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A B S T R A C T  

In natural speech, durations of  phonetic segments are strongly de- 

pendent on contextual factors. Quantitative descriptions of these 
contextual effects have appfications in text-to-speech synthesis and 
in automatic speech recognition. In this paper, we describe a speaker- 
dependent system for predicting segmental duration from text, with 
emphasis on the statistical methods used for its construction. We 
also report results of a subjective listening experiment evaluating an 
implementation of this system for text-to-speech synthesis purposes. 

1. I N T R O D U C T I O N  

This paper describes a system for prediction of segmental 
duration from text. In most text-to-speech synthesizer ar- 
chitectures, a duration prediction system is embedded in a 
sequence of modules, where it is preceded by modules that 
compute various linguistic features ~ from text. For example, 
the word "unit" might be represented as a sequence of five 
feature vectors: (< At/, word - initial, monosyl labic , . . .  , >) 
• " (< / t / ~ r s t ,  w o r d -  final, monosyllabic, . . .  , >). In 
automatic speech recognition, a (hypothesized) phone is usu- 
ally annotated only in terms of the preceding and following 
phones. If some form of lexical access is performed, more 
complete contextual feature vectors can be computed. 

Broadly speaking, construction of duration prediction systems 
has been approached in two ways. One is to use general- 
purpose statistical methods such as CART 2 or neural nets. In 
CART, for example, a tree is constructed by making binary 
splits on factors that minimize the variance of the durations 
in the two subsets defined by the split [2]. These methods are 
called "general purpose" because they can be used across a 
variety of substantive domains. 

There also exists an older tradition exemplified by Klatt [3, 
4, 5] and others [6, 7, 8, 9] where duration is computed with 
duration models, i.e., simple arithmetic models specifically 
designed for segmental duration. For example, in Klatt's 

lWe define a factor, FFi, to be a partition of mutually exclusive and ex- 
haustive possibilities such as {1-stressed, 2-stressed, unstressed}. A feature 
is a "level" on a factor such as 1-stressed. The feature space F is the product 
space of all factors: Fl × -. - × Fn. Because of phonotactic and other con- 
straints, only a small fraction of this space can actually occur in a language; 
we call this the linguistic space. 

2Classification and Regression Trees [1 ]. 

model the duration for feature vector f E F is given by 

DUR(f) = 

S l , l ( f l )  X " ' "  X Sl ,n- I - I (A- . I - I )  -'[- S 2 , n + l ( j ~ + 1 ) -  ( i )  

Here, fj  is the j-th component s of the vector f, the second 
subscript (j) in s~,j likewise refers to this component, and the 
first subscript (i) refers to the fact that the model consists of 
twoproduct  terms numbered 1 and 2. The parameters si,./are 
called factor  scales. For example, Sl,l (s t ressed)  = 1.40. 
All current duration models have in common that they (1) use 
factor scales, and (2) combine the effects of multiple factors 
using only the addition and multiplication operations. The 
general class of models defined by these two characteristics, 
sums-of-productsmodels, has been found to have useful math- 
ematical and statistical properties [10]. 

Briefly, here is how these two standard approaches compare 
with ours. We share with general-purpose statistical methods 
the emphasis on formal data analysis methods, and with the 
older tradition the usage of sums-of-products models. Our 
approach differs in the following respects. First, although we 
concur with the modeling tradition that segmental duration 
data - and in particular the types of interactions one often 
finds in these data - can be accurately described by sums-of- 
products models, this class of models is extremely large so 
that one has to put considerable effort in searching for the 
most appropriate model. 4 The few models that this tradition 
has generated make up a vanishingly small portion of a vast 
space of possibilities, and because they have not been system- 
atically tested against these other possibilities [11] we should 
consider the search for better models completely open. Sec- 
ond, in contrast with the general-purpose methods approach, 
the process by which we construct our prediction system is 
not a one-step procedure but is a multi-step process with an 
important role being played by various forms of exploratory 
data analysis. 

3In its original form, the Klatt model uses p for the phonetic segment 
factor where we use fn+l. 

