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Abstract. In this paper, we explore the syntactic relation patterns for open-
domain factoid question answering.  We propose a pattern extraction method to 
extract the various relations between the proper answers and different types of 
question words, including target words, head words, subject words and verbs, 
from syntactic trees.  We further propose a QA-specific tree kernel to partially 
match the syntactic relation patterns.  It makes the more tolerant matching be-
tween two patterns and helps to solve the data sparseness problem.  Lastly, we 
incorporate the patterns into a Maximum Entropy Model to rank the answer 
candidates.  The experiment on TREC questions shows that the syntactic rela-
tion patterns help to improve the performance by 6.91 MRR based on the com-
mon features. 

1   Introduction 

Question answering is to find answers for open-domain natural language questions in 
a large document collection.  A typical QA system usually consists of three basic 
modules: 1. Question Processing (QP) Module, which finds some useful information 
from questions, such as expected answer type and key words; 2. Information Retrieval 
(IR) Module, which searches a document collection to retrieve a set of relevant sen-
tences using the key words; 3. Answer Extraction (AE) Module, which analyzes the 
relevant sentences using the information provided by the QP module and identify the 
proper answer.  In this paper, we will focus on the AE module. 

In order to find the answers, some evidences, such as expected answer types and 
surface text patterns, are extracted from answer sentences and incorporated in the AE 
module using a pipelined structure, a scoring function or some statistical-based meth-
ods.  However, the evidences extracted from plain texts are not sufficient to identify a 
proper answer.  For examples, for “Q1910: What are pennies made of?”, the expected 
answer type is unknown; for “Q21: Who was the first American in space?”, the sur-
face patterns may not detect the long-distance relations between the question key 
phrase “the first American in space” and the answer “Alan Shepard” in “… that car-
ried Alan Shepard on a 15 - minute suborbital flight in 1961 , making him the first 
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American in space.”  To solve these problems, more evidences need to be extracted 
from the more complex data representations, such as parse trees. 

In this paper, we explore the syntactic relation patterns (SRP) for the AE module.  
An SRP is defined as a kind of relation between a question word and an answer can-
didate in the syntactic tree.  Different from the textual patterns, the SRPs capture the 
relations based on the sentence syntactic structure rather than the sentence surface.  
Therefore, they may get the deeper understanding of the relations and capture the long 
range dependency between words regardless of their ordering and distance in the 
surface text.  Based on the observation of the task, we find that the syntactic relations 
between different types of question words and answers vary a lot with each other.  We 
classify the question words into four classes, including target words, head words, 
subject phrases and verbs, and generate the SRPs for them respectively.  Firstly, we 
generate the SRPs from the training data and score them based on the support and 
confidence measures.  Next, we propose a QA-specific tree kernel to calculate the 
similarity between two SRPs in order to match the patterns from the unseen data into 
the pattern set.  The tree kernel makes the partial matching between two patterns and 
helps to solve the data sparseness problem.  Lastly, we incorporate the SRPs into a 
Maximum Entropy Model along with some common features to classify the answer 
candidates.  The experiment on TREC questions shows that the syntactic relation 
patterns improve the performance by 6.91 MRR based on the common features. 

Although several syntactic relations, such as subject-verb and verb-object, have 
been also considered in some other systems, they are basically extracted using a small 
number of hand-built rules.  As a result, they are limited and costly.  In our task, we 
automatically extract the various relations between different question words and an-
swers and more tolerantly match the relation patterns using the tree kernel. 

2   Related Work 

The relations between answers and question words have been explored by many suc-
cessful QA systems based on certain sentence representations, such as word sequence, 
logic form, parse tree, etc. 

