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Abstract. This paper studies the problem of mining relational data
hidden in natural language text. In particular, it approaches the relation
classification problem with the strategy of transductive learning. Dif-
ferent algorithms are presented and empirically evaluated on the ACE
corpus. We show that transductive learners exploiting various lexical and
syntactic features can achieve promising classification performance. More
importantly, transductive learning performance can be significantly im-
proved by using an induced similarity function.

1 Introduction

The world today is full of various information sources, with different ways of
representing the same information. One common problem that arises in the data
management community is that data existing in one format may be needed in a
different format for another purpose. An instance of this general problem is that
relational data don’t always exist in the form of relational tables; lots of them
are hidden in natural language text. For example, (author, book) pairs can
be instantiated as “. . .Shakespeare’s famous work Hamlet . . . ” or “. . .A Brief
History of Time was written by Stephen Hawking . . . ” in text.

On the other hand, within the information retrieval and natural language
processing community, Information Extraction (IE) systems are understood as
techniques for automatically extracting information from text, specifically, iden-
tifying relevant information (usually of pre-defined types) from text documents
in a certain domain. Once extracted, the information can be used for purposes
such as database population and text indexing. While significant progress has
been made in IE research, stimulated in particular by the Message Understand-
ing Conferences (MUC) 1 and the recent ACE (Automatic Content Extraction)
program 2 organized by the LDC (Linguistic Data Consortium), it is generally
agreed that many barriers exist to the wider use of IE technologies due to the
difficulties in adapting systems to new applications and domains. Keeping track
of dynamic information sources (e.g., web pages) is challenging as well.

To address these challenges, there has been a recent trend shift in the research
community from knowledge-based approaches to machine learning techniques.
Moreover, due to the cost related to acquiring large amount of labeled training
1 http://www.itl.nist.gov/iaui/894.02/related projects/muc/
2 http://www.ldc.upenn.edu/Projects/ACE/
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data, researchers have been looking at various learning algorithms exploiting
cheaply available unlabeled data (usually in much larger amounts), which aim
at minimizing the need for labeled data while still achieving comparable results.

According to the scope of ACE, current IE research has three main objectives:
Entity Detection and Tracking (EDT), Relation Detection and Characterization
(RDC), and Event Detection and Characterization (EDC). This study focuses on
the second subproblem, RDC. In particular, the goal is to automatically classify
binary relations between entities, i.e., to decide in which relational table to put
each entity pair, using transductive learning algorithms. We propose an improved
transductive learner and empirically compare it with the baseline learner on the
ACE corpus.

2 Related Work

The current paper draws upon previous work in NLP and machine learning.

2.1 Relation Extraction and Classification

Within the realm of information extraction, there are several representative sys-
tems that use machine learning for extracting relations.

Snowball [1] is a bootstrapping-based system that requires only a handful
of training examples of tuples of interest. These examples are used to generate
extraction patterns, which in turn result in new tuples being extracted from
the document collection. At each iteration of the extraction process, Snowball
evaluates the quality of these patterns and tuples without human intervention,
and keeps only the most reliable ones for the next iteration. A scalable evaluation
methodology is also developed for the task. The approach was illustrated on the
problem of extracting (organization, headquarter location) pairs from a
collection of more than 300, 000 newspaper documents.

DIPRE (Dual Iterative Pattern Relation Expansion) [2] is another technique
that exploits the duality between sets of patterns and relations to grow the
target relation starting from a small sample. The technique was used to extract
(author, title) pairs from the World Wide Web.

In [3], an application of kernel methods to extracting relations from natural
language text is presented. The authors introduce kernels defined over shallow
parse representations of text, and design efficient algorithms for computing the
kernels. The devised kernels are used in conjunction with SVM and Voted Per-
ceptron learning algorithms for the task of extracting person-affiliation and
organization-location relations from text. The proposed methods are com-
pared with feature-based learning algorithms, with promising results.

More recently, Zhang [4] investigates the relation classification problem by
bootstrapping from a small amount of labeled data. Bootstrapping procedures
are built on top of SVM classifiers and evaluated on the ACE corpus.

