
Phrase-Based Statistical Machine Translation:
A Level of Detail Approach

Hendra Setiawan1,2, Haizhou Li1, Min Zhang1, and Beng Chin Ooi2

1 Institute for Infocomm Research,
21 Heng Mui Keng Terrace,

Singapore 119613
{stuhs, hli, mzhang}@i2r.a-star.edu.sg

2 School of Computing,
National University of Singapore,

Singapore 117543
{hendrase, ooibc}@comp.nus.edu.sg

Abstract. The merit of phrase-based statistical machine translation is
often reduced by the complexity to construct it. In this paper, we ad-
dress some issues in phrase-based statistical machine translation, namely:
the size of the phrase translation table, the use of underlying transla-
tion model probability and the length of the phrase unit. We present
Level-Of-Detail (LOD) approach, an agglomerative approach for learn-
ing phrase-level alignment. Our experiments show that LOD approach
significantly improves the performance of the word-based approach. LOD
demonstrates a clear advantage that the phrase translation table grows
only sub-linearly over the maximum phrase length, while having a per-
formance comparable to those of other phrase-based approaches.

1 Introduction

Early approach to statistical machine translation relies on the word-based trans-
lation model to describe the translation process [1]. However, the underlying as-
sumption of word-to-word translation often fails to capture all properties of the
language, i.e. the existence of the phrase where a group of words often function
together as a unit. Many researchers have proposed to move from the word-based
to the phrase-based translation model [2] [3] [4]. A phrase-based approach offers
many advantages as a phrase translation captures word context and local re-
ordering inherently [3]. It has become popular in statistical machine translation
applications.

There are typically two groups of approaches to constructing the phrase-
based model. The first group learns phrase translation directly from the sen-
tence pair. It learns both word and phrase units simultaneously. Although these
approaches appear intuitive, it usually suffers from a prohibitive computational
cost. It might have to consider all possible multi-word sequences as phrase can-
didates and all possible pairings as phrase translations at the same time.
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The second group of approaches learns phrase translations through word-level
alignment: alignment template [2] and projection extension [6], just to name a
few. In general, these approaches take the word-level alignment, a by-product of
the word-based translation model, as their input and then utilize a heuristic mea-
surement to learn the phrase translation. The heuristic measurement contains
all possible configurations of word-level alignment on a phrase translation.

It is noted that the underlying word-level alignment is just an approximation
to the exact alignment. The approximation is reflected by a probability produced
by the word-based translation model. The majority of approaches do not make
use of this probability, whereas it may provide a valuable clue leading to a better
phrase translation from a statistical point of view. Koehn, et. al [8] compared the
representative of both groups and reported that learning phrase translation using
a simple heuristic from word alignment yields a better translation performance
than learning phrase translation directly from the sentence pair.

Many approaches try to learn all phrase translations in one step, either di-
rectly from the sentence pair or through word alignment. As a result, they may
encounter a huge amount of phrase translation candidates at once. Usually, they
limit the maximum phrase length to reduce the choice of candidates. Although
this method is sufficient to satisfy the computational requirement, it comes with
the cost of not finding the good phrases longer than the imposed limit. Addition-
ally, to reduce the candidates, those approaches use a threshold to separate good
phrase translation from the rest. The threshold is ad-hoc and often not capable
of making a clear separation. Therefore, the use of threshold often comes with
the cost of the inclusion of undesired phrase translations and the absence of good
phrase translations in the phrase translation table. The cost may be reflected
from the size of the phrase translation table that often grows almost linearly over
the phrase length limit [6][8]. The growth implies a non-intuitive behavior: two
phrases with different length introduce an equal number of additional entries to
the phrase translation table. As longer phrases occur less often, there should be
fewer entries introduced into the phrase translation table.

We propose an agglomerative approach to learn phrase translations. Our
approach is motivated by the second group, which is to learn phrase translation
through word-alignment, while addressing the common issues: the size of the
phrase translation table, the use of underlying translation model probability
and the length of the phrase unit.

Only a few approaches move away from one-step learning. Melamed [13]
presented an agglomerative approach to learn the phrases progressively from
a parallel corpus by using sub-phrase bigram statistics. Moore [14] proposed
a similar approach which identifies the phrase candidates by parsing the raw
training data. Our idea differs from these approaches in that we look into the
association of the alignments rather than the association of the words to discover
the phrases.