In the simplest case, a sentence is represented as a sequence of words.  It is as-
sumed that, for certain type of questions, the proper answers always have certain 
surface relations with the question words.  For example, “Q: When was X born?”, the 
proper answers often have such relation “<X> ( <Answer>--“ with the question 
phrase X .  [14] first used a predefined pattern set in QA and achieved a good per-
formance at TREC10.  [13] further developed a bootstrapping method to learn the 
surface patterns automatically.  When testing, most of them make the partial matching 
using regular expression.  However, such surface patterns strongly depend on the 
word ordering and distance in the text and are too specific to the question type. 

LCC [9] explored the syntactic relations, such as subject, object, prepositional at-
tachment and adjectival/adverbial adjuncts, based on the logic form transformation.  
Furthermore they used a logic prover to justify the answer candidates.  The prover is 
accurate but costly. 

Most of the QA systems explored the syntactic relations on the parse tree.  Since 
such relations do not depend on the word ordering and distance in the sentence, they 
may cope with the various surface expressions of the sentence.  ISI [7] extracted the 
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relations, such as “subject-verb” and “verb-object”, in the answer sentence tree and 
compared with those in the question tree.  IBM’s Maximum Entropy-based model 
[10] integrated a rich feature set, including words co-occurrence scores, named entity, 
dependency relations, etc.  For the dependency relations, they considered some prede-
fined relations in trees by partial matching.  BBN [15] also considered the verb-
argument relations. 

However, most of the current QA systems only focus on certain relation types, 
such as verb-argument relations, and extract them from the syntactic tree using some 
heuristic rules.  Therefore, extracting such relations is limited in a very local context 
of the answer node, such as its parent or sibling nodes, and does not involve long 
range dependencies.  Furthermore, most of the current systems only concern the rela-
tions to certain type of question words, such as verb.  In fact, different types of ques-
tion words may have different indicative relations with the proper answers.  In this 
paper, we will automatically extract more comprehensive syntactic relation patterns 
for all types of question words, partially match them using a QA-specific tree kernel 
and evaluate their contributions by integrating them into a Maximum Entropy Model. 

3   Syntactic Relation Pattern Generating 

In this section, we will discuss how to extract the syntactic relation patterns.  Firstly, 
we briefly introduce the question processing module which provides some necessary 
information to the answer extraction module.  Secondly, we generate the dependency 
tree of the answer sentence and map the question words into the tree using a Modified 
Edit Distance (MED) algorithm.  Thirdly, we define and extract the syntactic relation 
patterns in the mapped dependency tree.  Lastly, we score and filter the patterns. 

3.1   Question Processing Module 

The key words are extracted from the questions.  Considering that different key words 
may have different syntactic relations with the answers, we divide the key words into 
the following four types: 

1. Target Words, which are extracted from what / which questions.  Such words indi-
cate the expected answer types, such as “party” in “Q1967: What party led …?”. 

2. Head Words, which are extracted from how questions.  Such words indicate the 
expected answer heads, such as “dog” in the “Q210: How many dogs pull …?” 

3. Subject Phrases, which are extracted from all types of questions.  They are the base 
noun phrases of the questions except the target words and the head words. 

4. Verbs, which are the main verbs extracted from non-definition questions. 

The key words described above are identified and classified based on the question 
parse tree.  We employ the Collins Parser [2] to parse the questions and the answer 
sentences. 

3.2   Question Key Words Mapping 

From this section, we start to introduce the AE module.  Firstly, the answer sentences 
are tagged with named entities and parsed.  Secondly, the parse trees are transformed 
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to the dependency trees based on a set of rules.  To simplify a dependency tree, some 
special rules are used to remove the non-useful nodes and dependency information.  
The rules include 

1. Since the question key words are always NPs and verbs, only the syntactic rela-
tions between NP and NP / NP and verb are considered. 

2. The original form of Base Noun Phrase (BNP) is kept and the dependency relations 
within the BNPs are not considered, such as adjective-noun.  A base noun phrase is 
defined as the smallest noun phrase in which there are no noun phrases embedded. 

