
M E A S U R E S AND M O D E L S
FOR P H R A S E R E C O G N I T I O N

Steven Abney

Bell Communicat ions Research
445 South Street

Morristown, NJ 07960

A B S T R A C T

I present an entropy measure for evaluating parser
performance. The measure is fine-grained, and permits us to
evaluate performance at the level of individual phrases. The
parsing problem is characterized as statistically
approximating the Penn Treebank annotations. I consider a
series of models to "calibrate" the measure by determining
what scores can be achieved using the most obvious kinds of
information. I also relate the entropy measure to measures of
recall/precision and grammar coverage.

1. INTRODUCTION

Entropy measures of parser performance have focussed on
the parser's contribution to word prediction. This is
appropriate for evaluating a parser as a language model for
speech recognition, but it is less appropriate for evaluating
how well a parser does at parsing. I would like to present
an entropy measure for phrase recognition, along with
closely-related measures of precision and recall. I consider
a seres of models, in order to establish a baseline for
performance, and to give some sense of what parts of the
problem are hardest, and what kinds of information
contribute most to a solution.

Specifically, I consider the problem of recognizing chunks
(Abney 1991)--non-recursive pieces of major-category
phrases, omitting post-head complements and modifiers.
Chunks correspond to prosodic phrases (Abney 1992) and
can be assembled into complete parse trees by adding head-
head dependencies.

2. T H E P A R S I N G P R O B L E M

Parsing is usually characterized as the problem of
recovering parse trees for sentences, given a grammar that
defines the mapping of sentences to parse-trees. However,
I wish to characterize the problem without assuming a
grammar, for two reasons. First, we cannot assume a
grammar for unrestricted English. For unrestricted
English, failure of coverage will be a significant problem
for any grammar, and we would like a measure of
performance that treats failure of coverage and failures
within the grammar uniformly.

Second, I am particularly interested in parsers like Fidditch
(Hindle 1983) and Cass (Abney 1990) that avoid search by
relying on highly reliable patterns for recognizing
individual phrases. Such parsers may need to consider
competing patterns when scoring a given pattern--for
example, Cass relies heavily on a preference for the pattern
that matches the longest prefix of the input. Such cross-
pattern dependencies cannot be expressed within, for
example, a stochastic context-free grammar (SCFG).
Hence I am interested in a more general evaluation
framework, one that subsumes both Fidditch/Cass-style
parsers and SCFG parsing.

Instead of assuming a grammar, I take the Penn Treebank
(Marcus & Santorini 1991) to provide a representative
sample of English, viewed as a function from sentences to
parse trees. A parser's task is to statistically approximate
that function. We can measure the (in)accuracy of the
parser by the amount of additional information we must
provide in order to specify the correct (Treebank) parse for a
sentence, given the output of the parser. This is the
entropy of the corpus given the parser, and approaches zero
as the parser approaches perfect emulation of Treebank
annotation.

We can characterize the parser's task at two levels of
granularity. At the level of the sentence, the task is to
assign a probability distribution over the set of possible
parse-trees for the sentence. At the phrase level, the
problem is to give, for each candidate phrase c, the
probability that c belongs to the correct parse. I will focus
on the latter characterization, for several reasons:
(1) as mentioned, I am interested in developing reliable
patterns for recognizing individual phrases, in order to
reduce the necessity for search and to increase parsing
speed, (2) evaluating at the phrase level allows us to assign
blame for error at a finer grain, (3) there are applications
such as data extraction where we may have good models for
certain phrase types, but not for entire sentences, and (4) a
phrase model can easily be embedded in a sentence model,
so evaluating at the finer grain does not exclude evaluation
at the coarser grain.