4For example, for two factors there are already five models: 81,1 x 81,2, 
81,1 + 82,2~ 81,1 X 81,2 --1- 82,1, 81,1 X 81,2 + 82,2, and 
81,1 X 81, 2 + 82,1 -.{- 83,2 (note the use of subscdpts). 
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2. PROPERTIES OF SEGMENTAL 
DURATION DATA 

In this section, we first discuss properties of segmental dura- 
tion data that pose serious obstacles for prediction, and next 
properties that may help in overcoming these obstacles. 

2.1. Interactions between contextual factors 

A first reason for duration prediction being difficult is that 
segmental duration is affected by many interacting factors. In 
a recent study, we found eight factors to have large effects on 
vowel duration [12], and if one were to search the literature 
for all factors that at least one study found to have statistically 
significant effects the result would be a list of two dozen or 
more factors [13, 14, 15]. 

Segment 

/ s /  149 
/ f /  126 
/t/b~,~,t 71 
/P/bu,.,* 61 
/d/bu~t 12 
/b/bur,t 9 
/t/closure 75 
Iplczo,u,o 90 
/ n /  63 
/ m /  75 

Unstressed/ Stressed/ 
Stressed Unstressed 

Differ- 
ence 

112 37 
101 26 

9 62 
18 43 
7 5 
8 1 

20 55 
68 22 
39 24 
62 14 

Percent 

33 
25 

716 
238 

67 
12 

274 
33 
62 
22 

Table 1: Durations (in ms) of intervocalic conso- 
nants in two stress conditions: unstressed~stressed and 
stressed~unstressed. 

These factors interact in the quantitative sense that the mag- 
nitude of an effect (in ms or in percent) is affected by other 
factors. Table 1 shows durations of intervocalic consonants 
in two contexts defined by syllabic stress: preceding vowel 
unstressed/following vowel stressed (Ifl in "before"); and: 
preceding vowel stressed/following vowel unstressed (/f/in 
"buffer"; I t / is  usually flapped in this context). The Table 
shows that the effects of stress are much larger for some con- 
sonants than for others: a consonant × stress interaction. 
Other examples of interactions include postvocalic conso- 
nant x phrasal position and syllabic stress × pitch accent 
[121. 

These interactions imply that segmental duration can be de- 
scribed neither by the additive model [9] (because the differ- 
ences vary) nor by the multiplicative model [7] (because the 
percentages vary)) In contrast, the Klatt model was specif- 

5In the add i tve  model  DUR(f )  = al,l ( f l )  + " '"  + Sn,n(fn); in the 
mulfiplicadve model  DUR(f )  = s l , l  ( f l  ) × " '" × Sl,n ( f n ) .  

ically constructed to describe certain interactions, in particu- 
lar the postvocalic consonant × phrasal position interaction. 
However, in an effort to use the Klatt model for text-to-speech 
synthesis it became clear that this model needed significant 
modifications to describe interactions involving other factors 
[5]. Recent tests further confirmed systematic violations of 
the model [11]. 

Thus, the existence of large interactions is undeniable, but 
current sums-of-products models have not succeeded in cap- 
turing these interactions. General-purpose prediction systems 
such as CART, of course, can handle arbitrarily intricate in- 
teractions [16]. 

2.2. Lopsided sparsity 

Because there are many factors - several of which have more 
than two values - the feature space is quite large. The statis- 
tical distribution of the feature vectors exhibits an unpleasant 
property that we shall call "lopsided sparsity". We mean by 
lopsided sparsity that the number of very rare vectors is so 
large that even in small text samples one is assured to en- 
counter at least one of them. 

Sample Size Type Count Lowest Type 
Frequency 

20 
320 

5,120 
81,920 

1,310,720 
22,249,882 

18 
254 

1,767 
5,707 

11,576 
17,547 

13 

< 1  
< 1  
< 1  
< 1  

Table 2: Type counts and lowest type frequencies (per million) 
of contextual vectors for various sample sizes. 

Table 2 illustrates the concept. We analyzed 797,524 
sentences, names, and addresses (total word token count: 
5,868,172; total segment count 22,249,882) by computing 
for each segment the feature vector characterizing those as- 
pects of the context that we found to be relevant for segmental 
duration. This characterization is relatively coarse and leaves 
out many distinctions (such as - for vowel duration- the place 
of articulation of post-vocalic consonants). Nevertheless, the 
total feature vector type count was 17,547. Of these 17,547 
types, about 10 percent occurred only once in the entire data 
base and 40 percent occurred less than once in a million. 