In this paper, we propose the Level of Detail (LOD) approach for learning
of phrase translations in phrase-based statistical machine translation. Section 2
discusses the background and motivation and then formulates the LOD approach
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while section 3 describes the learning process in details. Section 4 describes
the experimental results. In this section, we compare LOD with state-of-the-art
word-based approach in translation tasks. Finally, section 5 concludes this paper
by providing some discussion in comparison with other related works.

2 Statistical Machine Translation: A Level of Detail

2.1 Motivation and Background

It is often not intuitive to model the translation of a phrase using the word-based
translation model. First, the literal translation of phrase constituents is often in-
appropriate from a linguistic point of view. The word-based translation model
treats a phrase as a multi-word. One such example is the case where a phrase
appears as an idiom. The translation of an idiom cannot be synthesized from
the literal translation of its constituents but rather from the semantic trans-
lation of the whole. Besides, the literal translation of an idiom detracts from
the intended meaning. In one such example, the literal translation of French
”manger sur le pouce” is ”to eat on the thumb”. This detracts from the correct
translation ”to grab a bite to eat ”. In addition, to produce the correct trans-
lation, the word-based translation model might have to learn that ”manger”
is translated as ”eat” or ”pouce” is translated as ”thumb”. Although it may
serve the translation purpose, it will introduce many non-intuitive entries to the
dictionary.

Second, even if it is possible to translate a phrase verbatim, modeling phrase
translation using the word-based translation model suffers from a disadvantage:
the number of word alignments required to synthesize the phrase translation is
large. It requires four word alignments to model the translation between ”une
minute de silence” and ”one minute of silence”, whereas one phrase alignment
is adequate. The introduction of more alignments also implies the requirement
to estimate more parameters for the translation model. The implication often
comes with the cost of learning wrong word alignments.

Third, a phrase often constitutes some spurious words. The word-based trans-
lation model often has trouble in modeling spurious words, such as function
words. Function words may appear freely in any position and often may not
be translated to any word. We observe that many of these function words ap-
pear inside a phrase. It is beneficial to realize these spurious words inside a
phrase unit so as to improve statistical machine translation performance and
also to remove the necessity to model them explicitly. All these suggest that,
ideally, a phrase translation should be realized as a phrase alignment, where
the lexical correspondence is established on phrase level rather than on its word
constituents.

The discussion above suggests that phrase-based translation is a wise choice.
Practically, as a phrase is not a well defined lexical entry, a mechanism is needed
to judge what constitutes a phrase in the context of statistical machine transla-
tion. In this paper, we advocate an approach to look into the phrase discovery
process at different level of details. The level of detail refers to the size of a
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phrase unit. At its finest level of detail, a phrase translation uses the word-based
translation model where a phrase is modeled through its word constituent. At
a coarser level of detail, a sub-phrase unit is introduced as a sequence of words,
making it a constituent of the phrase. The coarsest level of detail refers to the
status of a phrase where all word constituents converge into a whole unit.

Our Level-Of-Detail (LOD) approach views the problem of phrase-based
translation modeling through a LOD process. It starts from the finest word-
level alignment and transforms the phrase translation into its coarsest level of
detail.

2.2 Formulation

Let < e, f > be a sentence pair of two sequences of words with e as an English
sentence and f as its translation in French1. Let < ẽ, f̃ > represents the same
sentence pair but with the phrase as its atomic unit rather than the word. To
generalize the notation, we treat word and phrase unit similarly by considering
a word as a phrase of length one. Therefore, < e, f > hereafter will be referred as
< ẽ, f̃ >(0), which represents the finest level of detail, and < ẽ, f̃ > as < ẽ, f̃ >(N),
which represents the coarsest level of detail. Let each tuple in the sentence pair
of any level of detail n, < ẽ, f̃ >(n) be ẽ(n) = {ẽ

(n)
0 , ẽ

(n)
1 , . . . , ẽ

(n)
i , . . . , ẽ

(n)
l(n)} and

f̃
(n)

= {f̃
(n)
0 , f̃

(n)
1 , . . . , f̃

(n)
j , . . . , f̃

(n)
m(n)} where ẽ

(n)
0 ,f̃ (n)

0 represent the special token
NULL as suggested in [1] and l(n),m(n) represent the length of the corresponding
sentence. Let T (n) be a set of alignment defined over the sentence pair < ẽ, f̃ >(n)

with t
(n)
ij = [ẽ(n)

i , f̃
(n)
j ] as its member. The superscript in all notations denotes

the level of detail where 0 represents the finest and N represents the coarsest
level of detail.

