
R. Dale et al. (Eds.): IJCNLP 2005, LNAI 3651, pp. 450 – 461, 2005.
© Springer-Verlag Berlin Heidelberg 2005

An Ensemble of Grapheme and Phoneme
for Machine Transliteration

Jong-Hoon Oh and Key-Sun Choi

Department of Computer Science, KAIST/KORTERM/BOLA,
373-1 Guseong-dong, Yuseong-gu, Daejeon, 305-701, Republic of Korea

{rovellia, kschoi}@world.kaist.ac.kr

Abstract. Machine transliteration is an automatic method to generate characters
or words in one alphabetical system for the corresponding characters in another
alphabetical system. There has been increasing concern on machine translitera-
tion as an assistant of machine translation and information retrieval. Three ma-
chine transliteration models, including “grapheme-based model”, “phoneme-
based model”, and “hybrid model”, have been proposed. However, there are
few works trying to make use of correspondence between source grapheme and
phoneme, although the correspondence plays an important role in machine
transliteration. Furthermore there are few works, which dynamically handle
source grapheme and phoneme. In this paper, we propose a new transliteration
model based on an ensemble of grapheme and phoneme. Our model makes use
of the correspondence and dynamically uses source grapheme and phoneme.
Our method shows better performance than the previous works about 15~23%
in English-to-Korean transliteration and about 15~43% in English-to-Japanese
transliteration.

1 Introduction

Machine transliteration is an automatic method to generate characters or words in one
alphabetical system for the corresponding characters in another alphabetical system.
For example, English word data is transliterated into Korean ‘deita’ 1 and Japanese
‘deeta’. Transliteration is used to phonetically translate proper names and technical
terms especially from languages in Roman alphabets to languages in non-Roman
alphabets such as from English to Korean, Japanese, and Chinese and so on. There
has been increasing concern on machine transliteration as an assistant of Machine
Translation (MT) [2], [10], mono-lingual information retrieval (MLIR) [8], [11] and
cross-lingual information retrieval (CLIR) [6]. In the area of MLIR and CLIR, ma-
chine transliteration bridges the gap between a transliterated localized form and its
original form by generating all possible transliterated forms from each original form.
Especially for CLIR, machine transliteration gives a help to query translation where
proper names and technical terms frequently appear in source language queries. In the
area of MT, machine transliteration prevents translation failure when translations of

1 In this paper, target language transliterations are represented with their Romanization form in

a quotation mark (‘’) .

 An Ensemble of Grapheme and Phoneme for Machine Transliteration 451

proper names and technical terms are not registered in a translation dictionary. A
machine transliteration system, therefore, may affect the performance of MT, MLIR,
and CLIR system.

Three machine transliteration models have been studied: called “grapheme2-based
transliteration model (ψG)” [7], [8], [9], [11], [12], [13], “phoneme3-based translit-
eration model (ψP)” [10], [12], and “hybrid transliteration model (ψH)” [2], [4],
[12]. ψG and ψP are classified in terms of units to be transliterated. ψG is referred to
the direct model because it directly transforms source language graphemes to target
language graphemes without any phonetic knowledge of source language words. ψP is
called the pivot model because it makes use of phonemes as a pivot during a translit-
eration process. Therefore ψP usually needs two steps; the first step is to produce
phonemes from source language graphemes, and the second step is to produce target
language graphemes from phonemes. ψH combines ψG and ψP with the linear interpo-
lation style. Hereafter, we will use a source grapheme for a source language grapheme
and a target grapheme for a target language grapheme.

Though transliteration is the phonetic process (ψP) rather than the orthographic one
(ψG) [10], we should consider both source grapheme and phoneme to achieve high
performance in machine transliteration because the standard transliterations are not
restricted to phoneme-based transliterations4. However, many previous works make
use of either source grapheme or phoneme. They simplify a machine transliteration
problem into either ψG or ψP assuming that one of ψG and ψP is able to cover all trans-
literation behaviors. However, transliteration is a complex process, which does not
rely on either source grapheme or phoneme. For example, the standard Korean trans-
literations of amylase and data are grapheme-based transliteration ‘amillaaje’ and
phoneme-based transliteration ‘deiteo’, respectively. A machine transliteration model,
therefore, should reflect the dynamic transliteration behaviors in order to produce the
correct transliterations.
ψH has the limited power for producing the correct transliterations because it just