An example of the dependency tree is shown in Figure 1.  We regard all BNP 
nodes and leaf nodes as answer candidates. 

 

Fig. 1. Dependency tree and Tagged dependency tree 

Next, we map the question key words into the simplified dependency trees.  We 
propose a weighted edit distance (WED) algorithm, which is to find the similarity 
between two phrases by computing the minimal cost of operations needed to transform 
one phrase into the other, where an operation is an insertion, deletion, or substitution. 

Different from the commonly-used edit distance algorithm [11], the WED defines 
the more flexible cost function which incorporates the morphological and semantic 
alternations of the words.  The morphological alternations indicate the inflections of 
noun/verb.  For example, for Q2149: How many Olympic gold medals did Carl Lewis 
win?   We map the verb win to the nominal winner in the answer sentence “Carl 
Lewis, winner of nine Olympic gold medals, thinks that …”.  The morphological alter-
nations are found based on a stemming algorithm and the “derivationally related 
forms” in WordNet [8].  The semantic alternations consider the synonyms of the 
words.  Some types of the semantic relations in WordNet enable the retrieval of syno-
nyms, such as hypernym, hyponym, etc.  For example, for Q212: Who invented the 
electric guitar?  We may map the verb invent to its direct hypernym create in answer 
sentences.  Based on the observation of the task, we set the substitution costs of the 
alternations as follows: Identical words have cost 0; Words with the same morpho-
logical root have cost 0.2; Words with the hypernym or hyponym relations have cost 

tagged dependency tree dependency tree 
live 

BNP 
NER_PER 

Ellington 

BNP 
NER_LOC 

BNP 

Washington his early NNP 20s

NER_DAT 

VER

VER: the verb of the question 
SUB: the subject words of the question 
TGT_HYP: the hypernym of the target word of the question  
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NER_LOC 
TGT_HYP 

BNP 

Washington his early NNP 20s 

NER_DAT 

Q1916: What city did Duke Ellington live in?  
A: Ellington lived in Washington until his early 20s. 
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0.4; Words in the same SynSet have cost 0.6; Words with subsequence relations have 
cost 0.8; otherwise, words have cost 1.  Figure 1 also shows an example of the tagged 
dependency tree. 

3.3   Syntactic Relation Pattern Extraction 

A syntactic relation pattern is defined as the smallest subtree which covers an answer 
candidate node and one question key word node in the dependency tree.  To capture 
different relations between answer candidates and different types of question words, 
we generate four pattern sets, called PSet_target, PSet_head, PSet_subject and 
PSet_verb, for the answer candidates.  The patterns are extracted from the training 
data.  Some pattern examples are shown in Table 1.  For a question Q, there are a set 
of relevant sentences SentSet.  The extraction process is as follows: 

1. for each question Q in the training data 
2. question processing model extract the key words of Q 
3. for each sentence s in SentSet 

a) parse s  
b) map the question key words into the parse tree 
c) tag all BNP nodes in the parse tree as answer candidates. 
d) for each answer candidate (ac) node 

 for each question word (qw) node 
      extract the syntactic relation pattern (srp) for ac and qw  

 add srp to PSet_target, PSet_head, PSet_subject or 
PSet_verb based on the types of qw. 

Table 1. Examples of the patterns in the four pattern sets 

PatternSet  Patterns Sup. Conf. 
(NPB~AC~TGT) 0.55 0.22 
(NPB~AC~null (NPB~null~TGT)) 0.08 0.06 PSet_target 
(NPB~null~null (NPB~AC~null) (NPB~null~TGT)) 0.02 0.09 

PSet_head (NPB~null~null (CD~AC~null) (NPB~null~HEAD)) 0.59 0.67 
(VP~null~null (NPB~null~SUB) (NPB~null~null 
(NPB~AC~null))) 