LOD algorithm iteratively transforms < ẽ, f̃ >(0) to < ẽ, f̃ >(N) through
re-alignment of phrases and re-estimation of phrase translation probability. At
n-th iteration, LOD harvests all bi-directional alignments from the sentence pair
< ẽ, f̃ >(n). The alignment is obtained by a typical word-based translation model,
such as the IBM model, while treating a sub-phrase at n-th iteration as a word.
We refer to those alignments as B(n), a pool of sub-phrase alignments unique to
the particular iteration. Afterwards, LOD generates all possible phrase alignment
candidates C(n) for a coarser level of detail from these sub-phrase alignments.
A resulting phrase alignment candidate is basically a joining of two adjacent
sub-phrase alignments subject to a certain criterion. It represents the future
coarser level alignment. Up to this point, two sets of alignment are obtained
over< ẽ, f̃ >(n): a pool of sub-phrase alignments B(n) at the current level and a
pool of phrase alignment candidates C(n) at a coarser level. From these two sets
of alignments B(n) ∪C(n), we would like to derive a new set of alignments T (n+1)

that best describes the training corpus with the re-estimated statistics obtained
at n-th iteration. LOD constructs < ẽ, f̃ >(n+1) from the new set of alignment.
Algorithm 1 provides the general overview of LOD algorithm.
1 Subsequently, we will refer e as source sentence and f as target sentence, but the

term does not always reflect the translation direction.
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Algorithm 1. An overview of LOD approach in learning phrase translation. The LOD
approach takes a sentence pair at its finest level of detail as its input, learns the phrase-
level alignment iteratively and outputs the same sentence pair at its coarsest level of
detail along with its phrase translation table.

input 〈ẽ, f̃〉(0)
for n = 0 to (N − 1) do

- Generate bi-directional sub-phrase level alignments B(n) from 〈ẽ, f̃〉(n)

- Identify phrase-level alignment candidates C(n) from B(n)

- Estimate the alignment probability in B(n) and C(n)

- Learn coarser level alignment T (n+1) from B(n) ∪ C(n) and construct 〈ẽ, f̃〉(n+1)

output 〈ẽ, f̃〉(N) and T (N)

3 Learning Phrase Translation

In this section, we discuss the steps of LOD algorithm in detail. As presented
in Algorithm 1, moving from one level of alignment to its coarser level, LOD
follows four simple steps:

1. Generation of bi-directional sub-phrase level alignments 2

2. Identification of phrase level alignment candidates
3. Estimation of alignment probability
4. Learning coarser level alignment

3.1 Generation of Bi-directional Sub-phrase Level Alignments

LOD follows the common practice to utilize the IBM translation model for learn-
ing the phrase translation. That is to harvest all alignments from both translation
directions. For the sake of clarity, LOD defines the following notation for these
alignments, as follows:

Let Γ
(n)
ef : ẽ

(n)
i −→ f̃

(n)
j be an alignment function represents all alignments

from translating the source English sentence to the target French sentence, and
Γ

(n)
fe : f̃

(n)
j −→ ẽ

(n)
i be the reversed translation direction. Then, bi-directional

sub-phrase alignment B(n) includes all possible alignment by both functions:

B(n) = {t
(n)
ij = [ẽ(n)

i , f̃
(n)
j ]|(Γ (n)

ef (ẽ(n)
i ) = f̃

(n)
j ) ∪ (Γ (n)

fe (f̃ (n)
j ) = ẽ

(n)
i )}

Let us denote NULL alignments, N (n), a subset of alignments in B(n) in
which the special token NULL is involved.

2 The process starts with word level alignment. A word here is also referred to as a
sub-phrase.
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3.2 Identification of Phrase Alignment Candidates

LOD applies a simple heuristic to identify a phrase alignment candidate. First,
LOD considers every combination of two distinct sub-phrase alignments and as-
sesses its candidacy. Here, we define a phrase alignment candidate < t

(n)
ij , t

(n)
i′j′ >∈

C(n) as follows:
Let < t

(n)
ij , t

(n)
i′j′ > be a set of two tuples, where t

(n)
ij ∈ B(n) and t

(n)
i′j′ ∈ B(n).