233

3. M E A S U R E S

Given a sentence, the chunk candidates are all tuples c =
(x,id), for x a syntactic category, and i andj the start and
end positions of the chunk. For each candidate, there are
two possible events in the Treebank: the candidate is indeed
a phrase in the Treebank parse (T), or it is not a true phrase
(~T). For each candidate, the parsing model provides
P(TIc), the probability of the candidate being a true phrase,
and P(~TIc) = 1 - P(TIc).

Given the probabilities provided by the parsing model, the
information that must be provided to specify that T occurs
(that the candidate is a true phrase) is - lg P(TIc); and to
specify that ~T occurs, -lg P(~TIc). The entropy of the
corpus given the model is the average - lg P(Eclc), for Ec
being T or ~T according as candidate c does or does not
appear in the Treebank parse. That is,

H = - (l /N) Z l g P(Eclc) for N the number of
c candidates

A perfect model would have P(Eclc) = 1 for all c, hence H =
0. At the other extreme, a 'random-guess' model would
have P(Eclc) = 1/2 for all c, hence H = 1 bit/candidate (b/c).
This provides an upper bound on H, in the sense that any
model that has H > 1 b/c can be changed into a model with
H < 1 by systematically interchanging P(TIc) and P(~TIc).
Hence, for all models, 0 _< H _< 1 b/c.

There are some related measures of interest. We can
translate entropy into an equivalent number of equally-
likely parses (perplexity) by the relation:

PP = 2all

for H in bits/candidate and a the number of candidates per
sentence. In the test corpus I used, a = 8880, so PP
ranges from 1 to 28880 = 102670.

We can also measure expected precision and recall, by
considering P(TIc) as a probabilistic 'Yes' to candidate c.
For example, if the model says P(TIc) = 3/4, that counts as
3/4 of a 'Yes'. Then the expected number of Yes's is the
sum of P(TIc) over all candidates, and the expected number
of correct Yes's is the sum of P(TIc) over candidates that
are true chunks. From that and the number of true chunks,
which can simply be counted, we can compute precision
and recall:

E(#Y) = • P(TIc)
C

E(#TY)= X P(TIc)
t r u e c

EP = E(#TY) /E(#Y)
ER = E(#TY) / #T

4. M O D E L S

To establish a baseline for performance, and to determine
how much can be accomplished with 'obvious', easily-
acquired information, I consider a series of models. Model
0 is a zero-parameter, random-guess model; it establishes a
lower bound on performance. Model 1 estimates one
parameter, the proportion of true chunks among candidates.
Model XK takes the category and length of candidates into
account. Model G induces a simple grammar from the
training corpus. Model C considers a small amount of
context. And model S is a sentence-level model based on
G.

4.1. Models 0 and 1

Models 0 and 1 take P(TIc) to be constant. Model 0 (the
random-guess model) takes P(T) = 1/2, and provides a
lower bound on performance. Model 1 (the one-parameter
model) estimates P(T) as the proportion of true chunks
among candidates in a training corpus. The training corpus
I used consists of 1706 sentences, containing 19,025 true
chunks (11.2 per sentence), and 14,442,484 candidates
(8470 per sentence). The test corpus consisted of 1549
sentences, 17,676 true chunks (11.4 per sentence), and
13,753,628 candidates (8880 per sentence). The
performance of the random-guess and one-parameter models
is as follows:

b/c prs/sent EP ER

0 1 102670 .129% (50%)
1 .014 2 1038 .129% (.132%)

For these two models (in fact, for any model with P(TIc)
constan0, precision is at a minimum, and equals the
proportion of true chunks in the test corpus. Recall i s
uninformative, being equal to P(TIc).