Rosario and Hearst [5] examine the problem of distinguishing among seven
relation types that can occur between the entities “treatment” and “disease”
in bioscience text, and the problem of identifying such entities. Five different
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generative graphical models and a neural network model using lexical, syntactic,
and semantic features are compared. The authors find that the neural network
helps achieve high classification accuracy.

2.2 Transductive Learning

Almost all work above falls into the realm of “inductive learning”, in the sense that
a “model” is first induced from the labeled (training) data and then used to predict
unseen data. The beauty of this approach is that once the classification function
(model) is generalized (assuming a “good” generalization algorithm), it can be
used for prediction independently of the labeled data on which it was trained.

In many domains, including NLP, there is usually a large amount of unlabeled
data but only limited amount of labeled training data. If a generalized model
is preferred, one can still follow the inductive learning paradigm, which entails
work such as bootstrapping [6]. On the other hand, we might encounter the
following situation:

– we are only concerned about performance on a particular pool of data,
– and we don’t care about generalizability,
– and data points can be effectively queried/accessed

If all the conditions above are true, the learner can observe the test data
and potentially exploit structures in their distribution. In other words, there
is really no difference between “unlabeled data” and “test data”, and the re-
search question is: “given some labeled data and a large set of (unlabeled) test
data, can properties of the entire data set be used to make predictions?” This
is the motivation behind transductive learning. The setting itself, specifically,
transductive SVMs, was first introduced by Vapnik [7], and then later refined
by [8] and [9]. Other approaches are based on s − t cuts [10,11] or multi-way
cuts [12]. Joachims [13] presents Spectral Graph Transducer (SGT), which is a
transductive version of the k nearest-neighbor classifier.

3 Problem Definition

The research problem of this paper is classification of relations between entities.
In other words, the task is to determine the appropriate relational table into
which one should put a given pair of related entities. To be more precise,

– We only focus on binary relations, i.e., ones between pairs of entities.
– We only deal with intra-sentence explicit relations in this study. In other

words, the (two) EDT mentions of the entity arguments of a relation must
occur within a common syntactic construction, in this case a sentence. The
relations also have to be “explicit” in the sense that they should have explicit
textual support and don’t require further reasoning based on understanding
of the context’s meaning.

– We don’t actually “detect” relations. Rather, the goal is to classify the type
of relation between two entities (or, in other words, to put the entity pair
into the correct relational table), given that they are known to be related.
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– It is also assumed that entity recognition already takes place beforehand,
hence all entity-related information is available.

We use the five high-level relations defined in ACE RDC Annotation Guide-
lines V3.6 as the target set of classes of the classification task (in other words,
they define the five candidate relational tables into which the entity pairs will
be dispatched). These are:

ROLE affiliation between people and organizations, facilities, and GPEs (Geo-
Political Entities). This includes employment, office holder, ownership,
founder, member, and nationality relationships, etc.

PART part-whole relationships between organizations, facilities and GPEs.
AT location of a Person, Organization, GPE, or Facility entity. For example,

a person is at a Location, GPE or Facility if the context indicates that the
person was, is or will be there. An Organization is in a Location/GPE if it
has a branch there.

NEAR indicates that an entity is explicitly near a location, but not actually in
that location or part of that location.

SOC personal or professional relationships between people, such as relative,
associate, etc.

First, for each relation r in the list above, we learn the following classifier:

Cr : (cpr, e1, cm, e2, cpt) → l

where a sentence is a concatenation of five parts, with e1 and e2 representing
the entities, and cpr, cm, and cpt representing the pre-, mid-, and post-context
respectively. A label l ∈ {0, 1} is assigned to the five-tuple. For example, in the
following sentence,

Shares of Disney, parent company of ABC, are up five eighths.

“Disney” and “ABC” are the two “ORGANIZATION” entities, and they divide
the whole sentence into three context windows (the pre-context before “Disney”,
the post-context after “ABC”, and the mid-context between the two entities).
With regard to the “PART” relation, the label is “1”, and “0” for other relations.

Then we combine the multiple binary classifiers and get a single classifier

C(cpr, e1, cm, e2, cpt) = arg max
ri

Cri(cpr, e1, cm, e2, cpt)

In the example above, a label “PART” is eventually assigned to the tuple.