combines ψG and ψP with the linear interpolation style. ψH does not consider corre-
spondence between source grapheme and phoneme during the transliteration process.
However the correspondence plays important roles in machine transliteration. For
example, phoneme /AH/5 produces high ambiguities since it can be mapped to almost
every single vowels in source language and target language (the underlined grapheme
corresponds to /AH/: cinema, hostel, holocaust in English, ‘sinema’, ‘hostel’, ‘hol-
lokoseuteu’ in their Korean counterparts, and ‘sinema’, ‘hoseuteru’, ‘horokoosuto’ in

2 Graphemes refer to the basic units (or the smallest contrastive units) of written language: for

example, English has 26 graphemes or letters, Korean has 24, and German has 30.
3 Phonemes are the simplest significant unit of sound (or the smallest contrastive units of the

spoken language): for example, the /M/, /AE/, and /TH/ in math.
4 In an English-to-Korean transliteration test set [14], we find that about 60% are phoneme-

based transliterations, while about 30% are grapheme-based ones. The others are translitera-
tions generated by combining ψG and ψP.

5 ARPAbet symbol will be used for representing phonemes. ARPAbet is one of the methods
used for coding phonemes into ASCII characters (www.cs.cmu.edu/~laura/pages/arpabet.ps).
In this paper, we will denote phonemes and pronunciation with two slashes like so : /AH/.
Pronunciation represented in this paper is based on The CMU Pronunciation Dictionary and
The American Heritage(r) Dictionary of the English Language.

452 J.-H. Oh and K.-S. Choi

their Japanese counterparts). If we know the correspondence between source graph-
eme and phoneme in this context, then we can more easily infer the correct translitera-
tion of /AH/, since a target grapheme of /AH/ usually depends on a source grapheme
corresponding to /AH/. Korean transliterations of source grapheme a is various such
as ‘a’, ‘ei’, ‘o’, ‘eo’ and so on. Like the previous example, correspondence makes it
possible to reduce transliteration ambiguities like Table 1. In Table 1, the underlined
source grapheme a in the example column is pronounced as the phoneme in the pho-
neme column. The correct Korean transliterations of source grapheme a can be more
easily found, like in the Korean grapheme column, by means of phonemes in the
phoneme column.

Table 1. Examples of Korean graphemes derived from source grapheme a and its correspond-
ing phoneme: the underline indicates source graphemes corresponding to each phoneme in the
phoneme column

Korean grapheme Phoneme Example
‘a’ /AA/ adagio, safari, vivace
‘ae’ /AE/ advantage, alabaster, travertine
‘ei’ /EY/ chamber, champagne, chaos
‘i’ /IH/ advantage, average, silage
‘o’ /AO/ allspice, ball, chalk

In this paper, we propose a new machine transliteration model based on an ensem-
ble of source grapheme and phoneme, symbolized as ψC (“correspondence-based
transliteration model”). ψC has two strong points over ψG, ψP, and ψH. First, ψC can
produce transliterations by considering correspondence between source grapheme and
phoneme. As described above, correspondence is very useful for reducing translitera-
tion ambiguities. From the viewpoint of reducing the ambiguities, ψC has an advan-
tage over ψG, ψP, and ψH because ψC can more easily reduce the ambiguities by con-
sidering the correspondence. Second, ψC can dynamically handle source grapheme
and phoneme according to their contexts. Because of this property, ψC can produce
grapheme-based transliterations as well as phoneme-based transliterations. It can also
produce a transliteration, where one part is a grapheme-based transliteration and the
other part is a phoneme-based transliteration. For example, the Korean transliteration
of neomycin, ‘neomaisin’, where ‘neo’ is a grapheme-based transliteration and
‘maisin’ is a phoneme-based transliteration.