Then < t
(n)
ij , t

(n)
i′j′ > is a phrase aligment candidate if and only if

1. not ((i, i′)�= 0) or (|i − i′| = 1)
2. not ((t(n)

ij ∈ N (n)) and (t(n)
i′j′ ∈ N (n)))

In the definition above, the first clause defines a candidate as a set of two whose
source sub-phrases are adjacent. The second clause forbids the consideration of
two NULL alignments.

As LOD considers only two alignments for each phrase alignment candidate,
it implies that, at the n-th iteration, the length of the longest possible phrase
is bounded by 2n. Apparently, we do not have to examine sub-phrase alignment
trunks of more than two sub-phrases because the iteration process guarantees
LOD to explore phrases of any length given sufficient iteration. This way, the
search space at each iteration can be manageable at each iteration.

3.3 Estimation of Alignment Probability

Joining the alignment set B(n) derived in Section 3.1 and the coarser level align-
ment C(n) derived in Section 3.2, we form a candidate alignment set B(n) ∪ C(n).
Assuming that there are two alignments x ∈ B(n), y ∈ B(n), and a candidate
alignment < x, y >∈ C(n), we derive the probability p(x) and p(y) from the
statistics as the count of x and y normalized by the number of alignments in the
corpus, and we derive the joint probability p(< x, y >) in a similar way.

If there is a genuine association between the two alignments, x and y, then
we expect that p(< x, y >) � p(x)p(y). If there is no interesting relationship
between x and y, then p(< x, y >) ≈ p(x)p(y) where we say that x and y are
independent. If x and y are in a complementary relationship, then we expect to
see that p(< x, y >) � p(x)p(y). These statistics allow us to discover a genuine
sub-phrase association.

The probability is estimated by the count of observed events normalized by
the corpus size. Note that the alignment from the IBM translation model is
derived using a Viterbi-like decoding scheme. Each observed event is counted as
one. This is referred to as hard-counting. As the alignment is done according to
probability distribution, another way of counting the event is to use the fractional
count that can be derived from the translation model. We refer to it as soft-
counting.

3.4 Learning a Coarser Level Alignment

From section 3.1 to 3.3, we have prepared all the necessary alignments with their
probability estimates. The next step is to re-align < ẽ, f̃ >(n) into < ẽ, f̃ >(n+1)
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using alignment phrases in B(n) ∪ C(n) with their newly estimated probability
distribution. The re-alignment is considered as a constrained search process. Let
p(t(n)

ij ) be the probability of a phrase alignment t
(n)
ij ∈ (B(n) ∪ C(n)) as defined

in Section 3.3, T (n) be the potential new alignment sequence for < ẽ, f̃ >(n), we
have the likelihood for T (n) as

log P (< ẽ, f̃ >(n) |T (n)) =
∑

t
(n)
ij ∈T (n)

log p(t(n)
ij ) (1)

The constrained search is to decode an alignment sequence that produces
the highest likelihood possible in the current iteration, subject to the following
constraints:

1. to preserve the phrase ordering of the source and target languages
2. to preserve the completeness of word or phrase coverage in the sentence pair
3. to ensure the mutual exclusion between alignments (except for the special

NULL tokens)

The constrained search can be formulated as follows:

T (n+1) = argmax
∀T (n)

log P (< ẽ, f̃ >(n) |T (n)) (2)

In Eq.(2), we have T (n+1) as the best alignment sequence to re-align sentence
pair < ẽ, f̃ >(n) to < ẽ, f̃ >(n+1) .

The constraints are to ensure that the search leads to a valid alignment re-
sult. The search is essentially a decoding process, which traverses the sentence
pair along the source language and explores all the possible phrase alignments
with the target language. In practice, LOD tries to find a phrase translation
table that maximizes Eq.(2) as formulated in Algorithm 2. As the existing align-
ment for < ẽ, f̃ >(n) in the n-th iteration is a valid alignment subject to three

Algorithm 2. A stack decoding algorithm to explore the best alignment path between
source and target languages by considering all alignment candidates in B(n) ∪ C(n) at
n-th iteration.