4 Approach: Learning Similarity Functions for
Transductive Learning

4.1 Formalization of Different Learning Paradigms

Assuming we have

– Input (instance) space X and output (label) space Y



406 Z. Zhang

– Labeled data set L and unlabeled data set U (as mentioned before, no dis-
tinction is made between “unlabeled” and “test” data in the transductive
learning setting)

One could distinguish three types of learning paradigms:

– Induction
(XL, YL) �→ f (1)

where f represents the induced model
– Induction with unlabeled data

(XL, YL) ∪ XU �→ f (2)

– Transduction
(XL, YL) ∪ XU �→ YU (3)

The three learning paradigms clearly have different advantages and different
application scenarios. However, when it comes to exploiting unlabeled data, the
tradeoff between the last two is not yet well understood. In this paper, we focus
on the last learning paradigm, i.e., transductive learning.

4.2 Transductive Learning with Learned Similarity Function

A general approach to transductive learning is to construct a graph of all data
points based on distance or similarity among them, and then to use the “known”
labels to perform some type of graph partitioning or label propagation.

In this study, we use the Spectral Graph Transducer (implemented in SGT-
light) [13] as our baseline transductive learner, which exactly follows the trans-
ducitve learning paradigm defined by Equation (3). The basic idea of SGT is to
construct a similarity weighted undirected k nearest-neighbor (kNN) graph G
on X with adjacency matrix A (defined below), and then run spectral partition-
ing on it.

Aij =

{
similarity(xi,xj)∑

xk∈knn(xi)
similarity(xi,xk) xj ∈ knn(xi)

0 otherwise
(4)

Notice that what takes a crucial role in shaping the structure of graph is
the similarity function, as which SGT uses the cosine value between feature
vectors. However, there might exist other choices for similarity functions. Our
hypothesis is:

If we can learn (induce) a similarity function from part of the labeled
data and use it to construct a new weighted graph G′ over the unlabeled
data and the remaining labeled data, a transductive learner on G′ will
outperform the baseline transductive learner that works on G.
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This defines the following modified version of the transductive learning
paradigm:

(XL1 , YL1) �→ fL1

fL1(XL2 ∪ XU ) �→ G′

((XL2 , YL2) ∪ XU )G′ �→ YU

(5)

in which L1 ∪ L2 = L and L1 ∩ L2 = φ.
Below is a very straightforward (yet effective, as the readers will see from

experimental results) way of defining the “learned” similarity function. Suppose
the induced model fL1 assigns a confidence score confidencefL1

(xi) to each data
points based on its model trained on the the labeled data, then the similarity
function in G′ can be defined as:

similarity(xi, xj) = e−distance(xi,xj) (6)

where the “distance” between two data points is defined as

distance(xi, xj) = |confidencefL1
(xi) − confidencefL1

(xj)| (7)

Simply put: the more different the confidence scores, the further away two
instances are from each other; the further away, the less similar they are.

4.3 Features

We extract the following lexical and syntactic features (all categorical features
are binarized) from the linguistic context in which the two entities co-occur:

Lexical features. Surface tokens of the two entities and three context windows.
Shallow-syntactic features. Part-Of-Speech tags (e.g., “noun”, etc.) corre-

sponding to all tokens in the two entities and three context windows.
Deep-syntactic features. To capture the syntactic dependencies between en-

tities, the following features are extracted from the chunklink representation
(flattened parse trees):
– Chunk tags of the two entities and three context windows. This informa-

tion is not explicitly present in the treebank format. For example, the
“O” tag means that the current word is outside of any chunk; the “I-XP”
tag means that this word is inside an XP chunk; the “B-XP” by default
means that the word is at the beginning of an XP chunk.

– Grammatical function tags of the two entities and three context windows.
The last word in each chunk is its head, and the function of the head is
the function of the whole chunk. For example, “NP-SBJ” means an NP
chunk as the subject of the sentence. The other words in a chunk that
are not the head have ”NOFUNC” as their function.

– IOB-chains of the heads of the two entities, each of which is a lexicalized
path, in other words, a concatenation of the syntactic categories of all
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the constituents on the path from the root node to this leaf node of the
tree (e.g., “S/VP/NP/NN”).