2 Correspondence-Based Machine Transliteration Model

Correspondence-based transliteration model (ψC) is composed of two component
functions (ψC: δp×δt). In this paper, we refer to δp as a function for “producing pro-
nunciation” and δt as a function for “producing target grapheme”. First, δp pro-
duces pronunciation and then δt produces target graphemes with correspondence be-
tween source grapheme and phoneme produced by δp. The goal of the δp is to produce
the most probable sequence of phonemes corresponding to source graphemes. For

 An Ensemble of Grapheme and Phoneme for Machine Transliteration 453

example, δp produces /B/, /AO/, /~/6, /R/, and /D/ for each source grapheme, b, o, a, r,
and d in board (see “The result of δp” in the right side of Fig 1). In this step, pronun-
ciation is generated through two ways; pronunciation dictionary search and pro-
nunciation estimation. A pronunciation dictionary contains the correct pronunciation
corresponding to English words. Therefore, English words are first investigated
whether they are registered in the dictionary otherwise their pronunciation is esti-
mated by pronunciation estimation. The goal of δt is to produce the most probable
sequence of target graphemes with correspondence between source grapheme and
phoneme, which is the result of δp. For example, δt produces ‘b’, ‘o’, ‘~’, ‘~’, and
‘deu’ using the result of δp, b-/B/, o-/AO/, a-/~/, r-/R/, and d-/D/ (see “The result of δt”
in the right side of Fig 1). Finally, the target language transliteration, such as the Ko-
rean transliteration ‘bodeu’ for board, can be acquired by concatenating the sequence
of target graphemes in the result of δt.

English word

Training Data
for PE

Training Data for
�t

Dictionary searchDictionary search

�t�t

Transliterations

Pronunciation
Dictionary

Pronunciation
Estimation

Pronunciation
Estimation

board

/D//R//~//AO//B/

draob

/D//R//~//AO//B/

‘deu’~~‘o’‘b’

draob

�p�p

�p�p

�t�t

Result of �p

The result of �pThe result of �p

The result of �tThe result of �t

‘bodeu’

�p: Producing Pronunciation
�t : Producing Target Grapheme
�p: Producing Pronunciation
�t : Producing Target Grapheme

Fig. 1. The overall system architecture

Table 2. Feature types used for correspondence-based transliteration model: where S is a set of
source graphemes (e.g. English alphabets), P is a set of phonemes defined in ARPABET, T is a
set of target graphemes. Note that fS,GS is a symbol for indicating both fS and fGS. fP,GP is a sym-
bol for indicating both fP and fGP.

Feature Type Description Possible feature values
fS,GS fS Source graphemes Source grapheme in S; 26 alphabets

for English
 fGS Source grapheme type Consonant (C), and Vowel (V)
fP,GP fP Phonemes Phonemes in P (/AA/, /AE/, etc.)
 fGP Phoneme type Consonant (C), Vowel (V), Semi-

vowel (SV) and silence (/~/)
 fT Target graphemes Target graphemes in T

Pronunciation estimation in δp and δt are trained by machine learning algorithms.
To train each component function, we need features that represent training instance

6 In this paper, ‘/~/’ represents silence and ‘~’ represents null target grapheme.

454 J.-H. Oh and K.-S. Choi

and data. Table 2 shows five feature types, fS, fP, fGS, fGP, and fT that our model uses.
Depending on component functions, different feature types are used. For example,
δp(si) uses (fS, fGS, fP) and δt(si, δp(si)) does (fS, fP, fGS, fGP, fT).

2.1 Producing Pronunciation (δp)

Producing pronunciation (δp:S→P) is a function that finds phonemes in a set P for
each source grapheme, where P is a set of phonemes defined in ARPABET, and S is a
set of source graphemes (e.g. English alphabets). The results of this step can be repre-
sented as a sequence of correspondences between source grapheme and phoneme. We
will denote it as GP={gp1,gp2,…,gpn; gpi=(si,δp(si))} where si is the ith source graph-
eme of SW=s1,s2,...,sn. Producing pronunciation is composed of two steps. The first
step involves a search in the pronunciation dictionary, which contains English words
and their pronunciation. This paper uses The CMU Pronouncing Dictionary7, which
contains 120,000 English words and their pronunciation. The second step involves
pronunciation estimation. If an English word is not registered in the pronunciation
dictionary, we must estimate its pronunciation.