0.04 0.33 
PSet_subject 

(NPB~null~null (NPB~null~SUB) (NPB~AC~null)) 0.02 0.18 

PSet_verb (VP~null~VERB (NPB~AC~null)) 0.18 0.16 

3.4   Syntactic Relation Pattern Scoring 

The patterns extracted in section 3.3 are scored by support and confidence measures.  
Support and confidence measures are most commonly used to evaluate the association 
rules in the data mining area.  The support of a rule is the proportion of times the rule 
applies.  The confidence of a rule is the proportion of times the rule is correct.  In our 
task, we score a pattern by measuring the strength of the association rule from the 
pattern to the proper answer (the pattern is matched => the answer is correct). Let pi 
be any pattern in the pattern set PSet , 
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the number of  in which  is correct
support( )

the size of 

p acipi PSet
=  

the number of  in which  is correct
confidence( )

the number of  

p acipi pi
=  

We score the patterns in the PSet_target, PSet_head, PSet_subject and PSet_verb 

respectively.  If the support value is less than the threshold supt or the confidence 

value is less than the threshold conft , the pattern is removed from the set.  In the ex-

periment, we set supt 0.01 and conft  0.5.  Table 1 lists the support and confidence of 

the patterns. 

4   Syntactic Relation Pattern Matching 

Since we build the pattern sets based on the training data in the current experiment, 
the pattern sets may not be large enough to cover all of the unseen cases.  If we make 
the exact match between two patterns, we will suffer from the data sparseness prob-
lem.  So a partial matching method is required.  In this section, we will propose a QA-
specific tree kernel to match the patterns. 

A kernel function 1 2( , ) : [0, ]K x x × →X X R , is a similarity measure between 

two objects 1x and 2x with some constraints.  It is the most important component of 

kernel methods [16].  Tree kernels are the structure-driven kernels used to calculate 
the similarity between two trees.  They have been successfully accepted in the natural 
language processing applications, such as parsing [4], part of speech tagging and 
named entity extraction [3], and information extraction [5, 17].  To our knowledge, 
tree kernels have not been explored in answer extraction. 

Suppose that a pattern is defined as a tree T with nodes 0 1{ , , ..., }nt t t  and each node 

it is attached with a set of attributes 0 1{ , , ..., }ma a a , which represent the local charac-

teristics of ti .  In our task, the set of the attributes include Type attributes, Ortho-

graphic attributes and Relation Role attributes, as shown in Table 2.  Figure 2 shows 
an example of the pattern tree T_ac#target. 

The core idea of the tree kernel ( , )1 2K T T  is that the similarity between two trees 

T1 and T2 is the sum of the similarity between their subtrees.  It can be calculated by 
dynamic programming and can capture the long-range relations between two nodes.  
The kernel we use is similar to [17] except that we define a task-specific matching 
function and similarity function, which are two primitive functions to calculate the 
similarity between two nodes in terms of their attributes.  

Matching function 
1 if . .  and . .   

( , )
0 otherwise                                           

i j i j

i j

t type t type t role t role
m t t

= =
=
⎧
⎨
⎩
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Similarity function 
0{ ,..., }

( , ) ( . , . )
i j i j

ma a a

s t t f t a t a
∈

= ∑  

where, ( . , . )
i j

f t a t a  is a compatibility function between two feature values 

. .
( . , . )

1   if 

0   otherwise

i j

i j

t a t a
f t a t a =

=⎧
⎨
⎩

 

Table 2. Attributes of the nodes 

Attributes Examples 

POS tag CD, NNP, NN… Type 

syntactic tag NP, VP, … 
Is Digit? DIG, DIGALL 

Is Capitalized? CAP, CAPALL 

Orthographic  

length of phrase LNG1, LNG2#3, LNGgt3 
Role1 Is answer candidate? true, false 

Role2 Is question key words? true, false 

 

Fig. 2. An example of the pattern tree T_ac#target 

5   ME-Based Answer Extraction 

In addition to the syntactic relation patterns, many other evidences, such as named 
entity tags, may help to detect the proper answers.  Therefore, we use maximum en-
tropy to integrate the syntactic relation patterns and the common features. 