Two aspects of the table are of interest. The second column 
shows that once sample size exceeds 5,000 the type count in- 
creases linearly with the logarithm of the sample size, with no 
signs of deceleration. In other words, although the linguistic 
space is certainly much smaller than the feature space, it is 
unknown whether its size is 20,000, 30,000, or significantly 
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larger than that. The third column shows that even in samples 
as small as 320 segments (the equivalent of a small paragraph) 
one can be certain to encounter feature vectors that occur only 
once in a million segment tokens. 

It is often suspected that general-purpose prediction systems 
can have serious problems with frequency imbalance in the 
training set, in particular when many feature vectors are out- 
right missing. Experiments performed with CART confirmed 
this suspicion. In a three-factor, 36-element feature space, 
with artificial durations generated by the Klatt model, we 
found that removing 66 percent of the feature vectors from the 
training set produced a CART tree that performed quite poorly 
on test data. Similarly, neural nets can have the property that 
decision boundaries are sensitive to relative frequencies of 
feature vectors in the training sample (e.g., [17]), thereby 
leading to poor performance on infrequent vectors. 

The key reason for these difficulties is that the ability to ac- 
curately predict durations for feature vectors for which the 
training set provides few or no data points is a form of interpo- 
lation, which in turn requires assumptions about the general 
form of the mapping from the feature space onto durations 
(the response surface). Precisely because they are general- 
purpose, these methods make minimal assumptions about the 
response surface, which in practice often means that the dura- 
tion assigned to a missing feature vector is left to chance. For 
example, in CART an infinitesimal disturbance can have a ma- 
jor impact on the tree branching pattern. Even when this has 
little effect on the fit of the tree to the training data, it can have 
large effects on which duration is assigned to a missing fea- 
ture vector. In subsection 2.4, we will argue that the response 
surface for segmental duration can be described particularly 
well by sums-of-products models, so that these models are 
able to generate accurate durations for (near-) missing feature 
vectors. 

It should be noted that for certain applications, in particu- 
lar automatic speech recognition, poor performance on in- 
frequent feature vectors need not be critical because lexical 
access can make up for errors. Current implementations of 
text-to-speech synthesis systems, however, do not have error 
correction mechanisms. Having a seriously flawed segmental 
duration every few sentences is not acceptable. 

2.3. Text-independent variability 

A final complicating aspect of segmental duration is that, 
given the same input text, the same speaker (speaking at the 
same speed, and with the same speaking instructions) pro- 
duces durations that are quite variable. For example, we 
found that vowel duration had a residual standard deviation of 
21.4 ms, representing about 15 percent of average duration. 
This means that one needs either multiple observations for 
each feature vector so that statistically stable mean values can 

be computed, or data analysis techniques that are relatively 
insensitive to statistical noise. 

In large linguistic spaces, text-independent variability implies 
that training data may require tens of thousands of sentences, 
even if one uses text selection techniques that maximize cov- 
erage such as greedy algorithms[20]. And even such texts 
will still contain serious frequency imbalances. 

2.4. Ordinal patterns in data 

A closer look at the interactions in Table 1 reveals that they 
are, in fact, quite well-behaved, as is shown by the following 
patterns: 

Pattern 1. The durations in the first column are always larger 
than those in the second column. 
Pattern 2. The effects of stress - whether measured as differ- 
ences or as percentages - are always larger for alveolars than 
for labials in the same consonant class (i.e., having the same 
manner of production and voicing feature). 
Pattern 3. Within alveolars and labials, the effects of stress 
(measured as differences) have the same order 6 over conso- 
nant classes (voiceless stop bursts largest, voiced stop bursts 
smallest). 
Pattern 4. However, the order of the durations of the con- 
sonants is not the same in the two stress conditions. For 
example, I t / is  longer than In/in the first column, but much 
shorter in the second column. 

This pattern of reversals and non-reversals, or ordinal pattern, 
can be captured by the following sums-of-product model: 

DUR(C,  P, S) = 

.~,,(c) x *~,2(e) x .~,3(s) + .2,~(c) x .2,2(P) (2) 

Here, C is consonant class, P place of articulation, and S stress 
condition; it is assumed that factor scales have positive values 
only. It is easy to show that this model implies Patterns 1-3 
(for differences). Pattern 4 is not in any way implied by the 
model, but can be accommodated by appropriate selection 
of factor scale values. This accommodation would not be 
possible if the second term had been absent. 

