and marketing brochures. Through careful analysis on the
sentences in the ASB and the phrases in the MPB, sample sentences for user queries
or specifications pertaining to the MCCS system can be created to form a case
sentence base (CSB). The examples (2.1)-(2.3) show an ATIS sentence from the
ASB, a MCCS phrase from the MPB, and a sample sentence from the CSB,
respectively.

I prefer [PluralObject flights] [ServiceFeature serve lunch] (2.1)

[SingularObject A car] with [NumOfDoorFeature four doors] (2.2)

I prefer cars with four doors. (2.3)

Secondly, these sample sentences in the CSB are annotated to abstract semantic
structure and corresponding syntactic structure, which become the case representation
for instance learning. Finally, based on the understanding of the characteristics of user
queries and specifications, a new input that represents a unique semantic meaning
passes through the CBR system. The similarity between the input and a case is
calculated and examined. If the distance is within the predefined threshold, adaptation
is conducted to generate a new syntactic structure for the semantic input. This
procedure is continuously performed until all possible inputs are enumerated. The
resultant corpus is then ready for creating an n-gram language model.

Fig. 1. Main procedures of the CBR-based corpus generation system

3 Sample Sentence Set

We collect utterances pertaining to user preference specifications or queries from the
ATIS domain. The utterances are classified into four categories [13] according to their
sentence acts. The followings are examples for each category:

Sample Sentence Creation
• Build up the sample sentence set

Case Sentence Annotation
• Implement the schema for representing the semantic and syntactic

structure of sample sentences

Corpus Generation
• Retrieve cases from the set
• Calculate the distance between a new input and a case
• Perform adaptation to generate new sentences

996 Y. Fan and E. Kendall

 Declarative: I prefer a [TimeFeature morning] [SingularObject flight]. (3.1)

 Imperative: Show me the [PriceFeature cheapest] [SingularObject flight]. (3.2)

 Yes-no-question: Can you give me some information for [Carrier United]? (3.3)

 Wh-question: What [PluralObject flights] [ServeFeature serve breakfast]
and [HaveFeature have stops]?

(3.4)

Each sentence in the ASB has been annotated by assigning conceptual categories
[14] to domain concepts reflecting semantic meanings. Such simple annotations can
help us create sample sentences in the MCCS domain by substituting or adjoining
operations. The examples (3.5)-(3.8) show the corresponding cases in the CSB rooted
from (3.1)-(3.4). There are in total 114 cases in the CSB.

 Declarative: I prefer a white car. (3.5)

 Imperative: Show me the cheapest sedan. (3.6)

 Yes-no-question: Can you give me some information for Honda? (3.7)

 Wh-question: What cars can seat more than 5 passengers and have 4 doors? (3.8)

4 Case Sentence Annotation

In our corpus generation system, we implement an annotation scheme for sample
sentences in the CSB. Each sample sentence is annotated in two plies. The first ply is
the semantic structure representing the domain concept relationships. The syntactic
structure is abstracted in the second ply to reflect surface realization.

QueryObject CAT_Color CAT_NumOfDoor
CAT_NumOfCylinder CAT_Make CAT_BodyStyle
CAT_Transmission CAT_DriveWheel
NUM_MadeYearStartValue NUM_MadeYearEndValue
NUM_EngineLiterStartValue NUM_EngineLiterEndValue
NUM_PriceStartValue NUM_PriceEndValue
NUM_NumOfPassengerStartValue NUM_NumOfPassengerEndValue

Note: CAT means categorical feature while NUM means numeric feature

Fig. 2. Conceptual category set

We utilize a set of conceptual categories to abstract conceptual meanings in our
application domain (Figure 2). The benefit of introducing conceptual categories is that
each concept in a case sentence can be instantiated with different values to satisfy
word coverage. The semantic ply indicates the sentence act and the number type
(singular or plural) of the query object. It also catches the relations between those
conceptual categories involved in the annotated sentence. For instance, the semantic
ply of Example (3.8) can be described in a Query Language [15] as:

 A Case-Based Reasoning Approach for Speech Corpus Generation 997

 {x|x.Act=’wh-question’ ∧ x.QueryObject=’car’ ∧ x.ObjectType=’Plural’ ∧
car.NumOfDoor=’four’ ∧ car.NumOfPassenger.StartValue=5 }

 (4.1)

The syntactic ply analyzes the syntactic structure of the sentence, which is the
formalism for surface realization. The structure of the formalism is adapted from the
systemic functional grammar [16], which consists of three layers: clause, phrase and
token. Figure 3 represents the syntactic structure of the example (3.8).

<SynStructure type=”ComplexClause”>
 <SynClause localID=”c1”>

<SynPhrase type=”Simple” fc=”CannedText” value=”What” />
<SynPhrase type=”Simple” fc=”ObjectThing” ref=”Head” value=”VALUE” />
<SynPhrase type=”Simple” fc=”Predicate” value=”can seat” />
<SynPhrase type=”Complex” fc=”NUMFeature” ref=”NumOfPassenger”>
 <SynToken type=”Simple” fc=”CannedText” value=”more than” />
 <SynToken type=”Simple” fc=”Feature” value=”StartValue” />
 <SynToken type=”Simple” fc=”Quantifier” value=”passengers” />
</SynPhrase>
<SynPhrase type=”Simple” fc=”PredicateConj” value=”and” />
<SynPhrase type=”Simple” fc=”Predicate” value=”have” />
<SynPhrase type=”Complex” fc=”CATFeature” ref=”NumOfDoor” />
 <SynToken type=”Simple” fc=”Feature” value=”VALUE” />
 <SynToken type=”Simple” fc=”Quantifier” value=”doors” />
</SynPhrase>

 </SynClause>
</SynStructure>

Fig. 3. The syntactic structure of Example (3.8) in XML

5 Corpus Generation

The general principles for creating a corpus are semantic coverage, syntactic
coverage, prosodic coverage and word coverage [11]. As the target outcome of our
system is a sentence corpus for language modeling, prosodic coverage is not our
focus.

• Semantic coverage: the corpus should cover domain concepts and relationships as
completely as possible;

• Syntactic Coverage: the corpus should reflect many rich syntactic variations, as
found in natural language;

• Word Coverage: the corpus should cover as many words as possible in the
vocabulary.

In this Section, we demonstrate how these three principles have been considered and
satisfied during the corpus generation. Although case sentences marked with domain-
specific conceptual categories can be used directly for surface natural language
generation, as was suggested in [17], it is only capable of handling certain
circumstances, such as simple applications (as the NLG1 in [17]) or under the
assumption that the corpus is large enough for statistical analysis (as the NLG2 and
NLG3 in [17]). In our project, we seek to create a corpus based on a sample sentence
set with a limited size. Therefore, a CBR approach with adaptability is more

998 Y. Fan and E. Kendall

appropriate [11]. An input to the sentence generator is a semantic structure represented
in an AVM (attribute value matrix) form, including a sentence act, the query object and
its features. Figure 4 shows a typical example of inputs.

 Act: declarative
 Object: head: car
 number: singular

 Feature:
 color: red
 num_of_door: 4
 body_style: sedan

Fig. 4. An example input showing the semantic meaning of a user’s specification: “I would
prefer a red sedan with four doors”

In order to satisfy the semantic coverage, we explore all possible combinations of
features related to the car object. We made a decision to include only those
combinations with less than 5 features so that the generated sentence can be kept in a
reasonable length. In terms of syntactic coverage, we consider all sentence acts to
express a feature combination. In addition, the variations of syntax in describing a
numeric feature are explored. The examples (5.1)-(5.4) show four types of phrases
with different foci to specify the price of a car. The word coverage is achieved
through enumerating all possible values of each feature.

 a price no less than [PriceStartValue 15,000] dollars (5.1)

 a price no more than [PriceEndValue 30,000] dollars (5.2)

 a price from [PriceStartValue 15,000] to [PriceEndValue 30,000] dollars (5.3)

 a price around [PriceStartValue=PriceEndValue 20,000] dollars (5.4)

The generation of sentences is performed according to a procedural algorithm. The
algorithm consists of four procedures:

• Distance measuring: An input is compared with the semantic representation of an
instance in the CSB. Candidates above the threshold are selected for further
processing.