5.1   Maximum Entropy Model 

[1] gave a good description of the core idea of maximum entropy model.  In our task, 
we use the maximum entropy model to rank the answer candidates for a question, 

T_ac#target 

Q1897: What is the name of the airport in Dallas Ft. Worth? 
S: Wednesday morning, the low temperature at the Dallas-Fort Worth Inter-
national Airport was 81 degrees. 

t4 t3 t2 

T: BNP 
O: null  
R1: true 
R2: false 

t1 

Dallas-Fort 
T: NNP 
O: CAPALL  
R1: false 
R2: false 

International 
T: JJ 
O: CAPALL  
R1: false 
R2: false 

Airport 
T: NNP 
O: CAPALL  
R1: false 
R2: true 

t0 

Worth 
T: NNP 
O: CAPALL 
R1: false 
R2: false 
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which is similar to [12].  Given a question q and a set of possible answer candi-

dates 1 2{ , ... }nac ac ac , the model outputs the answer 1 2{ , ... }nac ac ac ac∈ with the 

maximal probability from the answer candidate set.  We define M feature func-

tions 1 2( ,{ , ... }, ),  m=1,...,Mm nf ac ac ac ac q .  The probability is modeled as  

1 2
1

1 2

1 2
' 1

exp[ ( ,{ , ... }, ))]
( | { , ... }, )

exp[ ( ',{ , ... }, )]

M

m m n
m

n M

m m n
ac m

f ac ac ac ac q
P ac ac ac ac q

f ac ac ac ac q

λ

λ
=

=

∑
=
∑ ∑

 

where, (m=1,...,M)mλ are the model parameters, which are trained with General-

ized Iterative Scaling [6].  A Gaussian Prior is used to smooth the ME model. 

Table 3. Examples of the common features 

Features Examples Explanation 

NE#DAT_QT_DAT ac is NE (DATE) and qtarget is DATE NE  

NE#PER_QW_WHO ac is NE (PERSON) and qword is WHO 
SSEQ_Q ac is a subsequence of question 

CAP_QT_LOC ac is capitalized and qtarget is LOCATION 

Ortho-
graphic  

LNGlt3_QT_PER the length of ac ≤ 3 and qtarget is PERSON 
CD_QT_NUM syn. tag of ac is CD and qtarget is NUM Syntactic 

Tag  NNP_QT_PER syn. tag of ac is NNP and qtarget is PERSON 

Triggers TRG_HOW_DIST ac matches the trigger words for HOW questions which 
ask for distance  

5.2   Features 

For the baseline maximum entropy model, we use four types of common features: 

1. Named Entity Features: For certain question target, if the answer candidate is 
tagged as certain type of named entity, one feature fires. 

2. Orthographic Features: They capture the surface format of the answer candi-
dates, such as capitalizations, digits and lengths, etc.  

3. Syntactic Tag Features: For certain question target, if the word in the answer 
candidate belongs to a certain syntactic / POS type, one feature fires. 

4. Triggers: For some how questions, there are always some trigger words which are 
indicative for the answers.  For example, for “Q2156: How fast does Randy John-
son throw?”, the word “mph” may help to identify the answer “98-mph” in “John-
son throws a 98-mph fastball.” 