There are many other factors that exhibit similarly regular or- 
dinal patterns [11, 12, 18]. In general, factors often interact, 
but the interactions tend to be well-behaved so that the re- 
sponse surface can be described by simple sums-of-products 
models. 

Now, showing that an ordinal pattern can be captured by 
a sums-of-products model does not imply that there aren't 
many other types of models that can accomplish the same. 

6Except for one minor reversal: 22 ms vs. 26 ms f o r / P [ c l o s u r e  vs. / f  [ .  
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Intuitiw~ly, it would appear that ordinal patterns are not terribly 
constraining. However, there exist powerful mathematical 
results that show this intuition to be wrong [19]. For example, 
there are results showing that if data exhibit a certain ordinal 
pattern then we can be assured that the additive model will 
fit. Similar results have been shown for certain classes of 
sums-of-products models (see [19], Ch. 7). Taken together 
these results make it quite plausible that when data exhibit the 
types of ordinal patterns often observed in segmental duration, 
some sums-of-products model will fit the data. 

To really make the case for the importance of ordinal patterns, 
we must make the further key assumption that the ordinal pat- 
terns of the response surface discovered in the training data 
base can be feund in the language in general (restricted to the 
same speaker and speaking mode). This is based on the belief 
that the structure discovered in the data is the result of stable 
properties of the speech production apparatus. For example, 
the non-reversal of the syllabic stress factor can be linked to the 
supposition that stressed syllables are pronounced with more 
subglottai pressure, increased tension of the vocal chords, and 
larger articulatory excursions than unstressed syllables. A 
systematic by-product of these differences would be a differ- 
ence in timing. 

3. SYSTEM CONSTRUCTION 
We now describe construction of a duration prediction system 
based on sums-of-products models. 

3.1. Training data 

The data base is described in detail elsewhere [12]. A 
male American English speaker read 2,162 isolated, short, 
meaningful sentences. The utterances contained 41,588 seg- 
ments covering 5,073 feature vector types. Utterances were 
screened for disfluencies and re-recorded until none were ob- 
served. The database was segmented manually aided by soft- 
ware which displays the speech wave, spectrogram, and other 
acoustic representations. Manual segmentation was highly 
reliable, as shown by an average error of only 3 ms (this was 
obtained by having four segmentors independently segment a 
set of 38 utterances). 

3.2. Category structure 

First, we have to realize that modeling segmental duration 
for the entire linguistic space with a single sums-of-products 
model is a lost cause because of the tremendous heterogeneity 
of this space in terms of articulatory properties and phonetic 
and prosodic environments. For example, the factor "stress 
of the surrounding vowels" was shown to be a major factor 
affecting durations of intervocalic consonants; however, this 
factor is largely irrelevant for the - barely existing - class 
of intervocalic vowels. Thus, we have to construct a cate- 
gory structure, or tree, that divides the linguistic space into 

categories and develop separate sums-of-products models for 
these categories. In our system, we first distinguish between 
vowels and consonants. Next, for consonants, we distinguish 
between intervocalic and non-intervocalic consonants. Non- 
intervocalic consonants are further divided into consonants 
occurring in syllable onsets vs. non-phrase-final syllable co- 
das vs. phrase-final syllable codas. Finally, all of these are 
split up by consonant class. Note that construction of this 
category structure is not based on statistical analysis but on 
standard phonetic and phonological distinctions. 

3.3. Factor relevance and distinctions 

For each category (e.g., non-intervocalic voiceless stop bursts 
in syllable onsets), we perform a preliminary statistical analy- 
sis to decide which factors are relevant and which distinctions 
to make on these factors (see [12] for details). 

3.4. Model selection 

We already hinted that the number of distinct sums-of- 
products models increases sharply with the number of fac- 
tors; for example, for five factors there are more than 2 billion 
sums-of-products models, and for the eight factors we used for 
modeling vowel duration there are more than 1076  models. 7 
Thus, in cases with more than three or four factors it is com- 
putationally unattractive to fit all possible models and select 
the one that fits best. Fortunately, there are methods that allow 
one to find the best model with far less computational effort 
[10, 11] - requiring only 31 analyses (each the computational 
equivalent of an analysis of variance) for five factors. These 
methods are "diagnostiC' because they can detect trends in the 
data that eliminate entire classes of sums-of-products models 
from consideration. 