• Feature categorizing: Through examining the difference between the feature set of
the input and that of the case, features are categorized into four groups:
OldFeatures, AdjustFeatures, OtioseFeatures and NewFeatures. Old features are
those shared by the input and the case. Adjust features are those numeric features
belonging to both but with different focuses. Features in the case but not in the
input are called otiose features, and new features are those that appeared in the
input but not in the case.

 A Case-Based Reasoning Approach for Speech Corpus Generation 999

Sentence Generation Algorithm

Input: The semantic structure of a new sentence: I ;
 An instance of cases retrieved from the sentence base: C;

Output: a generated sentence if it’s successful; otherwise null.

1. If (I.act == C.act) then proceed to 2;
2. If (isCompatible (I.object, C.object)) then proceed to 3;
3. Calculate Dis (I, C);

Denote I (F) as the input, where F={F1,F2,..Fn} represents the feature set

of the input.
Denote C (A) as the case, where A={A1,A2,…Am} represents the feature

 set of the case.
Denote k as the number of features ∈ F∩ A.
If we define:

 α if fi ∈C
d (fi, C) =

 β if fi ∉ C

 α if ai ∈F
d (ai, F) =

γ if ai ∉ F

then Dis (I, C) =Σ d (fi, C) + Σ d (ai, F) = 2αk + (n-k) β + (m-k) γ
The distance function (metric) should satisfy the following conditions:

(1) 0 ≤ Dis (I,C) ≤ 1;
(2) if n=m=k then Dis (I,C)=0;
(3) if k=0 then Dis (I, C) =1;
(4) β > γ > 0, given that insertion is a more difficult operation

 than deletion;
Thus α=0;

 1/(m+n) <β < 1/n;
 and γ = (1-nβ)/m .

Choose β = 1/(n+1) then Dis (I, C) = (n-k)*(1/(n+1)) + (m-k)*(1/(n+1))/m

4. If (Dis(I,C) <0.5) then proceed to 5;
5. For each feature fi∈{oldFeatures||adjustFeatures}=F∩A, perform value substitution
 or adjustment operation;

For each feature fj∈{otioseFeatures}=(F∪A)–F, perform deletion operation;
For each feature fk∈{newFeatures}=(F∪A)–A , perform insertion operation.

6. Surface realize the sentence according to the adaptive syntactic structure.

Fig. 5. Sentence generation algorithm

1000 Y. Fan and E. Kendall

• Case adapting: For each type of features, different adaptations to the case are
performed to generate a syntactic structure corresponding to the semantic structure
of the input.

• Surface realizing: A sentence is generated according to the adapted syntactic
structure.

Figure 5 depicts the details of the sentence generation algorithm.

6 Evaluation

The evaluation is done at two levels. Firstly, the generated sentences are scored by
human evaluators using three ratings: no grammatical error, minor grammatical error
and major grammatical error. The ratios generally represent the quality of sentence
generation. Secondly, the generated corpus is divided into two sets: a training set and
a test set. We use the training set to build an n-gram language model. The language
model is applied to a speech recognition engine to test recognition effectiveness. The
sentences from the test set are used for this testing. We measure the word error rate to
verify the acceptability of the language model.