Table 3 shows some examples of the common features.  All of the features are the 
binary features.  In addition, many other features, such as the answer candidate fre-
quency, can be extracted based on the IR output and are thought as the indicative 
evidences for the answer extraction [10].  However, in this paper, we are to evaluate 
the answer extraction module independently, so we do not incorporate such features 
in the current model. 
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In order to evaluate the effectiveness of the automatically generated syntactic rela-
tion patterns, we also manually build some heuristic rules to extract the relation fea-
tures from the trees and incorporate them into the baseline model.  The baseline 
model uses 20 rules.  Some examples of the hand-extracted relation features are 
listed as follows, 

 If the ac node is the same of the qtarget node, one feature fires. 
 If the ac node is the sibling of the qtarget node, one feature fires. 
 If the ac node is the child of the qsubject node, one feature fires. 
 … 

Next, we will discuss the use of the syntactic relation features.  Firstly, for each 
answer candidate, we extract the syntactic relations between it and all mapped ques-
tion key words in the sentence tree.  Then for each extracted relation, we match it in 
the pattern set PSet_target, PSet_head, PSet_subject or PSet_verb.  A tree kernel 
discussed in Section 4 is used to calculate the similarity between two patterns.  Fi-
nally, if the maximal similarity is above a threshold λ , the pattern with the maximal 
similarity is chosen and the corresponding feature fires.  The experiments will evalu-
ate the performance and the coverage of the pattern sets based on different λ  values. 

6   Experiment 

We apply the AE module to the TREC QA task.  Since this paper focuses on the AE 
module alone, we only present those sentences containing the proper answers to the 
AE module based on the assumption that the IR module has got 100% precision.  The 
AE module is to identify the proper answers from the given sentence collection. 

We use the questions of TREC8, 9, 2001 and 2002 for training and the questions of 
TREC2003 for testing.  The following steps are used to generate the data: 

1. Retrieve the relevant documents for each question based on the TREC judgments. 
2. Extract the sentences, which match both the proper answer and at least one ques-

tion key word, from these documents.   
3. Tag the proper answer in the sentences based on the TREC answer patterns. 

In TREC 2003, there are 413 factoid questions in which 51 questions (NIL ques-
tions) are not returned with the proper answers by TREC.  According to our data 
generation process, we cannot provide data for those NIL questions because we can-
not get the sentence collections.  Therefore, the AE module will fail on all of the NIL 
questions and the number of the valid questions should be 362 (413 – 51).  In the 
experiment, we still test the module on the whole question set (413 questions) to keep 
consistent with the other’s work.  The training set contains 1252 questions.  The per-
formance of our system is evaluated using the mean reciprocal rank (MRR).  Fur-
thermore, we also list the percentages of the correct answers respectively in terms of 
the top 5 answers and the top 1 answer returned.  No post-processes are used to adjust 
the answers in the experiments. 

In order to evaluate the effectiveness of the syntactic relation patterns in the answer 
extraction, we compare the modules based on different feature sets.  The first ME 
module ME1 uses the common features including NE features, Orthographic features, 
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Syntactic Tag features and Triggers.  The second ME module ME2 uses the common 
features and some hand-extracted relation features, described in Section 5.2.  The 
third module ME3 uses the common features and the syntactic relation patterns which 
are automatically extracted and partial matched with the methods proposed in Section 
3 and 4.  Table 4 shows the overall performance of the modules.  Both ME2 and ME3 
outperform ME1 by 3.15 MRR and 6.91 MRR respectively.  This may indicate that 
the syntactic relations between the question words and the answers are useful for the 
answer extraction.  Furthermore, ME3 got the higher performance (+3.76 MRR) than 
ME2.  The probable reason may be that the relations extracted by some heuristic rules 
in ME2 are limited in the very local contexts of the nodes and they may not be suffi-
cient.  On the contrary, the pattern extraction methods we proposed can explore the 
larger relation space in the dependency trees. 