Table 3. An example of pronunciation estimation for b in board

Feature type L3 L2 L1 C0 R1 R2 R3 δp(C0)
fS $ $ $ b o a r
fGS $ $ $ C V V C

/B/

fP $ $ $

Let SW=s1,s2,...,sn be an English word, and PSW= p1,p2,...,pn be SW’s pronunciation,
where si represents the ith grapheme and pi=δp(si). Pronunciation estimation is a task to
find the most relevant phoneme among a set of all possible phonemes, which can be
derived from source grapheme si. Table 3 shows an example of pronunciation estima-
tion for b in board. In Table 3, L1~L3 and R1~R3 represent the left contexts and right
contexts, respectively. C0 means the current context (or focus). δp(C0) means the esti-
mated phoneme of C0. $ is a symbol for representing the start of words. The result can
be interpreted as follows. The most relevant phoneme of b, /B/, can be produced with
the context, fS, fGS, and fP in contexts of L1~L3, C0, and R1~R3. Other phonemes for o,
a, r, and d in board are produced in the same manner. Thus, we can get the pronuncia-
tion of board as /B AO R D/ by concatenating the phoneme sequence.

2.2 Producing Target Graphemes (δt)

Producing target graphemes (δt:S×P→T) is a function that finds the target grapheme
in T for each gpi that is a result of δp. A result of this step, GT, is represented by a
sequence of gpi and its corresponding target graphemes generated by δt, like GT={gt1,
gt2 ,…, gtn; gti=(gpi,δt(gpi))}.

7 Available at http://www.speech.cs.cmu.edu/cgi-bin/cmudict

 An Ensemble of Grapheme and Phoneme for Machine Transliteration 455

Table 4. An example of δt for b in board

Feature type L3 L2 L1 C0 R1 R2 R3 δt(C0)
fS $ $ $ b o a r ‘b’
fP $ $ $ /B/ /AO/ /~/ /R/
fGS $ $ $ C V V C
fGP $ $ $ C V /~/ C
fT $ $ $

Let SW=s1,s2,...,sn be a source language word, PSW= p1,p2,...,pn be SW’s pronuncia-
tion and TSW= t1, t2,...,tn be a target language word of SW, where si, δp(si)=pi and δt(gpi)

= ti represent the ith source grapheme, phoneme corresponding to si, and target graph-
eme corresponding to gpi, respectively. δt finds the most probable target grapheme
among a set of all possible target graphemes, which can be derived from gpi. δt pro-
duces target graphemes with source grapheme (fS), phoneme (fP), source grapheme type
(fGS), phoneme type (fGP) and δt’s previous output (fT) in the context window. Table 4
shows an example of δt for b in board. δt produces the most probable sequence of tar-
get graphemes (e.g. Korean), like δt(gp1)= ‘b’, δt(gp2)= ‘o’, δt(gp3)=‘~’, δt(gp4)=‘~’,
and δt(gp5)=‘deu’ for board. Finally, the target language transliteration of board as
‘bodeu’ can be acquired by concatenating the sequence of produced target graphemes.

3 Machine Learning Algorithms for Each Component Function

In this section we will describe a way of modeling component functions using three
machine learning algorithms (maximum entropy model, decision tree, and memory-
based learning).

3.1 Maximum Entropy Model

The maximum entropy model (MEM) is a widely used probability model that can
incorporate heterogeneous information effectively [3]. In the maximum entropy
model, an event ev is usually composed of a target event (te) and a history event (he),
say ev=<te, he>. Event ev is represented by a bundle of feature functions, fei(ev),
which represent the existence of a certain characteristic in event ev. A feature function
is a binary valued function. It is activated (fei(ev)=1) when it meets its activating
condition, otherwise it is deactivated (fei(ev)=0) [3].

δp and δt based on the maximum entropy model can be represented as formula (1).
History events in each component function are made from the left, right and current
context. For example, history events for δt are composed of fS,GS (i-3,i+3), fP,GP (i-3,i+3), and
fT (i-3,i-1) where i is a index of the current source grapheme and phoneme to be translit-
erated and fX(l,m) represents features of feature type fX located from position l to posi-
tion m. Target events are a set of target graphemes (phonemes) derived from history
events of δt (δp). Given history events, δt (δp) finds the most probable target grapheme
(phoneme), which maximizes formula (1). One important thing in designing a model

456 J.-H. Oh and K.-S. Choi

based on the maximum entropy model is to determine feature functions which effec-
tively support certain decision of the model. Our basic philosophy of feature function
design for each component function is that context information collocated with the
unit of interest is an important factor. With the philosophy, we determined the history
events (or activating conditions) of the feature functions by combinations of features
in feature types. Possible feature combinations for history events are between features
in the same feature type and between features in different feature types. The used
feature combinations in each component function are listed in Table 5.