Table 1. Testing results of language models

Testing Engine Language
Model

I

O

S

Nsol

Percent
correct

Accuracy

Sphinx 4, No
speaker training

Our Domain
Specific
Model

84 16 154 1024 83.4% 75.2%

Sphinx 4,
No speaker
training

WSJ5K
Model
(Vocabulary
size: 5,000)

82 10 568 1024 43.6% 34.6%

Sphinx 4,
No speaker
training

HUB4 Model
(Vocabulary
size: 64,000)

56 28 704 1024 28.5% 23.1%

Dragon Naturally
Speaking
Preferred
(version 3.52),
Speaker training

Dictation
Grammar

99 26 327 1024 65.5% 55.9%

I: Number of inserted symbols O: Number of omitted symbols
S: Number of substituted symbols Nsol : Total Number of symbols for testing

Two hundred sentences are randomly selected from the generated corpus for
grammatical evaluation. Of these sentences, 196 sentences are grammatically correct.
Three sentences have major grammatical errors and one has minor error. The
effectiveness of the system in generating user specifications and queries is supported

 A Case-Based Reasoning Approach for Speech Corpus Generation 1001

by the high percentage of correctness. We then follow the methods introduced in [1]
to test the performance of the language model derived from the corpus. We utilize the
Sphinx 4 Recognition Engine [18] without speaker training to test our language model
and two general models. A further test is conducted to compare our model with the
dictation grammar used in the Dragon Naturally Speaking Preferred (version 3.52)
Engine with speaker training. Table 1 details the test results, which suggest the
language model specific to the MCCS can significantly outperform a general
language model or a dictation grammar.

7 Related Work

Generating natural language through learning is a relatively new endeavor. Trainable
methods for surface NLG are introduced in [17] to learn the mapping between
semantic meaning and syntactic structure so that sophisticated grammars can be
avoided. The implicative assumption of trainable systems is the existence of a large
corpus. In our project, we can only create a sample sentence set of a limited size,
which is not appropriate for training. Our CBR approach differs from trainable
methods in that instances in the case base are used for adaptation to generate new
sentences directly, instead of for calculating statistical distribution. [10, 12] introduce
an approach for instance-based natural language generation. However, instead of
adapting instances to generate sentences, instances are just used to compare with
sentences generated by a rule-based system for choosing the final output. No
adaptation is performed during the generation procedure. [11] presents a surface
natural language generator in the real estate domain that employs a case-based
paradigm. Its adaptation-guided retrieval makes it ultimately similar to our system.
However, our approach differs from it in two respects. Firstly, we employ a
quantitative distance measurement for acceptance function. Compared with the
qualitative cost-analysis method used in [11], our method provides a numeric value
for similarity comparison, which we believe is more straightforward. Secondly, the
syntactic structure of cases in our system is represented in systemic functional
formalism while graphical tree structure is utilized in [11] to represent the syntactic,
lexical, prosodic and acoustic realizations. Our method is simpler and less prone to
grammatical error in generating structured sentences.

8 Conclusions

This paper presents a CBR system to generate a speech corpus for the MCCS
application. In comparison to traditional NLG approaches, this system overcomes the
inflexibility of template-based methods while avoiding the linguistic sophistication of
rule-based packages. Our research indicates that CBR learning techniques can perform
effectively in generating structured sentences. This approach is particularly useful if
the size of the sample sentence set is relatively small. The study results also suggest
that a language model pertaining to a specific application is a necessity as general
models or dictation grammar cannot satisfy the requirements for recognition accuracy.

1002 Y. Fan and E. Kendall

This study is part of research to incorporate natural language understanding
capacity into a framework to develop speech-enabled mobile commerce applications.
We only explore natural language models for understanding user specifications or
queries at the beginning of a conversation in the context of mobile commerce. After
that, users would be guided by a system-directed dialogue to continue their search for
desired products. When a user shows interest in a particular product and selects to
listen to the detailed description of the product, the system will play a pre-recorded
audio file. We believe speech for product description can be generated through CBR-
based NLG system in a similar manner. A NLG method can provide much more
flexibility in generating product descriptions in comparison to pre-recorded audio
files. In future work, the CBR approach introduced in this paper should be able to be
extended for product description generation.