Table 4. Overall performance 

 ME1 ME2 ME3 
Top1  44.06 47.70 51.81 
Top5 53.27 55.45 58.85 
MRR 47.75 50.90 54.66 

Table 5. Performances for two pattern matching methods 

PartialMatch  ExactMatch 
( λ =1) λ =0.8 λ =0.6 λ =0.4 λ =0.2 λ =0 

Top1 50.12 51.33 51.81 51.57 50.12 50.12 
Top5 57.87 58.37 58.85 58.60 57.16 57.16 
MRR 53.18 54.18 54.66 54.41 52.97 52.97 

Furthermore, we evaluate the effectiveness of the pattern matching method in Sec-
tion 4.  We compare two pattern matching methods: the exact matching (ExactMatch) 
and the partial matching (PartialMatch) using the tree kernel.  Table 5 shows the 
performances for the two pattern matching methods.  For PartialMatch, we also 
evaluate the effect of the parameter λ  (described in Section 5.2) on the performance.  
In Table 5, the best PartialMatch ( λ  = 0.6) outperforms ExactMatch by 1.48 MRR.  
Since the pattern sets extracted from the training data is not large enough to cover the 
unseen cases, ExactMatch may have too low coverage and suffer with the data sparse-
ness problem when testing, especially for PSet_subject (24.32% coverage using Ex-
actMatch vs. 49.94% coverage using PartialMatch).  In addition, even the model with 
ExactMatch is better than ME2 (common features + hand-extracted relations) by 2.28 
MRR.  It indicates that the relation patterns explored with the method proposed in 
Section 3 are more effective than the relations extracted by the heuristic rules. 

Table 6 shows the size of the pattern sets PSet_target, PSet_head, PSet_subject 
and PSet_verb and their coverage for the test data based on different λ  values.  
PSet_verb gets the low coverage (<5% coverage).  The probable reason is that the 
verbs in the answer sentences are often different from those in the questions, therefore 
only a few question verbs can be matched in the answer sentences.  PSet_head also 
gets the relatively low coverage since the head words are only exacted from how 
questions and there are only 49/413 how questions with head words in the test data.  
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Table 6. Size and coverage of the pattern sets 

coverage (*%)  size 
λ =1 λ =0.8 λ =0.6 λ =0.4 λ =0.2 λ =0 

PSet_target 45 49.85 53.73 57.01 58.14 58.46 58.46 
PSet_head 42 5.82 6.48 6.69 6.80 6.80 6.80 
PSet_subject 123 24.32 44.82 49.94 51.29 51.84 51.84 
PSet_verb 125 2.21 3.49 3.58 3.58 3.58 3.58 

We further evaluate the contributions of different types of patterns.  We respec-
tively combine the pattern features in different pattern set and the common features.  
Some findings can be concluded from Table 7: All of the patterns have the positive 
effects based on the common features, which indicates that all of the four types of the 
relations are helpful for answer extraction.  Furthermore, P_target (+4.21 MRR) and 
P_subject (+2.47 MRR) are more beneficial than P_head (+1.25 MRR) and P_verb 
(+0.19 MRR).  This may be explained that the target and subject patterns may have 
the effect on the more test data than the head and verb patterns since PSet_target and 
PSet_subject have the higher coverage for the test data than PSet_head and 
PSet_verb, as shown in Table 6.  

Table 7. Performance on feature combination 

Combination of features MRR 
common features 47.75 
common features + P_target 51.96 
common features + P_head 49.00 
common features + P_subject 50.22 
common features + P_verb 47.94 

7   Conclusion 

In this paper, we study the syntactic relation patterns for question answering.  We 
extract the various syntactic relations between the answers and different types of 
question words, including target words, head words, subject words and verbs and 
score the extracted relations based on support and confidence measures.  We further 
propose a QA-specific tree kernel to partially match the relation patterns from the 
unseen data to the pattern sets.  Lastly, we incorporate the patterns and some com-
mon features into a Maximum Entropy Model to rank the answer candidates.  The 
experiment shows that the syntactic relation patterns improve the performance by 
6.91 MRR based on the common features. Moreover, the contributions of the pat-
tern matching methods are evaluated.  The results show that the tree kernel-based 
partial matching outperforms the exact matching by 1.48 MRR.  In the future, we 
are to further explore the syntactic relations using the web data rather than the  
training data. 
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