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Abstract. This paper shows that our WSD system using rich linguistic features 
achieved high accuracy in the classification of English SENSEVAL2 verbs for 
both fine-grained (64.6%) and coarse-grained (73.7%) senses. We describe 
three specific enhancements to our treatment of rich linguistic features and pre-
sent their separate and combined contributions to our system’s performance. 
Further experiments showed that our system had robust performance on test 
data without high quality rich features.  

1   Introduction 

Word sense disambiguation (WSD) has been regarded as essential or necessary in 
many high-level NLP applications that require a certain degree of semantic interpreta-
tion, such as machine translation, information retrieval (IR) and question answering, 
etc. However, previous investigations into the role of WSD in IR have shown that low 
accuracy in WSD negated any possible performance increase from ambiguity resolu-
tion [1,2]. This suggests that improving the performance of WSD systems is crucial 
for applications to attain benefits from WSD. 

Much effort has been aimed at the creation of sense tagged corpora that can be 
used to develop supervised WSD systems with high accuracy. 1  However, highly 
polysemous words with subtle sense distinctions still pose major challenges for auto-
matic systems, as evidenced in SENSEVAL2 [3]. This problem seems more serious 
for verbs, as indicated by the relatively poorer performance achieved by the best sys-
tem in the SENSEVAL2 English lexical sample task for verbs: 56.6% accuracy, in 
contrast with the 64.2% accuracy for all parts-of-speech [4,5]. On the other hand, 
disambiguating verb senses accurately is very important for lexical selection in MT. It 
is also helpful for information retrieval, especially for fact retrieval systems that take 
full-sentence queries as their input. Therefore, this paper will focus on improving the 
accuracy of our supervised WSD system for verbs. 

We are using a linguistically rich approach for verb sense disambiguation. Linguis-
tically rich approaches [5-9] utilize syntactic and/or semantic features, e.g., syntactic 
relations, selectional preferences, and semantic information of NP arguments of verbs, 
                                                           
1 http://www.senseval.org/ 
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etc. In verb sense disambiguation, Dang and Palmer's work [5] demonstrated that their 
system, which achieved 59.6% accuracy (62.5% in a recent report [10]) in disambigu-
ating the SENSEVAL2 English verbs, benefited substantially from using rich linguis-
tic features that capture information about a verb's lexical semantics.    

On the other hand, the performance of a system using rich linguistic features relies 
heavily on the quality of preprocessing, such as part-of-speech tagging, parsing, fea-
ture extraction and generation, etc. How accurate and how robust can such a system 
be? In particular, we are interested in the following three questions: How much ad-
vantage can we gain from the rich-feature approach by careful extraction and treat-
ment of the rich features? How much will a relatively poor quality of preprocessing 
negatively affect the system's performance? Which strategies can we adopt to allevi-
ate these negative effects?  

To address the first question, we enhance the feature extraction and generation of 
our original system, which was inspired by Dang’s system[10], in three ways. First, to 
increase the recall of the extraction of a verb's subject, we carefully handle relative 
clauses, nonfinite clauses, and verbs within prepositional phrases by using linguistic 
knowledge and heuristics. Second, to treat semantic features of NP arguments of 
verbs and prepositions in a more uniform way, we incorporate a rule-based pronoun 
resolver and also unify the semantic features generated by WordNet [11] and by a 
named entity tagger. Third, we treat sentential complements of verbs in a verb-
specific way. Our evaluation on the SENSEVAL2 English verbs shows that our new 
system achieves 64.6% accuracy, which is significantly better than the best system on 
English verbs in SENSEVAL2 (57.6%) and also outperforms Dang's system (62.5%). 
Further experiments indicate that the three enhancements are all beneficial. They each 
boost the system's performance by 1.0~1.2 percent and the combined gain is 2.6 per-
cent. A similar performance improvement is achieved for coarse-grained senses: 
73.7% vs. Dang's 71.7%. The data analysis of the results suggests that further im-
provements may come from disambiguating WordNet synsets and from using statisti-
cal methods for subject extraction and pronoun resolution.  

We address the last two robustness questions in two more experiments. To investi-
gate how the parser's performance affects our system, we divide the test data into an 
easy set that is similar to the parser's training material and a hard set that is not. The 
evaluation shows that although our system's accuracy is lower on the hard set, it is 
still high (62.2%). In the second experiment, our system is trained with rich features 
and tested on data with linguistically impoverished features. The results show little 
penalty from missing rich features at the test phase. The observations from this ex-
periment also suggest the following strategy for using WSD systems that utilize rich 
linguistic features. When good parsers are not available at the time of application, the 
use of topical features and any available, accurate rich features (e.g., features associ-
ated with the verb's direct object) will alleviate penalties.  