Table 5. Used feature combinations for history events

δp δt
Between features in the same feature
type
Between features in different feature
types

 fS,GS and fP

Between features in the same feature
type
Between features in different feature
types

 fS,GS and fP,GP
 fS,GS and fT
 fP,GP and fT

In formula (1), history events of δp and δt are defined by the conditions described
in Table 5. Target events of δ t are all possible target graphemes derived from its his-
tory events; while those of δp are all possible phonemes derived from its history
events. In order to model each component function based on MEM, Zhang’s maxi-
mum entropy modeling tool is used [16].

),|(maxarg)(

),,|(maxarg))(,(

3,3,1,3

3,3,3,3,1,3

+−−−

+−+−−−

=

=

iiGSSiiPiip

iiGPPiiGSSiiTiipit

ffpps

ffftpss

δ

δδ

(1)

3.2 Decision Tree

Decision tree learning is one of the most widely used and well-known methods for
inductive inference [15]. ID3, which is a greedy algorithm and constructs decision
trees in a top-down manner, adopts a statistical measure called information gain that
measures how well a given feature (or attribute) separates training examples accord-
ing to their target class [15]. We use C4.5 [15], which is a well-known tool for deci-
sion tree learning and implementation of Quinlan’s ID3 algorithm.

Training data for each component function is represented by features of feature
types in the context of L3~L1, C0, and R1~R3 as described in Table 3. Fig. 2 shows a
fraction of our decision trees for δp and δt in English-to-Korean transliteration (note
that the left side represents the decision tree for δp and the right side represents the
decision tree for δt). A set of the target classes in the decision tree for δp will be a set
of phonemes and that for δt will be a set of target graphemes. In Fig. 2, rectangles
indicate a leaf node and circles indicate a decision node. In order to simplify our

 An Ensemble of Grapheme and Phoneme for Machine Transliteration 457

examples, we just use fS and fP in Fig. 2. Intuitively, the most effective feature for δp

and δt may be located in C0 among L3~L1, C0, and R1~R3 because the correct out-
puts of δp and δt strongly depend on source grapheme or phoneme in the C0 position.
As we expected, the most effective feature in the decision trees is located in the C0
position like C0(fS) for δp and C0(fP) for δt (Note that the first feature to be tested is
the most effective feature). In Fig. 2, the decision tree for δp outputs phoneme /AO/
for the instance x(SP) by retrieving the decision nodes C(fS)=o, R1(fS)=a, and R2(fS)=r
represented with ‘*’. With the similar manner, the decision tree for δt produces target
grapheme (Korean grapheme) ‘o’ for the instance x(SPT) by retrieving the decision
nodes from C0(fP)=/AO/ to R1(fP)=/~/ represented with ‘*’.

C0(fS):o(*)C0(C0(ffSS):o(*)):o(*)

R1(fS): yR1(fS): yR1(fS): e or qR1(fS): e or q R1(fS): a(*)R1(R1(ffSS): a(*)): a(*)

/OW//OW/ /OY//OY/ /AA//AA/

R1(fS): xR1(fS): x……

R2(fS): dR2(fS): d R2(fS): r(*)R2(R2(ffSS): r(*)): r(*) R2(fS): othersR2(fS): othersR2(fS): $R2(fS): $

/OW//OW/ /OW//OW//AO/(*)/AO/(*)/AO/(*)

R1(fS): bR1(fS): b

L2(fS): aL2(fS): a L2(fS): rL2(fS): rL2(fS): $L2(fS): $ ……

fS

Feature typex(SP)

→ /AO/draob$$

δpR3R2R1C0L1L2L3

Decision tree for δpDecision tree for δp

C0(fP): /AO/ (*)C0(C0(ffPP): /AO/ (*)): /AO/ (*)

C0(fS): aC0(fS): aC0(fS): eC0(fS): e C0(fS): o(*)C0(C0(ffSS): o(*)): o(*)

‘o’‘o’ ‘a’‘a’ ‘eu’‘eu’