3.5. Parameter estimation 

Once a sums-of-products is selected, parameters are esti- 
mated with a weighted least-squares method using a simple 
parameter-wise gradient technique. 

4. RESULTS 

4.1. Statistical fit 

Forty-two sums-of-products models were constructed - one 
for each "leaf" of the category tree. Overall, 619 parameters 
were estimated (32 for vowels, 196 for intervocalic conso- 
nants, and 391 for non-intervocalic consonants). On average, 
each parameter was based on eight data points. 

The overall correlation (over all 41,588 segments) between 
observed and predicted durations was 0.93 (0.90, 0.90, and 
0.87, when computed separately for vowels, intervocalic con- 

7The number  o f  distinct models  converges  to 2 2'~ - 1  _ 1, where  n is the 
n u m b e r  of  factors.  
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sonants, and non-intervocalic consonants, respectively). 

When we computed average durations for each feature vec- 
tor in two equal-sized subsets of the data base, and estimated 
parameters for the sums-of-products model for vowels sep- 
arately on each subset, the durations predicted from the two 
parameter sets correlated 0.987. Similarly, when we estimated 
parameters from data obtained on a second (female) speaker, 
male durations (feature vector means) were predicted with a 
correlation of 0.96. 

In addition to these correlational findings, we also found that 
the key interactions were mimicked closely by the predicted 
durations (e.g., see Figs. 14-16 in [12]). 

4.2. Text-to-speech synthesizer evaluation 

A new duration module for the AT&T Bell Laboratories text- 
to-speech synthesizer was written based on the 42 sums-of- 
products models and their parameter estimates. We then com- 
pared the durations generated by the new module with those 
generated by the old module in a subjective listening exper- 
iment using naive listeners (see [20] for details). The old 
module consists of a list of several hundred duration rules 
similar to, but somewhat simpler than, the Klatt rules [5]. In 
the experiment, a listener heard two versions of the same sen- 
tence, selected the preferred version, and indicated strength 
of choice on a 1---6 scale (where 1 denotes complete indiffer- 
ence and 6 the strongest possible preference). All listeners 
preferred the new version. Across listeners, the new version 
was preferred on 73 percent of the presentations (80 percent 
for strength ratings of three or more). On only one of the 
200 sentences was there a statistically significant majority of 
listeners preferring the old version; on 81 percent of the sen- 
tences listeners preferred the new version- on 60 percent with 
a statistically significant majority. 

5. DISCUSSION 
The approach taken in the paper raises some general issues 
that we want to briefly touch upon here. 

5.1. "With Enough Data" 

A general theme in our approach to modeling segmental du- 
ration is that this domain has properties distinguishing it from 
other domains and that this requires special-purpose methods. 
However, the ever-increasing amount of data that can be col- 
lected, processed, and stored, may lead one to believe that 
in the near future general-purpose prediction systems will be 
able to outperform any special-purpose system - the "With 
Enough Data" argument. We submit that this may rest on a 
misappreciation of the magnitude of sparsity encountered in 
certain linguistic spaces. When a training set does not provide 
a good number of data points for every feature vector in the 
linguistic space, it is unclear how general-purpose methods 

can be called upon to fill in the holes in the response surface 
without making explicit assumptions about the phenomena 
being modeled, or, in other words, without de facto being a 
special-purpose system. 

5.2. Manually vs. automatically generated seg- 
ment boundaries 

Although manually generated phoneme boundaries have some 
degree of arbitrariness, there is enough overlap between var- 
ious conventions to produce a remarkable degree of consen- 
sus between durational findings obtained in different studies. 
However, automatic speech recognition systems often pro- 
duce phoneme boundaries that do not correspond to those 
produced manually, which may lead to very different dura- 
tional behavior. For example, we found in a sub-word unit 
based system that vowels followed b y / z /w e re  quite short, 
whereas in manually segmented data such vowels tend to be 
long [12]. Apparently, the training algorithm achieved higher 
likelihoods by putting the boundary well into the vowel. Mis- 
matches such as these make duration models based on manu- 
ally segmented data irrelevant for speech recognition. Thus, 
either one has to develop models for these automatically gen- 
erated segment durations, or one has to constrain training al- 
gorithms to produce boundaries that correspond more closely 
to those generated manually. 