Other features. Miscellaneous information including:
– An ordering flag that indicates the relative position of the two entity

arguments of a relation.
– Types of the two entities, such as “PERSON” or “GPE”.

The context windows are defined as the following:

– Mid-context: everything between the two entities.
– Pre- (post-) context: up to two words before (after) the corresponding entity.

5 Experiments and Results

5.1 Data

We use the ACE corpus for our task. Specifically, ACE-2 version 1.0 is used,
which contains 519 files from sources including broadcast, newswire, and news-
paper. The corpus contains 5, 260 manually tagged relations (a small number
of additional relations are dropped out due to data preprocessing errors). A
breakdown of the data by different relation type is given in Table 1. We treat
the “training” and “devtest” portions of the corpus as a whole and perform our
split on the data in the experiments.

Table 1. Number of relations: break-down by relation type

Relation type Training Devtest
ROLE 1964 472
PART 549 123
AT 1249 328

NEAR 78 31
SOC 398 68
Total 4238 1022

The following steps are taken to process the data:

1. Parse the ACE data in XML format; extract and index entities and relations.
2. Segment the text into sentences using the sentence segmenter provided by

the DUC competition 3.
3. Parse the sentences using the Charniak parser [14].
4. Convert the parse trees into chunklink format using chunklink.pl [15].
5. Extract and compute features from the chunklink format.

3 http://duc.nist.gov/past duc/duc2003/software/
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5.2 Experimental Setup and Evaluation Metrics

To test the superiority of the learned similarity function in the transductive
setting, we experiment the following three scenarios:

– A vanilla SGT learner that uses a labeled set of size 2, 000 and an unlabeled
set (by hiding the labels) of size 3, 260.

– A modified SGT learner (SVM-SGT) that uses SVM-light [16] as the induc-
tive learner for similarity functions. (In this case, the confidence score for
each data point is the value of the decision function.)

– Another modified SGT learner (SNoW-SGT) that uses SNoW [17] with the
Winnow updating rule [18] as the inductive learner for similarity functions.
(In this case, the confidence score for each data point is the softmax normal-
ized activation for the positive label.)

For both the SVM-SGT and SNoW-SGT learners, we use the same amount
of labeled and unlabeled data as for the vanilla SGT learner, with half of the
labeled data (1, 000 data points) used for inducing the similarity function, and
the other half used for SGT learning on the modified graph/matrix. All three
experiments are run with 10 random splits of the whole data set, which contains
5, 260 data points.

In all three scenarios, the final combination of multiple classifiers is done by
assigning the label for which the corresponding binary classifier has the highest
confidence score (i.e., the solution of the spectral optimization problem in SGT).

To evaluate the performance of learning algorithms, we compute overall clas-
sification accuracy, and for each class, the precision, recall, and F-measure.

5.3 Experimental Results: Effect of Induced Similarity Measure

We experimented different values of k, ranging from 20 to 120, for kNN graph.
Empirically, they do not seem to make a lot of difference. All the performance
numbers reported below are based on 100-NN graphs.

With the vanilla SGT learner, we get a 70.34% accuracy, and the class-specific
performance is summarized in Table 2.

With the SVM-SGT learner, we get a 78.04% accuracy, and the class-specific
performance is summarized in Table 3.

With the SNoW-SGT learner, we get a 76.02% accuracy, and the class-specific
performance is summarized in Table 4.

Table 2. Performance of vanilla SGT learner (full)

Relation type Precision Recall F-measure
ROLE 73.72% 83.31% 78.19%
PART 63.34% 42.32% 49.93%
AT 67.43% 72.88% 69.95%

NEAR 65.92% 7.36% 12.71%
SOC 71.87% 47.81% 56.96%
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Table 3. Performance of SVM-SGT learner (full)

Relation type Precision Recall F-measure

ROLE 82.87% 84.01% 83.41%
PART 63.31% 57.49% 60.13%
AT 77.16% 79.69% 78.36%

NEAR 4.81% 0.62% 5.32%
SOC 76.23% 88.88% 81.93%

Table 4. Performance of SNow-SGT learner (full)

Relation type Precision Recall F-measure

ROLE 81.47% 79.61% 80.44%
PART 62.72% 62.34% 62.35%
AT 74.57% 81.15% 77.64%

NEAR 0.59% 0.13% NA
SOC 73.73% 77.92% 75.96%

The most important result of interest is that both modified SGT learners
consistently outperforms the vanilla SGT learner across all random runs, and
the differences are statically significant (p << 0.01). This justifies our hypothesis
that a learned similarity function between data points, as opposed to naive cosine
similarity, can significantly improve the performance of transductive learners.