C0(fS): othersC0(fS): others……

R1(fP): /R/R1(fP): /R/ R1(fS): /~/(*)R1(R1(ffSS): /~/(*)): /~/(*) R1(fP): othersR1(fP): others

‘o’‘o’‘o’ (*)‘‘oo’’ (*)(*)

C0(fS): iC0(fS): i

L2(fS): aL2(fS): a L2(fS): rL2(fS): rL2(fS): $L2(fS): $ ……

‘o’→draob$$fS

x(SPT)

fP

Feature type

/D//R//~//AO//B/$$

δtR3R2R1C0L1L2L3

Decision tree for δtDecision tree for δt

Fig. 2. Decision tree for δp andδt

3.3 Memory-Based Learning

Memory-based learning (MBL) is an example-based learning method. It is also called
instance-based learning and case-based learning method. It is based on a k-nearest
neighborhood algorithm [1], [5]. MBL represents a training data as a vector. In the train-
ing phase, MBL puts all training data as examples in memory, and clusters some exam-
ples with a k-nearest neighborhood principle. It then outputs a target class using similar-
ity-based reasoning between test data and examples in the memory. Let test data be x
and a set of examples in a memory be Y, the similarity between x and Y is estimated by a
distance function, ∆(x,Y). MBL selects an example yi or a cluster of examples that are
most similar to x, then assign a target class of the example to x’s class. We use a mem-
ory-based learning tool called TiMBL (Tilburg memory-based learner) version 5.0 [5].

Training data for each component function is represented by features of feature
types in the context of L3~L1, C0, and R1~R3 as described in Table 4. Fig. 3 shows
examples of δp and δt based on MBL in English-to-Korean transliteration. In order to
simplify our examples, we just use fS and fP in Fig. 3. All training data are represented
with their features in the context of L3~L1, C0, and R1~R3 and their target classes for
δp and δt. They are stored in the memory through a training phase. Feature weighting
for dealing with features of differing importance is also performed in the training
phase. In Fig. 3, δp based on MBL outputs the phoneme /AO/ for x(SP) by comparing
the similarities between x(SP) and Y using distance metric ∆(x(SP),Y). With the simi-
lar manner, δt based on MBL outputs the target grapheme ‘o’.

458 J.-H. Oh and K.-S. Choi

x(SP)

/AO/→draob$$fS

Feature type δpR3R2R1C0L1L2L3

Training instances in a memory (δp)Training instances in a memory (δp)

0.51/UW/$tuobaefS8

0.16/AO/$$waskcfS7

0.75/W/draode$fS6

0.73/AO/sraoc$$fS5

0.81/OW/$taob$$fS4

0.81/OW/tsaob$$fS3

0.38/OW/$$$obahfS2

0.93/AO/draoba$fS1*

yi Feature
type

δp(C0) Δ(x(SP),yi)R3R2R1C0L1L2L3

/D//R//~//W//D//~/$fP

/S//R//~//OW//K/$$fP

0.31‘u’$tuobaefS4

$/T//~//UW//B//~//IY/fP

3

2

1*

yi

fS

fS

fP

fS

Feature

type

0.55‘u’draode$

0.63‘o’sraoc$$

‘o’

δt(C0)

/D//R//~//AO//B//AH/$

0.89draoba$

Δ (x(SPT),yi)R3R2R1C0L1L2L3

x(SPT)

‘o’→draob$$fS
fP

Feature type

/D//R//~//AO//B/$$

δtR3R2R1C0L1L2L3

Training instances in a memory (δt)Training instances in a memory (δt)

Fig. 3. Memory-based learning for δp and δt

4 Experiments

We perform experiments for English-to-Korean and English-to-Japanese translitera-
tion. English-to-Korean test set (EKSet) [14] consists of 7,185 English-Korean pairs –
the number of training data is 6,185 and that of test data is 1,000. EKSet contains no
transliteration variations. English-to-Japanese test set (EJSet), which is an English-
katakana pair in EDICT8, consists of 10,398 – 1,000 for test and the rest for training.
EJSet contains transliteration variations, like (micro, ‘maikuro’) and (micro, ‘mi-
kuro’); the average number of Japanese transliterations for an English word is 1.15.
Evaluation is performed by word accuracy (W. A.) in formula (2).

wordsgeneratedof

wordscorrectof
AW

 #

 #
.. = (2)

We perform two experiments called “Comparison test” and “Context window
size test”. In the “Comparison test”, we compare our ψC with the previous works. In
“Context window size test”, we evaluate the performance of our transliteration model
depending on context window size.