The rest of the paper is organized as follows. We introduce our system and the 
three major enhancements we made in Section 2. In Section 3, we show the evalua-
tion results on SENSEVAL2 English verbs and show how much the three enhance-
ments improve our system's performance. We then discuss the potential improve-
ments of our system in the future. In Section 4, we investigate the robustness of our 
system and propose our strategy for alleviating the negative effects of poor preproc-
essing. We conclude our discussion in Section 5. 
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2   System Description 

Our original WSD system was inspired by the successful MaxEnt WSD system of 
Dang [5,10]. We used the same machine learning model, Mallet, that implements a 
smoothing maximum entropy (ME) model with a Gaussian prior [12].  An attractive 
property of ME models is that there is no assumption of feature independence [13]. 
Empirical studies have shown that a ME model with a Gaussian prior generally out-
performs ME models with other smoothing methods [14]. In addition to topical and 
collocation features, we also used similar rich syntactic and semantic features, al-
though we implemented them in different ways. Furthermore, we enhanced the treat-
ment of certain rich linguistic features, which we believed would boost the system's 
performance. Before discussing these enhancements, we first briefly describe the 
basic syntactic and semantic features used by our system: 

Syntactic features: 
1. Is the sentence passive, semi-passive2 or active?  
2. Does the target verb have a subject or object? If so, what is the head of its  

         subject or/and object? 
3. Does the target verb have a sentential complement? 
4. Does the target verb have a PP adjunct? If so, what is the preposition and what is 

        the head of the NP argument of the preposition?   

Semantic features: 
1. The Named Entity tags of proper nouns and certain types of common nouns  
2. The WordNet synsets and hypernyms of head nouns of the NP arguments of 

         verbs and prepositions 

To better explore the advantage of using rich syntactic and semantic features, we 
enhanced our original system in three primary aspects: increasing the recall of the 
extraction of a verb's subject; unifying the treatment of semantic features of pronouns, 
common nouns and proper nouns; and providing a verb-specific treatment of senten-
tial complements.  These are each described in more detail below. 

2.1   Increasing Subject Extraction Recall  

To extract a subject, our original system simply checks the left NP siblings of the 
highest VP that contains the target verb and is within the innermost clause (see Figure 
1). This method has high precision but low recall. Typical examples from 
SENSEVAL2 data that are not handled by this approach are shown in (1a-c).3 

(1) a. Relative clauses: For Republicanssbj [SBAR who beganverb this campaign with  
              such high hopes],  ... 

      b. Nonfinite clauses: Isbj didn't ever want [S to seeverb that woman again]. 
      c.Verbs within PP's: Karipo and her womensbj had succeeded [PP in drivingverb 

             a hundred invaders from the isle ...] 

                                                           
2  Verbs that are past participles and are not preceded by be or have verbs are semi-passive. 
3  The target verb and its subject or subject candidates are underlined and the innermost clause 

or the PP containing the verb is bracketed.  



936 J. Chen and M. Palmer 

 

Fig. 1. position for verb’s subject 

 
To increase the recall, we refined the procedure of subject extraction by adding 

rules based on linguistic knowledge and bracketing labels that can handle relative 
clauses, nonfinite clauses, and verbs within prepositional phrases (PP's). For example, 
for cases like (1a), if a clause containing the target verb has a bracketing label SBAR 
and an NP parent, and is headed by a relative pronoun such as that, which or who, 
then check its left NP siblings for the verb's subject. For cases like (1b) and (1c), if the 
parent node of a nonfinite clause S or a PP is a VP, then continue searching positions 
outside the S or PP. For the last case, we also use a heuristic, i.e., a check as to 
whether the subject candidate is a person or an organization, to filter out non-person-
and-organization candidate NPs whose parent nodes are not labeled as S or SBAR. 
Many cases like (2a-b) can be handled correctly using this heuristic. 

(2) a. A number of accounts of the events accused the ministrysbj [PP of pullingverb  
               the plug on the UAL deal ...]. 

       b. Mr. Wolfsbj faces a monumental task [PP in pullingverb the company back  
                together again]. 

The above rule-based approach does not handle difficult cases like (3a-b) very well.  