1. Initialize a lattice of l(n) slots for l(n) sub-phrase in source language.
2. Starting from i=1, for all phrases in source language ei;

1) Register all the alignments t
(n)
ij that map source phrases ending with ei,

including ei itself, into slot i in the lattice;
2) Register the probability of alignment p(t(n)

ij ) together with
the alignment entry t

(n)
ij

3) Repeat 1) and 2) until i=l(n)

3. Apply stack decoding [15] process to find the top n-best paths subject to the
three constraints. During the decoding processing, the extension of partial path
is subject to a connectivity test to enforce the three constraints.

4. Output the top best alignment result as the final result.
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constraints, it also serves as one resolution to the search. In the worst case, if the
constrained search can not discover any new alignment other than the existing
one, then the existing alignment in the current iteration will stand through the
next iteration.

In Algorithm 2, we establish the lattice along the source language. In the
case of English to French translation, we follow the phrases in the English order.
However, it can be done along the target language as well since our approach
follows a symmetric many-to-many word alignment strategy.

This step ends with the promotion of all phrase alignment candidates in the
best alignment sequence T (n+1). The promotion includes the merging of the two
sub-phrase alignments and the concerning sub-phrases. The merged unit will be
considered as a unit in the next iteration.

4 Experiments

The objective of our experiments is to validate our LOD approach in ma-
chine translation task. Additionally, we are interested in investigating the fol-
lowing: the effect of soft-counting in probability estimation, and the behav-
ior of LOD approach in every iteration, in terms of the length of the phrase
unit and the size of the phrase translation table. We report all our experi-
ments using BLEU metrics [10]. Furthermore, we report confidence intervals
with 95% statistical significance level of each experiments, as suggested by
Koehn [16].

We validate our approach through several experiments using English and
French language pairs from the Hansard corpus. We restrict the sentence length
to at most 20 words to obtain around 110 thousands sentence pairs. Then we
randomly select around 10 thousands sentence pair as our own testing set. In
total, the French corpus consists of 994,564 words and 29,360 unique words; while
the English corpus consists of 1,055,167 words and 20,138 unique words. Our
experiment is conducted on both English-to-French (e2f) and French-to-English
(f2e) tasks under open testing set-up. We use these available tools: GIZA++3

for word-based IBM 4 model training and ISI ReWrite4 for translation test. For
measuring the BLEU score and deriving the confidence intervals, we use the
publicly available tools5.

4.1 Soft-Counting vs. Hard-Counting

Table 1 summarizes our experiments in analyzing the effect of soft-counting
and hard-counting in the probability estimation on the BLEU score. Case I
demonstrates the BLEU score of the experiment using the underlying transla-
tion model probability or soft-counting, while Case II demonstrates the score of
3 http://www.fjoch.com/
4 http://www.isi.edu/licensed-sw/rewrite-decoder/
5 http://www.nist.gov/speech/tests/mt/resources/scoring.htm and

http://projectile.is.cs.cmu.edu/research/public/tools/bootStrap/tutorial.htm
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Table 1. Summary of experiment showing the contribution of using the translation
model probability. The experiments are conducted on English-to-French task. Case I
indicates the BLEU score of the LOD approach using soft-counting whereas Case II
indicates the BLEU score of hard-counting. The value in the column indicates the
BLEU score. The range inside the bracket indicates the confidence intervals with 95%
statistical significance level.

iteration Case I Case II
1 29.60 (29.01-30.14) 28.80 (28.20-29.38)
2 30.72 (30.09-31.29) 30.11 (29.48-30.67)
3 31.52 (30.87-32.06) 30.70 (30.05-31.32)
4 31.93 (31.28-32.50) 30.93 (30.30-31.51)
5 31.90 (31.45-32.68) 31.07 (30.39-31.62)

hard-counting. The experimental results suggest that the use of the underlying
translation model probability is beneficial as it gives consistently higher BLEU
scores in all the iterations. The comparison using paired bootstrap resampling
[16] also confirms the conclusion.

4.2 LOD Behavior over Iteration

Table 2 summarizes the performance of our LOD approach for the first 10 itera-
tions in comparison with the baseline IBM 4 word-based approach. The results
show that the LOD approach produces a significant improvement over IBM 4
consistently. The first iteration yields the biggest improvement. We achieve an
absolute BLEU score improvement of 5.01 for the English-to-French task and
5.48 for the French-to-English task from the first iteration. The subsequent im-
provement is obtained by performing more iterations and capturing longer phrase
translation, however, the improvement gained is less significant compared to that
of the first iteration.