Acknowledgements

The authors would like to thank Benny Nasution and Adrian Ryan for examining the
sample sentences, grammatically evaluating the generated sentences and testing the
performance of different language models.

References

1. Becchetti, C. and Ricotti, L.P. (1999): Speech Recognition: Theory and C++
Implementation, John Wiley & Sons.

2. Somers, H. (2000): Empirical Approaches to Natural Language Processing, in Handbook
of Natural Language Processing (Eds., Dale, R. et al.), pp.377-384. New York, Marcel
Dekker.

3. Jurafsky, D. et al. (1994): The Berkeley Restaurant Project. In Proceedings of ICSLP-94,
Yokohama, Japan, pp.2139-2142.

4. Lesher, G.W. et al. (1999): Effects of ngram order and training text size on word
prediction, In Proc. of the RESNA’99 Annual Conference, Arlington, VA. pp.52-54.

5. Rudnicky, A.I. et al. (2000): Task and Domain Specific Modeling in the Carnegie Mellon
Communicator System, in ICSLP2000, Beijing, China.

6. Lesher, G.W. and Sanelli, C. (2000): A Web-Based System for Autonomous Text Corpus
Generation, In Proceedings of ISSAAC 2000, Washington DC, U.S.A.

7. Thompson, H.S. (2000): Corpus Creation for Data-Intensive Linguistics. In Handbook of
Natural Language Processing (Eds, Dale R. et al.), pp.385-401. New York, Marcel Dekker.

8. Reiter, E. (1995): NLG vs. Templates, In Proceedings of the 5th European Workshop on
Natural Language Generation, Leiden, the Netherlands.

9. Oh, A.H. and Rudnicky, A. (2000): Stochastic Language Generation for Spoken Dialogue
Systems, In Proceedings of the ANLP/NAACL Workshop on Conversational Systems,
May 2000, pp.27-32.

10. Varges, S. and Mellish, C. (2001): Instance-based Natural Language Generation, In
Proceedings of the 2nd Meeting of the North America Chapter of the Association for
Computational Linguistics (NAACL-2001), Pittsburgh, PA, June 2001.

11. Pan, S. and Weng, W. (2002): Designing a speech corpus for instance-based spoken
language generation. In Proceedings of INLG2002, New York, U.S.A.

 A Case-Based Reasoning Approach for Speech Corpus Generation 1003

12. Varges, S. (2003): Instance-based Natural Language Generation, PhD thesis, Institute for
Communicating and Collaborative Systems, School of Informatics, University of
Edinburgh.

13. Jurafsky, D. and Martin, J.H. (2000): Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and Speech Recognition,
Prentice Hall.pp.332-334.

14. Sun, J. et al. (2000): A Robust Speech Understanding System Using Conceptual Relational
Grammar, In Proceedings of ICSLP’2000, Oct 2000, Beijing, China.

15. Minock, M.J. (2003): A Phrasal Generator for Describing Relational Database Queries, In
Proceedings of the 9th European Association of Computational Linguistics workshop on
Natural Language Generation, Apr 2003, Budapest, Hungary.

16. Halliday, M.A.K. and Matthiessen, M.I.M. (2004) An Introduction to Functional
Grammar, 3rd Edition, ARNOLD.

17. Ratnaparkhi, A. (2000): Trainable Methods for Surface Natural Language Generation, In
proceedings of the ANLP/NAACL’00, Seattle, WA. pp.194-201.

18. The CMU Sphinx Group Open Source Speech Recognition Engines. Retrieved Dec 12,
2004. From http://cmusphinx.sourceforge.net/html/cmusphinx.php

	Introduction
	System Overview
	Sample Sentence Set
	Case Sentence Annotation
	Corpus Generation
	Evaluation
	Related Work
	Conclusions
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