(3) a. Freddy's instinct was [S to keepverb growing by stock mergers and small  
               expenditure of cash ...] 

       b.The arrangement I had with him was [S to workverb four hours a day]. 

With this enhancement, our new system extracts about 35% more subjects than be-
fore.  

S

NP         VP

… 
VP 

target verb

position for subject

Republicans   SBAR 

who        S 

began this campaign … 

……        NP

(1a)  …    

ADVP       VP

ever    want         S

to see that woman again  

……       VP

(1b)  …    

   succeeded       PP 

in driving a hundred …  

……       VP

(1c)  …    
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2.2   Unifying Semantic Features 

In this section we describe the changes to the use of semantic features. In order to 
provide a more uniform treatment for the semantic features of the NP arguments of 
verbs and prepositions, we first merge the semantic features associated with proper 
nouns and common nouns.  We then extend our treatment to include pronouns by 
adding a pronoun resolution module. 

2.2.1   Merging Semantic Features 
Our system used an automatic named entity tagger, IdentiFinderTM [15], to tag proper 
nouns with Person, Organization and Location and common nouns with Date, 
Time, Percent and Money. Additional semantic features are all WordNet synsets and 
hypernyms4 of the head nouns of NP arguments, i.e., the system does not disambigu-
ate different WordNet senses of a head noun.  

To utilize semantic features more efficiently, we refine their treatment. Previously 
there was no overlap between semantic features generated by the named entity tagger 
and by WordNet. For example, a personal proper noun only has a Person tag that has 
no similarity to the WordNet synsets and hypernyms associated with similar common 
nouns such as specialist and doctor, etc. This is likely to be a problem for many WSD 
tasks that usually have small amounts of training data, such as SENSEVAL2. To 
overcome this problem, our new system associates a common noun (or a noun phrase) 
with each Named Entity tag (see 4) and adds the WordNet semantic features of these 
nouns (or noun phrases) to the original semantic feature set. 

(4)  Person – someone,   Organization – organization,   Location – location 
       Time – time unit,   Date – time period,   Percent – percent,   Money – money 

2.2.2   Adding Pronoun Resolution  
Our original system has no special treatment for pronouns, although a rough count 
shows that about half of the training instances contain pronominal arguments. Lacking 
a high performance automatic pronoun resolution module, we adopt a hybrid approach. 
For personal pronouns, we simply treat them as personal proper nouns. For the rest of 
the pronouns including they, them, it, themselves and itself, which occur in about 13% 
of the training instances, we programmed a rather simple rule-based pronoun resolver. 
In brief, the resolver searches the parse tree for antecedent candidates similarly to 
Hobb's algorithm as exemplified in [16] and uses several syntactic and semantic con-
straints to filter out impossible candidates. The constraints include syntactic constraints 
for anaphora antecedents [16], number agreement, and whether the candidate is a per-
son. The first candidate that survives the filtering is regarded as the antecedent of the 
pronoun and its semantic features are added to the original feature set.  

2.3   Verb-Specific Sentential Complements  

The different types of sentential complements can be very useful for distinguishing 
certain verb senses. (5a-b) shows two sentences containing the verb call in the 
SENSEVAL2 training data. Call has WordNet Sense 1 (name) in (5a) and Sense 3 

                                                           
4 A unique number defined in WordNet represents each synset or hypernym. 
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(ascribe) in (5b). In both cases, call takes a small clause as its sentential complement, 
i.e., it has the subcategorization frame X call Y Z. The difference is that Z is a Named 
Entity when call is in Sense 1, and Z is usually a common NP or an adjective phrase 
(ADJP) when call is in Sense 3.  

(5)  a. The slender, handsome fellow was calledverb [S Dandy Brandon]. 
    b.The White House is purposely not callingverb [S the meeting a summit] …  

Another example is shown in (6). The verb keep has WordNet Sense 1 (maintain) 
in (6a) and Sense 2 (continue) in (6b). In Sense 1, keep often takes a small clause and 
has the subcategorization frame X keep Y ADJP. In contrast, keep takes a sentential 
complement the head verb of which is in the present tense when it is in Sense 2. 

(6) a. He shook his head, keptverb [S his face expressionless]. 
      b. We keepverb [S wondering what Mr. Gates wanted to say]. 

Our original system uses a single feature hasSent to represent whether the target 
verb has a sentential complement or not, which cannot capture the rich information 
that is crucial to distinguishing certain verb senses but is deeply embedded in the 
sentential complements, as described above. Therefore, we treat sentential comple-
ments in a more fine-grained, verb-specific way. We resort to WordNet and PropBank 
[17] for the information about verb subcategorization frames. Another advantage of 
this verb-specific treatment is that it can filter out illegal sentential complements gen-
erated by the parser. 