4.1 Experimental Results

Table 6 shows results of “Comparison test”. MEM, DT, and MBL represent ψC
based on maximum entropy model, decision tree, and memory-based learning, respec-
tively. GDT [8], GPC [9], GMEM [7] and HWFST [4], which are one of the best
machine transliteration methods in English-to-Korean transliteration and English-to-
Japanese transliteration, are compared with ψC. Table 7 shows the key feature of each
method in the viewpoint of information type (SG, PH, COR) and information usage
(Context size, POut). Information type indicates that each transliteration method be-
longs to which transliteration model. For example, GDT, GPC, and GMEM will be-
long to ψG because they use only the source grapheme; while HWFST belongs to ψH.
Information usage gives information about what kinds of information each translitera-
tion method can deal with. From the viewpoint of information type, phoneme and
correspondence, which most previous works do not consider, is the key point of the
performance gap between our method and the previous works.

8 http://www.csse.monash.edu.au/~jwb/j_edict.html

 An Ensemble of Grapheme and Phoneme for Machine Transliteration 459

Table 6. Evaluation results of “Comparison test”

Method EKSet EJSet
 W.A Chg % W.A Chg %
GDT 51.4% 23.2% 50.3% 43.5%
GPC 55.1% 17.6% 53.2% 35.7%
GMEM 55.9% 16.4% 56.2% 28.5%
HWFST 58.3% 14.7% 62.5% 15.5%
DT 62.0% 7.3% 66.8% 8.1%
MEM 63.3% 5.4% 67.0% 7.8%
MBL 66.9% 0% 72.2% 0%

Table 7. Key features of our machine transliteration model and the previous works: SG, PH,
COR and POut represent source grapheme, phoneme, correspondence and previous output,
respectively

Method SG PH COR Context size POut
GDT O X X <-3, +3> X
GPC O X X Unbounded O
GMEM O X X <-3, +3> O
HWFST O O X - -
Ours O O O <-3, +3> O

From the viewpoint of information usage, if a transliteration model adopts wide
context window and considers previous outputs, it tends to show better performance.
For example, GMEM that satisfies the conditions gives more accurate results
than GDT which does not satisfy one of them. Because machine transliteration is
sensitive to context, wider contexts give more powerful transliteration ability to
machine transliteration systems. Note that the previous works, however, limit their
context window size to 3, because the context window size over 3 degrades the
performance [8] or does not change the performance of their transliteration model
[9]. Determining reasonable context window size, therefore, is very important for
machine transliteration.

For “Context window size test”, we use ψC based on MBL, which shows the best
performance among three machine learning algorithms in Table 6. Experiments are
performed by changing the context window size from 1 to 5. Table 8 shows results of
context window size test. The results indicate that the best performance is shown
when the context window size is 3. When the context window size is 1, there are
many cases where the correct transliterations are not produced due to lack of informa-
tion. For example, in order to produce the correct target grapheme of t in -tion, we
need the right three graphemes of t, -ion. When the context window size is over 3, it is
difficult to generalize the training data because of increase of variety of the training
data. With the two reasons, our system shows the best performance when the context
window size is 3. Table 8 also shows that context size should be at least 2 to avoid
significant decrease of performance due to lack of contextual information.

460 J.-H. Oh and K.-S. Choi

Table 8. Evaluation results of “Context window size test”

Context Size EKSet EJSet
1 54.5% 62.7%
2 63.3% 70.0%
3 66.9% 72.2%
4 63.9% 70.7%
5 63.8% 69.3%

In summary, our method shows significant performance improvement, about
15%~23%, in English-to-Korean transliteration, and about 15%~ 43% in English-to-
Japanese transliteration. Experiments show that a good transliteration system should
consider; 1) source grapheme and phoneme along with their correspondence simulta-
neously and 2) reasonable context size and previous output. Our transliteration model
satisfies the two conditions, thus it shows higher performance than the previous works.