5.4 Experimental Results: Comparison with Supervised Inductive
Learners

To get a sense of the empirical difference between transductive, improved trans-
ductive, and inductive learning algorithms, we also present the performance of
a few supervised inducitve learners on the same number of training examples
(2, 000). Results are also averaged over 10 random runs.

With the supervised SVM learner, we get a 82.31% accuracy, and the class-
specific performance is summarized in Table 5.

With the supervised SNoW learner, we get a 77.37% accuracy, and the class-
specific performance is summarized in Table 6.

Table 5. Performance of supervised SVM learner (full)

Relation type Precision Recall F-measure
ROLE 86.27% 85.96% 86.11%
PART 75.90% 58.36% 65.89%
AT 78.87% 88.65% 83.46%

NEAR 83.96% 3.57% 8.41%
SOC 82.13% 94.29% 87.74%
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Table 6. Performance of supervised SNoW learner (full)

Relation type Precision Recall F-measure

ROLE 85.46% 80.30% 82.19%
PART 64.93% 64.40% 64.50%
AT 77.07% 79.77% 77.77%

NEAR 28.94% 27.95% 24.56%
SOC 79.69% 84.32% 81.21%

Table 7. Performance of supervised naive bayes learner (full)

Relation type Precision Recall F-measure
ROLE 52.63% 97.56% 68.37%
PART 0% 0% 0%
AT 78.13% 35.83% 48.82%

NEAR 0% 0% 0%
SOC 0% 0% 0%

With the supervised Naive Bayes learner, we get a 56.10% accuracy, and the
class-specific performance is summarized in Table 7.

If we compare the performance presented in this subsection with those of the
corresponding transductive learners in the previous subsection, we observe the
following pattern:

NB < SGT < SNoW-SGT < SNoW < SVM-SGT < SVM

With regard to the purpose of this study, again, it is most important to no-
tice that the induction-aided transductive learners significantly outperform the
“pure” transductive learner. On the other hand, it is reasonable to expect that
with improvement of the fundamental algorithm (e.g., spectral partioning), the
transductive learners (with or without induced similarity measures) may out-
perform the best inductive learners.

6 Conclusions and Future Work

This paper approaches the relation classification problem with improved trans-
ductive learning. Specifically, we learned the following:

– Application of transductive learning on NLP problems, including informa-
tion extraction, has been under-explored. This paper makes the attempt to
show that binary relations hidden in natural language text can be effectively
classified by using transductive learning.

– It is shown that an improved transductive learner using similarity functions
induced from a small amount of labeled data outperforms its naive trans-
ductive counterpart.
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– Further more, the general idea of inducing similarity functions for trans-
ductive learning are potentially applicable to other classification problems,
since it doesn’t have any specific characteristics tied to the current relation
classification problem.

In the future, we are interested in pursuing the following directions:

– The current work only deals with binary relations. The algorithms presented
should be generalized so that they can work on higher-order relations.

– In this study, we only used a randomly selected portion of the labeled data
available as the seed labeled set for inducing similarity functions. It is con-
ceivable that if we anchor the seed data points more intelligently (e.g., using
clustering or in other unsupervised fashion), better classification performance
of the modified transductive learner can be expected.

– This chapter presents one particular way of inducing the similarity function
for transductive learning, which is simple yet effective. However, it may be
worth the effort to investigate other alternatives.

– In the machine learning community, how to exploit unlabeled data remains
largely an open question. In the long run, it would be very interesting and
useful to investigate, both theoretically and empirically, the tradeoff between
induction with unlabeled data vs. transduction (including “induction-aided”
transduction discussed in this paper).
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