4.2. Model XK

Model XK is motivated by the observation that very long
chunks are highly unlikely. It takes P(TIc) = P(TIx,k), for
x the category of c and k its length. It estimates P(TIx, k)
as the proportion of true chunks among candidates of
category x and length k in the training corpus. As
expected, this model does better than the previous ones:

b/c prs/sent EP ER

XK .007 95 1021 5.5% 5.6%

4.3. Models G and C

For model G, I induced a simple grammar from the training
corpus. I used Ken Church's tagger (Church 1988) to

234

assign part-of-speech probabilities to words. The grammar
contains a rule x ---> T for every Treebank chunk [x "t] in
the training corpus. (x is the syntactic category of the
chunk, and y is the part-of-speech sequence assigned to the
words of the chunk.) Ix V] is counted as being observed
P(y) times, for P('t) the probability of assigning the part-
of-speech sequence y to the words of the chunk. I used a
second corpus to estimate P(TIx,¥) for each rule in the
grammar, by counting the proportion of true phrases
among candidates of form Ix Y]. For candidates that
matched no rule, I estimated the probabilities P(TIx, k) as in
the XK model.

Model C is a variant of model G, in which a small amount
of context, namely, the following part of speech, is also
taken into account.

The results on the test corpus are as follows:

b/c prs/sent EP ER

G .003 81 10 lo 47.3% 48.2%
C .003 36 109 54.5% 58.7%

The improvement in expected precision and recall is
dramatic.

4.4 Assigning Blame

We can make some observations about the sources of
For example, we can break out entropy by entropy.

category:

%H -E(%H)

NP 39.0 +18.7
PP 21.1 +7.2
VP 19.0 +4.4
Null 7.5 -8.4
AdjP 3.9 +1.4
other (23) 9.5 -23.4

The first column represents the percentage of total entropy
accounted for by candidates of the given category. In the
second column, I have subtracted the amount we would
have expected if entropy were divided among candidates
without regard to category. The results clearly confirm our
intuitions that, for example, noun phrases are more
difficult to recognize than verb clusters, and that the Null
category, consisting mostly of punctuation and
connectives, is easy to recognize.

We can also break out entropy among candidates covered by
the grammar, and those not covered by the grammar. The
usual measure of grammar coverage is simply the
proportion of true chunks covered, but we can more
accurately determine how much of a problem coverage is
by measuring how much we stand to gain by improving

coverage, versus how much we stand to gain by improving
our model of covered candidates. On our test corpus, only
4% of the candidates are uncovered by the grammar, but
19% of the information cost (entropy) is due to uncovered
candidates.

4.5. Model S

None of the models discussed so far take into account the
constraint that the set of true chunks must partition the
sentence. Now, if a perfect sentence model exists--if an
algorithm exists that assigns to each sentence its Treebank
parse---then a perfect phrase model also exists. And to the
extent that a model uses highly reliably local patterns (as I
would like), little information is lost by not evaluating at
the sentence level. But for other phrase-level models, such
as those considered here, embedding them in a sentence-
level model can significantly improve performance.

Model S is designed to gauge how much information is
lost in model G by not evaluating parses as a whole. It
uses model O's assignments of probabilities P(TIc) for
individual candidates as the basis for assigning probabilities
P(s) to entire parses, that is, to chunk-sequences s that
cover the entire sentence.

To choose a sequence of chunks stochastically, we begin
with s = the null sequence at position i = 0. We choose
from among the candidates at position i, taking the
probability P(c) of choosing candidate c to be proportional
to P(TIc). The chosen chunk c is appended to s, and the
current position i is advanced to the end position of c. We
iterate to the end of the sentence. In brief:

P(c)=P(TIc) / Z P(TIc')
c 'a t i

for i the start
position of c

P(s) = IF[P(c)
c i n s

The entropy of a sentence given the model is - lg P(s), for s
the true sequence of chunks. We can also compute actual
(not expected) precision and recall by counting the true
chunks in the most-likely parse according to the model.
The results on the test corpus are:

M b/s present P~dsion Recall

S 14.1 104 74.1% 75.6%

(By way of comparison, the bits/sentence numbers for the
other models are as follows:)

0 1 XK G C S
8880 126 70.6 33.8 29.8 14.1

For model S, the number o f parses per sentence is still
rather high, but the precision and recall are surprisingly

235

good, given the rudimentary information that the model
takes into account. I think there is cause for optimism that
the chunk recognition problem can be solved in the near
term, using models that take better account of context and
word-level information.