5.3. Segments vs. other units 

The final issue concerns the use of segments vs. larger units, 
in particular syllables. It has been suggested that not segments 
but syllables should play a central role in duration prediction 
[21, 22], the hypothesis being that speakers control durations 
of syllables more carefully than the durations of the segments 
that make up a syllable. However, the following three consid- 
erations make this proposal somewhat less appealing. First, 
in our factorial characterization of context, the role of the 
syllable is as important as that of the segment or the word. 
To illustrate, we define within-word position in terms of syl- 
lables (and segments, but only to distinguish between open 
vs. closed syllables), and within-phrase position in terms of 
words, syllables, and segments. 

Second, there are implications from research on sub- 
segmental timing effects [23, 24, 25]. An example of such an 
effect is that the steady-state part of laY/expands much more 
than the glide part (comparing "bite" with "bide"); in other 
diphthongs or in vowels, primarily the final part is stretched. 
Timing of some of these phenomena appears to be quite pre- 
cise: Gay [23] found near-identical formant velocities across 
three different speaking rates. These findings urge close 
scrutiny of the claim that larger units are timed with more 
precision than smaller units. They also imply that whatever 
unit one selects for the lead role, timing must be specified on 
a fine, sub-segmental scale. 
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Third, il; is not clear how to explain the well-documented fact 
that phrasal position amplifies the effects of  post-vocalic voic- 
ing on 'vowel duration. In Campbell 's [21] approach, each 
segment is characterized by a mean duration and an "elas- 
ticity" (variance) parameter to allow for some segments to 
be stretched more than others when a syllable is stretched 
by extra-syllabic factors. Because elasticity is assumed 
to be a context-independent segmental parameter, it cannot 
explain the amplification effect of  phrasal position. Al- 
though syllable-based conceptualizations other than Camp- 
bell's might be able to address this problem, the challenge of  
how to specify sub-syllabic timing within a syllabic frame- 
work is clearly a serious one. 

A possible resolution of  the unit issue is that it may not need 
to be resolved. The timing pattern of  speech might be viewed 
as the resultant of  multiple constraints - some computable 
locally and others, say, at the paragraph level; some being 
inescapable consequences of  the physiology of  the vocal tract 
and others under voluntary control. These constraints could 
be embedded in a multi-level model where no unit or level is 
more central than others, but where timing is computed on a 
sub-segmental scale. 

It should also be understood that the very concept of  unit 
tacitly makes the concatenative assumption. This assumption 
is not shared by approaches based on asynchronous entities 
such as feature bundles [26] or formant control parameters 
[27]. In these systems, at any point in time more than one 
entity can be "on" and their on- and offsets need not coincide. 

References 
1. Breiman, L., Friedman, J. H., Olshen, R. A., and Stone, C. J., 

Classification and regression trees. Wadsworth & Brooks, 
Monterey, CA, 1984. 

2. Riley, M. D.,  "Tree-based modeling for speech synthesis", In 
G. Bailly, C. Benoit, and T.R. SawaUis, editors, Talking Ma- 
chines: Theories, Models, and Designs, pp. 265-273, Elsevier, 
Amsterdam, 1992. 

3. Klatt, D. H., "Linguistic uses of segmental duration in English: 
Acoustic and perceptual evidence", Journal of the Acoustical 
Society ofAmerica, Vol. 59, 1976, pp. 1209-1221. 

4. Klatt, D. H. , "Review of text-to-speech conversion for En- 
glish", Journal of the Acoustical Society of America, Vol. 82(3), 
1987, pp. 737-793. 

5. Allen, J., Hunnicut, S., and Klatt, D. H., From Text to Speech: 
The MITalk System. Cambridge University press, Cambridge, 
U.K., 1987. 

6. Coker, C. H.,  Umeda, N.,  and Browman, C. P., "Automatic 
synthesis from ordinary English text", IEEE Transactions on 
Audio and Electroacoustics, AU-21 (3), 1973, pp. 293-298. 

7. Lindblom, D. ,  and Rapp, K., "Some temporal properties of 
spoken Swedish", PILUS, Vol. 21, 1973, pp. 1-59. 

8. Carlson, R. , "Duration models in use", In Proceedings of 
the XIIth Meeting, Aix-en-Provence, France. International 
Congress of Phonetic Sciences, 1991. 