3   System Evaluation 

Since the more recent SENSEVAL3 data were collected over the internet and had a 
relatively low quality of annotation, we decided to evaluate our new system on the 
SENSEVAL2 English verbs. Ratnaparkhi's MaxEnt sentence boundary detector and 
POS tagger [18], Bikel's parsing engine [19], and a named entity tagger, Identi-
FinderTM [15], were used to preprocess the training and test data automatically. 

3.1   Experimental Results  

Table 1 shows the performance of our system (MX-RF) on the 29 verbs with fine-
grained WordNet senses. Columns 2 and 3 show the number of senses and normalized 
sense perplexity5 for each verb in the test data respectively. It also gives the perform-
ance of the best system on English verbs in SENSEVAL2, KUNLP [5], and Dang's 
system [10]. As we see, our system achieves an average accuracy of 64.6%, which is 
significantly better than KUNLP  (57.6%) that only uses linguistically impoverished 
features (topical and collocation features). Our system also outperforms Dang's sys-
tem (62.5%). Recall that the types of rich linguistic features used by our system were 
originally inspired by Dang’s system, although we implemented them in different 
ways. Therefore, we attribute the more success of our new system mainly to the three 

                                                           
5  It is calculated as the entropy of the sense distribution of a verb in the test data divided by the 

largest possible entropy, i.e., log2 (the number of senses of the verb in the test data). 
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specific enhancements we made. To our best knowledge, the accuracy our system 
achieved is the best result for this task at present. 

To investigate exactly how much we gain by enhancing the system in the three 
ways discussed in Section 2, we tested our system by removing our refinements (sub-
ject extraction, pronoun coreferences, and verb-specific sentential complements) 
separately and all together. The results (columns 8-11) show that each refinement 
boosts the system's performance by 1.0~1.2 percent and that together they achieve an 
improvement of 2.6 percent. This confirms the utility of these enhancements. 

In addition to fine-grained verb senses, we also evaluated our system on coarse-
grained senses (see Table 2). Previous work [20] suggested that not all NLP applica-
tions need fine-grained sense distinctions; in some cases coarser granularities will 
suffice. Furthermore, it has been demonstrated that annotation with coarser senses is 
much faster and more accurate [21].  The SENSEVAL2 verb senses have been 
grouped by using both syntactic and semantic criteria, with a resulting inter-annotator 
agreement (ITA) of 82% (column 4).  As we expected, the accuracy of our system 
increases by about 9 percent on the coarse-grained senses to 73.7%, which again con-
sistently outperforms Dang's system (71.7%).   

3.2   Discussion 

Compared verb-by-verb, the performance of our system is better than or comparable 
to Dang's on most verbs, except that it has notably lower accuracy on develop, dress 
and serve. It is not obvious why, since although our features are similar to Dang's, the 
implementations are different. Nevertheless, an investigation of the specific features 
our system generated for these three verbs gives us a few clues. The semantic catego-
ries  of  the  direct  objects  of  the three verbs are very diverse, so there are not 
enough instances of similar categories for the model to generalize. Therefore, the 
system performance benefits little from our enhancements.  In fact, our system may 
be more susceptible to noisy data introduced by the pronoun resolver for these three 
verbs. Erroneous antecedents found by the resolver are indistinguishable from the 
actual direct objects that occur rarely in the training data, and therefore they get the 
same treatment from the machine learning algorithm. 

The experimental results and the above data analysis suggest that our system can 
be improved further by increasing the accuracy of subject extraction and pronoun 
resolution. We expect a state-of-the-art pronoun resolution module and a statistical 
subject finder to do better jobs in the future. Our current system does not distinguish 
senses of nouns when using WordNet synsets and hypernyms as semantic features, 
which introduces many irrelevant features (associated with the irrelevant senses). 
The machine learning algorithm sometimes cannot generalize well using these fea-
tures. A potential solution for this problem is to distinguish the senses of the target 
verb and its NP arguments simultaneously. Furthermore, we need to have a better 
generalization, or clustering, of WordNet synsets and hypernyms, especially when 
the subject or object of a verb has semantic versatility.  More performance improve-
ments will bring us closer to our goal of an overall level of accuracy of 80%, espe-
cially with respect to coarse-grained senses, that should finally be more beneficial to 
NLP applications. 
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Table 1. Evaluation of MX-RF on the SENSEVAL2 English verbs, with fine-grained senses 

Verb #of 
Sen

Sen 
Per-
plex. 