5 Conclusion

This paper has described a correspondence-based machine transliteration model (ψC).
Unlike the previous transliteration models, ψC uses correspondence between source
grapheme and phoneme. The correspondence makes it possible for ψC to effectively
produce both grapheme-based transliterations and phoneme-based transliterations.
Moreover, the correspondence helps ψC to reduce transliteration ambiguities more
easily. Experiments show that ψC is more powerful transliteration model than the
previous transliteration models (ψC shows significant performance improvement,
about 15%~23%, in English-to-Korean transliteration, and about 15%~ 43% in Eng-
lish-to-Japanese transliteration).

In future work, we will apply our transliteration model to English-to-Chinese trans-
literation model. In order to prove usefulness of our method in NLP applications, we
need to apply our system to applications such as automatic bi-lingual dictionary con-
struction, information retrieval, machine translation, speech recognition and so on.

Acknowledgement

This work was supported by the Korea Ministry of Science and Technology, the Ko-
rea Ministry of Commerce, Industry and Energy, and the Korea Science and Engi-
neering Foundation (KOSEF).

References

1. Aha, D. W. Lazy learning: Special issue editorial. Artificial Intelligence Review, 11:710,
(1997).

2. Al-Onaizan Y. and Kevin Knight, “Translating Named Entities Using Monolingual and
Bilingual Resources”, In the Proceedings of ACL 2002, (2002)

 An Ensemble of Grapheme and Phoneme for Machine Transliteration 461

3. Berger, A., S. Della Pietra, and V. Della Pietra. , A maximum entropy approach to natural
language processing. Computational Linguistics, 22(1), (1996), 39—71

4. Bilac Slaven and Hozumi Tanaka. "Improving Back-Transliteration by Combining Infor-
mation Sources". In Proc. of IJC-NLP2004, (2004) 542—547

5. Daelemans, W., Jakub Zavrel, Ko van der Sloot, and Antal van den Bosch, 2002, Timble
TiMBL: Tilburg Memory Based Learner, version 4.3, Reference Guide, ILK Technical
Report 02-10, (2002).

6. Fujii, Atsushi and Tetsuya, Ishikawa. Japanese/English Cross-Language Information Re-
trieval: Exploration of Query Translation and Transliteration. Computers and the Humani-
ties, Vol.35, No.4, (2001) 389—420

7. Goto, I., N. Kato, N. Uratani and T. Ehara, Transliteration Considering Context Informa-
tion Based on the Maximum Entropy Method, In Proceedings of MT-Summit IX, (2003)

8. Kang B.J. and K-S. Choi, "Automatic Transliteration and Back-transliteration by Decision
Tree Learning", In Proceedings of the 2nd International Conference on Language Re-
sources and Evaluation, (2000)

9. Kang, I.H. and G.C. Kim, "English-to-Korean Transliteration using Multiple Unbounded
Overlapping Phoneme Chunks", In Proceedings of the 18th International Conference on
Computational Linguistics, (2000).

10. Knight, K. and J. Graehl, "Machine Transliteration". In Proceedings. of the 35th Annual
Meetings of the Association for Computational Linguistics (ACL), (1997)

11. Lee, J. S. and K. S. Choi, English to Korean Statistical transliteration for information re-
trieval. Computer Processing of Oriental Languages, 12(1), (1998), 17-37.

12. Lee, J.S., An English-Korean transliteration and Retransliteration model for Cross-lingual
information retrieval, PhD Thesis, Computer Science Dept., KAIST, (1999)

13. Li Haizhou, Min Zhang and Jian Su , A Joint Source-Channel Model for Machine Trans-
literation , ACL 2004, (2004), 159—166

14. Nam, Y.S., Foreign dictionary, Sung-An-Dang publisher, (1997)
15. Quinlan, J.R., "C4.5: Programs for Machine Learning", Morgan Kauffman, (1993)
16. Zhang, Le. Maximum Entropy Modeling Toolkit for Python and C++.

http://www.nlplab.cn/zhangle/, (2004)

	Introduction
	Correspondence-Based Machine Transliteration Model
	Producing Pronunciation (δ_p)
	Producing Target Graphemes (δ_t)

	Machine Learning Algorithms for Each Component Function
	Maximum Entropy Model
	Decision Tree
	Memory-Based Learning

	Experiments
	Experimental Results

	Conclusion
	Acknowledgement
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