4. C O N C L U S I O N

To summarize, I have approached the problem of parsing
English as a problem of statistically approximating the
Penn Treebank. For the purposes of parsing, English is a
function from sentences to parse-trees, and the Treebank
provides a (sufficiently representative) sample from the
extension of that function. A parsing model approximates
Treebank annotation. Our basic measure of the goodness
of the approximation is the amount of additional
information we must provide in order to specify the
Treebank parse, given the probabilities assigned by the
parser. I have presented a series of models to "calibrate"
the measure, showing what kind of performance is
achievable using obvious kinds of information.

An impetus for this work is the success of parsers like
Fidditch and Cass, which are able to greatly reduce search,
and increase parsing speed, by using highly reliable
patterns for recognizing phrases. The limitation of such
work is the impracticality of constructing reliable patterns
by hand, past a certain point. One hindrance to automatic
acquisition of reliable patterns has been the lack of a
framework for evaluating such parsers at a fine grain, and
exploring which kinds of information contribute most to
parsing accuracy.

In the current work, I have presented a framework for fine-
grained evaluation of parsing models. It does not assume
stochastic context-free grammars, and it quantifies parsers'
performance at parsing, rather than at a more indirectly
related task like word prediction.

R E F E R E N C E S

1.

2.

3.

4.

Steven Abney (1990). Rapid Incremental Parsing with
Repair. Proceedings of the 6th New OED Conference.
University of Waterloo, Waterloo, Ontario.

Steven Abney (1991). Parsing by Chunks. In
Berwick, Abney & Tenny, eds. Principle-Based
Parsing, pp.257-278. Kluwer Academic Publishers,
Dordrecht.

Steven Abney (1992). Prosodic Structure, Performance
Structure and Phrase Structure. Proc. 5th DARPA
Workshop on Speech and Natural Language (Harriman,
NY). Morgan Kaufmann.

E. Black, S. Abney, D. Flickenger, R. Grishman, P.
Harrison, D. Hindle, R. Ingria, F. Jelinek, J. Klavans,
M. Liberman, M. Marcus, S. Roukos, B. Santorini, and
T. Strzalkowski (1991). A procedure for quantitatively
comparing the syntactic coverage of English

5.

6.

7,

8.

9.

10.

11.

12.

grammars. DARPA Speech and Natural Language
Workshop, pp.306-311. Morgan Kaufmann.

Peter L. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, Jennifer C. Lai, and Robert L Mercer
(1992). An Estimate of an Upper Bound for the
Entropy of English. Computational Linguistics 18.1,
pp.31-40.

Kenneth Church (1988). A Stochastic Part of Speech
Tagger and Noun Phrase Parser for English.
Proceedings of the 2rid Conference on Applied Natural
Language Processing. Austin, Texas.

T. Fujisaki, F. Jelinek, J. Cooke, E. Black, T. Nishino
(1989). A Prnbabilistic Parsing Method for Sentence
Disambiguation. International Workshop on Parsing
Technologies 1989, pp.85-94.

Donald Hindle (1983). User manual for Fidditeh.
Naval Reserach Laboratory Technical Memorandum
#7590-142.

F. Jelinek. Self-Organized Language Modeling for
Speech Recognition. IBM report.

F. Jelinek, J.D. Lafferty, and R.L. Mercer. Basic
Methods of Probabilistic Context-Free Grammars.
IBM report.

Mitchell Marcus and Beatrice Santorini (1991).
Building very large natural language corpora: the Penn
Treebank. Ms., University of Pennsylvania.

Fernando Pereira and Yves Schabes (1992). Inside-
Outside Reestimation from Partially Bracketed
Corpora. ACL 92, pp.128-135.

236