Table 2 also summarizes the maximum phrase length and the behavior of
the phrase translation table: its size and its increment over iteration. It shows
that the phrase length is soft-constrained by the maximum likelihood criterion
in Eq. (2) rather than limited. As iteration goes on, longer phrases are learnt
but their probabilities are less probable than shorter one. Consequently, longer
phrases introduce fewer entries to the phrase translation table. Table 2 captures
the behavior of the phrase translation table. The first iteration contributes the
highest increment of 12.5 % to the phrase translation table while the accumulated
increment of table size up to 10th iteration only contributes 27.5% increment
over the original size. It suggests that as iteration goes and longer phrases are
captured, fewer additional entries are introduced to the phrase translation table.
The results also show the growth of the size of the phrase translation table is
sub-linear and it converges after reasonable number of iterations. This represents
a clear advantage of LOD over other related work [6][8].
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Table 2. Summary of experiments showing the behavior of LOD approach and the
characteristics of the phrase translation table in each iteration. The table shows the
translation performance of the word-based IBM 4 approach and the first 10 iteration of
LOD approach in BLEU score. The value in the columns indicate the BLEU score while
the range inside the bracket represents the confidence intervals with 95% statistical
significance level. The table also shows the trend of the phrase translation table: the
maximum phrase length, its size, and its increase over iterations.

Max Table BLEU with confidence intervals
Iteration Phrase Size Increase

Length e2f f2e
IBM 4 1 216,852 - 24.59 (24.12-25.21) 26.76 (26.15-27.33)

1 2 244,097 27,245 29.60 (29.01-30.14) 32.24 (31.58-32.83)
2 4 258,734 14,637 30.72 (30.09-31.29) 32.93 (32.28-33.57)
3 7 266,209 7,475 31.52 (30.87-32.06) 33.88 (33.22-34.49)
4 7 270,531 4,322 31.93 (31.28-32.50) 34.14 (33.46-34.76)
5 10 271,793 1,262 31.90 (31.45-32.68) 34.26 (33.56-34.93)
6 11 273,589 1,796 32.14 (31.48-32.72) 34.50 (33.78-35.16)
7 12 274,641 1,052 32.09 (31.43-32.68) 34.55 (33.81-35.18)
8 12 275,399 758 32.07 (31.39-32.60) 34.43 (33.71-35.09)
9 13 275,595 196 31.98 (31.32-32.55) 34.65 (33.93-35.29)
10 14 276,508 913 32.22 (31.55-32.79) 34.61 (33.91-35.26)

5 Discussion

In this paper, we propose LOD approach to phrase-based statistical machine
translation. The LOD approach addresses three issues in the phrase-based trans-
lation framework: the size of phrase translation table, the use of underlying
translation model probability and the length of the phrase unit.

In terms of the size of the phrase translation table, our LOD approach
presents a sub-linear growth of the phrase translation table. It demonstrates a
clear advantage over other reported attempts, such as in [6][8] where the phrase
translation table grows almost linearly over the phrase length limit. The LOD
approach manages the phrase translation table size in a systematic way as a
result of the incorporation of maximum likelihood criterion into the phrase dis-
covery process.

In terms of the use of underlying translation model probability, we propose
to use soft-counting instead of hard-counting in the re-estimation processing of
probability estimation. In the projection extension algorithm [6], the phrases are
learnt based on the presence of alignment in certain configurations. In alignment
template[2], two phrases are considered to be translation of each other, if the
word alignments exist within the phrases and not to the words outside. Both
methods are based on hard-counting of translation event. Our experiment results
suggest the use of soft-counting.
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In terms of the length of the phrase unit, we move away from the window-like
limit for phrase candidacy [4][9]. The LOD approach is shown to be more flexible
in capturing phrases of different length. It gradually explores longer phrases as
iteration goes, leading any reasonable length given sufficient iteration as long as
they are statistically credible.

It is known that statistical machine translation relies very much on the
training corpus. A larger phrase translation table means more training data
are needed for the translation model to be statistically significant. In this paper,
we successfully introduce the LOD approach to control the process of new phrase
discovery process. The results are encouraging.
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