ITA KUNLP Dang 
2004

MX-
RF 

MX-RF 
w/o sbj 
extract.

MX-
RF 
w/o 

pron.

MX-RF 
w/o verb 
spec sent-

comp 

MX-
RF w/o 

all 
three 

begin 7 0.63 81.2 81.4 89.3 91.2 90.0 90.4 89.3 88.6 
call 17 0.86 69.3 48.5 54.5 56.8 56.8 55.3 53.8 52.3 
carry 19 0.87 60.7 45.5 39.4 44.7 45.5 40.2 43.2 42.4 

collab-
orate 2 0.47 75.0 90.0 90.0 90.0 90.0 90.0 90.0 90.0 
develop 14 0.82 67.8 42.0 58.0 49.3 49.3 50.7 49.3 49.3 
draw 21 0.95 76.7 34.1 31.7 41.5 39.0 34.1 41.5 36.6 
dress 12 0.79 86.5 71.2 72.9 64.4 64.4 69.5 67.8 64.4 
drift 9 0.89 50.0 53.1 40.6 67.2 51.6 60.9 64.1 48.4 
drive 13 0.84 58.8 54.8 59.5 60.7 60.7 58.3 60.7 58.3 
face 6 0.38 78.6 82.8 83.9 81.2 82.3 83.3 81.2 83.3 
ferret 0 0.00 1.00 100.0 100.0 100.0 100.0 100.0 100.0 100.0 
find 17 0.94 44.3 27.9 36.8 41.2 36.8 36.8 36.8 33.8 
keep 20 0.79 79.1 44.8 61.2 64.2 61.9 65.7 61.2 57.5 
leave 10 0.86 67.2 50.0 60.6 57.6 57.6 54.5 53.0 50.0 
live 9 0.70 79.7 59.7 70.1 69.4 69.4 67.9 69.4 67.9 
match 7 0.79 56.5 52.4 50.0 59.5 61.9 57.1 59.5 57.1 
play 20 0.85 N/A 37.9 53.0 62.1 59.1 62.1 62.1 62.1 
pull 25 0.89 68.1 45.0 50.0 58.3 56.6 58.3 53.3 56.7 
replace 4 0.85 65.9 55.6 60.0 61.1 60.0 55.5 61.1 57.8 
see 13 0.84 70.9 39.1 39.1 44.2 39.9 42.8 41.3 35.5 
serve 11 0.85 90.8 68.6 74.5 68.6 66.7 64.7 68.6 66.7 
strike 20 0.89 76.2 40.7 38.9 51.9 50.0 53.7 51.9 55.6 
train 8 0.87 28.8 58.7 63.5 60.3 60.3 63.5 60.3 63.5 
treat 5 0.88 96.9 56.8 50.0 50.0 50.0 52.3 50.0 56.8 
turn 26 0.93 74.2 37.3 49.3 48.5 44.0 47.8 47.0 46.3 
use 6 0.65 74.3 65.8 71.1 69.7 72.4 68.4 69.7 68.4 
wander 5 0.47 65.0 82.0 80.0 82.0 82.0 82.0 82.0 82.0 
wash 7 0.94 87.5 83.3 66.7 75.0 75.0 75.0 75.0 75.0 
work 18 0.84 N/A 45.0 45.0 53.3 51.7 50.0 53.3 43.3 
average 12 0.77 71.3 57.6 62.5 64.6 63.4 63.6 63.4 62.0 

Table 2. Evaluation of MX-RF on coarse-grained senses of the SENSEVAL2 English verbs 

 # of grp ITA grp Acc. of Dang 2004 Acc. of MX-RF 

Ave. on 29 verbs 5.9 82.0 71.7 73.7 
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4   System Robustness 

A frequent criticism of systems using rich linguistic features is that they do not port 
well to domains for which accurate preprocessors are not available. In this section we 
discuss two experiments designed to address the following two questions: How much 
will a relatively poor quality of preprocessing negatively affect the system's perform-
ance? Which strategies can we adopt to alleviate these negative effects?  