9. Kaiki, N., Takeda, K., and Sagisaka, Y., "Statistical analysis 
for segmental duration rules in Japanese speech synthesis", In 
Proceedings ICSLP '90, 1990, pp. 17-20. 

10. van Santen, J. P. H.,  "Analyzing n-way tables with sums-of- 
products models", Journal of Mathematical Psychology, Vol. 
37, 1993 (In press). 

11. van Santen, J. P. H.,  and Olive, J. P., "The analysis of con- 
textual effects on segmental duration", Computer Speech and 
Language, Vol. 4, 1990, pp. 359-391. 

12. van Santen, J. P. H.,  "Contextual effects on vowel duration", 
Speech Communication, Vol. 11, 1992, pp. 513-546. 

13. Crystal, T. H. , and House, A. S. ,  "Segmental durations in 
connected-speech signals: Current results", Journal of the 
Acoustical Society of America, Vol. 83, 1988a, pp. 1553-1573. 

14. Crystal, T. H. , and House, A. S. ,  "Segmental durations in 
connected-speech signals: Syllabic stress", Journal of the 
Acoustical Society of America, Vol. 83, 1988b, pp. 1574--1585. 

15. Crystal, T. H. , and House, A. S. , 1990. "Articulation rate 
and the duration of syllables and stress groups in connected 
speech", Journal of the Acoustical Society of America, Vol. 88, 
1990, pp. 101-112. 

16. Hasfie, T. J., and Tibshirani, R. J., GeneralizedAdditive Mod- 
e/s. Chapman and Hall, London, 1990. 

17. Sabourin, M., and Mitiche, A.,  "Optical character recognition 
by a neural network", Neural Networks, Vol. 5, 1992, pp. 843- 
852. 

18. van Santen, J. P. H.,  "Deriving text-to-speech durations from 
natural speech", In G. Bailly and C. Benoit, editors, Talking 
Machines: Theories, Models, and Designs, pp. 275-285, Else- 
vier, Amsterdam, 1992. 

19. Krantz, D. H. ,  Lute, R. D. , Suppes, P. , and Tverskky, A. , 
Foundations of Measurement, Vol. L Wiley, New York, 1971. 

20. van Santen, J. P. H. , "Perceptual experiments for diagnos- 
tic testing of text-to-speech systems", Computer Speech and 
Language, Vol. 7, 1993 (In press). 

21. Campbell, W. N. , "Syllable-based segmental duration", In 
G. Bailly, C. Benoit, and T.R. Sawallis, editors, Talking Ma- 
chines: Theories, Models, and Designs, pp. 211-224, Elsevier, 
Amsterdam, 1992. 

22. Collier, R., "A comment on the prediction of prosody", In 
G. Bailly, C. Benoit, and T.R. Sawallis, editors, Talking Ma- 
chines: Theories, Models, and Designs, pp. 205-207, Elsevier, 
Amsterdam, 1992. 

23. Gay' Th" ' "Effect °f speaking rate °n diphth°ng f°rmant m°ve- 
ments", Journal of the Acoustical Society of America, Vol. 44, 
t968, pp. 1570-1573. 

24. Hertz, S. R.,  "Streams, phones and transitions: toward a new 
phonological and phonetic model of formant timing", Journal 
of Phonetics, Vol. 19, 1991, pp. 91-109. 

25. van Santen, J. P. H.,  Coleman, J. C. ,  and Randolph, M. A. ,  
"Effects of postvocalic voicing on the time course of vowels 
and diphthongs", J. Acoust. Soc. Am., Vol. 92(4, Pt. 2), 1992, 
pp. 2444. 

26. Coleman, J.S., "Synthesis-by-rule" without segments of 
rewrite-rules", In G. Bailly, C. Benoit, and T.R. Sawallis, ed- 
itors, Talking Machines: Theories, Models, and Designs, pp. 
43-60, Elsevier, Amsterdam, 1992. 

27. Stevens, K. N., and Bickley, C. A., "Constraints among param- 
eters simplify control of Klatt formant synthesizer", Journal of 
Phonetics, Vol. 19, 1991, pp. 161-174. 

328 