4.1   Experiment I 

Since the parser is the most critical component of our preprocessing and is more 
likely to have lower performance when it is used in an unfamiliar data set, we investi-
gate how the performance of the parser on different test data sets affects our system. 
We divided the SENSEVAL2 test data into two sets: an easy set and a hard set. The 
test data from the Wall Street Journal (wsj) sections of Penn Treebank (PTB) [22] are 
put into the easy set because they are similar to the parser's training data: 02-21 wsj 
sections. The hard set contains test data from the Brown sections of PTB and BNC 
data. It is expected that the parser and therefore the system will perform better on the 
easy set. We trained our system on the whole SENSEVAL2 training data set and 
evaluated its performance on the easy and hard test sets separately. The results are 
shown in Table 3. 

Table 3. Performance on different test data sets 

Test data set Hard Easy Whole Set
Num. of test inst. 895 911 1806 

Average Acc. 62.2 66.9 64.6 

As we expected, the system's performance on the hard test set is 4.7 percent lower 
than on the easy set. On the other hand, even on the hard set, its accuracy (62.2%) is 
still high and is comparable to Dang's system. It is worth noting that the experiment is 
preliminary because the easy set and the hard set are most likely to be different not 
only on whether they are familiar to the parser but also on the subtlety and distribu-
tions of their senses. Nevertheless, it is evidence of our system's robustness.   

4.2   Experiment I I 

There will be situations where systems trained with rich linguistic features extracted 
from high quality parses will be run on applications where such rich features will not 
be available. It is most likely that systems in such situations will go back to a position 
similar to where rich features are not available in both the training and test phases. 
However, could things get even worse? A machine learning model often tends to 
favor informative features (e.g., rich linguistic features in our case) and fit the distri-
bution of these features well in its training phase. Therefore, it is expected that the 
model will be penalized more heavily when these informative features are used in its 
training phase but are not accessible in its test phase. In this subsection, we discuss a 
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second experiment to test the robustness of our system in such situations and explore 
possible strategies for alleviating penalties.  

We trained our system with rich features of the SENSEVAL2 training data and 
tested its performance on the SENSEVAL2 test data with three different feature sets: 
a rich set containing topical, collocation, syntactic and semantic features 
(top+col+syn+sem), a poor set containing topical and collocation features (top+col) 
and a medium set containing topical and collocation features plus features for direct 
objects (top+col+obj). The reason we include the medium set is that a parser can 
usually find the direct object of verbs. Furthermore, we trained and tested our system 
on SENSEVAL2 data with linguistically impoverished features (top+col) and used 
this result as a control. As shown in Table 4, the system's accuracy drops to the same 
level as the control (58.0% vs. 58.1%) when it is trained with rich features but tested 
with poor features. When the features associated with the verb's direct object are 
added, the system's performance improves (59.1%).  

The experimental results here suggest that our system has not been penalized very 
much when rich linguistic features are only available in its training phase. Intuitively, 
the topical features6 our system uses alleviate the penalty. As expected, when the 
topical features of the test data were excluded, the performance of our system dropped 
to 54.8%. But this will be a common problem for all systems using topical features, 
not only for systems using rich linguistic features.7 These results suggest a strategy 
for using our system and other similar systems in a more robust way. When a state-of-
art parser is not available for the application data, topical features can be used to alle-
viate the penalty. Rich features that can be obtained more easily and reliably, e.g., 
features associated with the direct object of verbs, can also be used whenever they are 
available. 

Table 4. Performance of our system trained and tested on data sets with different features  

  top+col+syn+sem top+col 

top+col+syn+sem 64.6   

top+col 58.0 58.1 
top+col+obj 59.1   

5   Conclusion 

We have shown that our system using rich linguistic features was more successful, 
compared with the previous best systems, in classifying the fine-grained and coarse-
grained SENSEVAL2 verb senses. The three enhancements to the system's treatment 

                                                           
6  Our system uses all the contextual nouns, verbs, adjectives and adverbs that are not in a stop 

word list as topical features. 
7  In fact, the performance of our system trained with (top+col) features and tested with only 

collocation features also dropped to 55.8%, in contrast to the control accuracy 58.1%. 

Training set
Test set 
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of rich linguistic features were beneficial. Further improvements may come from 
disambiguating WordNet synsets and improving the accuracy of subject extraction 
and pronoun resolution. Furthermore, our system was robust when it was applied to 
test data that had a relatively poor quality of rich features. Based on the experimental 
results, we proposed a strategy for using systems with rich features in a more robust 
way. Our goal is to continue to improve the performance of our current WSD system, 
with respect to both fine-grained and coarse-grained senses, so that it becomes in-
creasingly beneficial to NLP applications. 
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