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A B S T R A C T  

I present an entropy measure for evaluating parser 
performance. The measure is fine-grained, and permits us to 
evaluate performance at the level of individual phrases. The 
parsing problem is characterized as statistically 
approximating the Penn Treebank annotations. I consider a 
series of models to "calibrate" the measure by determining 
what scores can be achieved using the most obvious kinds of 
information. I also relate the entropy measure to measures of 
recall/precision and grammar coverage. 

1. INTRODUCTION 

Entropy measures of parser performance have focussed on 
the parser's contribution to word prediction. This is 
appropriate for evaluating a parser as a language model for 
speech recognition, but it is less appropriate for evaluating 
how well a parser does at parsing. I would like to present 
an entropy measure for phrase recognition, along with 
closely-related measures of precision and recall. I consider 
a seres  of models, in order to establish a baseline for 
performance, and to give some sense of what parts of the 
problem are hardest, and what kinds of information 
contribute most to a solution. 

Specifically, I consider the problem of recognizing chunks 
(Abney 1991)--non-recursive pieces of major-category 
phrases, omitting post-head complements and modifiers. 
Chunks correspond to prosodic phrases (Abney 1992) and 
can be assembled into complete parse trees by adding head- 
head dependencies. 

2. T H E  P A R S I N G  P R O B L E M  

Parsing is usually characterized as the problem of 
recovering parse trees for sentences, given a grammar that 
defines the mapping of sentences to parse-trees. However, 
I wish to characterize the problem without assuming a 
grammar, for two reasons. First, we cannot assume a 
grammar for unrestricted English. For unrestricted 
English, failure of coverage will be a significant problem 
for any grammar, and we would like a measure of 
performance that treats failure of coverage and failures 
within the grammar uniformly. 

Second, I am particularly interested in parsers like Fidditch 
(Hindle 1983) and Cass (Abney 1990) that avoid search by 
relying on highly reliable patterns for recognizing 
individual phrases. Such parsers may need to consider 
competing patterns when scoring a given pattern--for 
example, Cass relies heavily on a preference for the pattern 
that matches the longest prefix of the input. Such cross- 
pattern dependencies cannot be expressed within, for 
example, a stochastic context-free grammar (SCFG). 
Hence I am interested in a more general evaluation 
framework, one that subsumes both Fidditch/Cass-style 
parsers and SCFG parsing. 

Instead of assuming a grammar, I take the Penn Treebank 
(Marcus & Santorini 1991) to provide a representative 
sample of English, viewed as a function from sentences to 
parse trees. A parser's task is to statistically approximate 
that function. We can measure the (in)accuracy of the 
parser by the amount of additional information we must 
provide in order to specify the correct (Treebank) parse for a 
sentence, given the output of the parser. This is the 
entropy of the corpus given the parser, and approaches zero 
as the parser approaches perfect emulation of Treebank 
annotation. 

We can characterize the parser's task at two levels of 
granularity. At the level of the sentence, the task is to 
assign a probability distribution over the set of possible 
parse-trees for the sentence. At the phrase level, the 
problem is to give, for each candidate phrase c, the 
probability that c belongs to the correct parse. I will focus 
on the latter characterization, for several reasons: 
(1) as mentioned, I am interested in developing reliable 
patterns for recognizing individual phrases, in order to 
reduce the necessity for search and to increase parsing 
speed, (2) evaluating at the phrase level allows us to assign 
blame for error at a finer grain, (3) there are applications 
such as data extraction where we may have good models for 
certain phrase types, but not for entire sentences, and (4) a 
phrase model can easily be embedded in a sentence model, 
so evaluating at the finer grain does not exclude evaluation 
at the coarser grain. 
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3. M E A S U R E S  

Given a sentence, the chunk candidates are all tuples c = 
(x,id), for x a syntactic category, and i andj  the start and 
end positions of the chunk. For each candidate, there are 
two possible events in the Treebank: the candidate is indeed 
a phrase in the Treebank parse (T), or it is not a true phrase 
(~T). For each candidate, the parsing model provides 
P(TIc), the probability of the candidate being a true phrase, 
and P(~TIc) = 1 - P(TIc). 

Given the probabilities provided by the parsing model, the 
information that must be provided to specify that T occurs 
(that the candidate is a true phrase) is - lg  P(TIc); and to 
specify that ~T occurs, -lg P(~TIc). The entropy of the 
corpus given the model is the average - lg P(Eclc), for Ec 
being T or ~T according as candidate c does or does not 
appear in the Treebank parse. That is, 

H = - ( l /N)  Z l g  P(Eclc ) for N the number of 
c candidates 

A perfect model would have P(Eclc) = 1 for all c, hence H = 
0. At the other extreme, a 'random-guess' model would 
have P(Eclc) = 1/2 for all c, hence H = 1 bit/candidate (b/c). 
This provides an upper bound on H, in the sense that any 
model that has H > 1 b/c can be changed into a model with 
H < 1 by systematically interchanging P(TIc) and P(~TIc). 
Hence, for all models, 0 _< H _< 1 b/c. 

There are some related measures of  interest. We can 
translate entropy into an equivalent number of equally- 
likely parses (perplexity) by the relation: 

PP = 2all  

for H in bits/candidate and a the number of candidates per 
sentence. In the test corpus I used, a = 8880, so PP 
ranges from 1 to 28880 = 102670. 

We can also measure expected precision and recall, by 
considering P(TIc) as a probabilistic 'Yes' to candidate c. 
For example, if the model says P(TIc) = 3/4, that counts as 
3/4 of a 'Yes'. Then the expected number of Yes's is the 
sum of P(TIc) over all candidates, and the expected number 
of correct Yes's is the sum of P(TIc) over candidates that 
are true chunks. From that and the number of true chunks, 
which can simply be counted, we can compute precision 
and recall: 

E(#Y) = • P(TIc) 
C 

E(#TY)= X P(TIc) 
t r u e  c 

EP = E(#TY) /E(#Y) 
ER = E(#TY) / #T 

4. M O D E L S  

To establish a baseline for performance, and to determine 
how much can be accomplished with 'obvious', easily- 
acquired information, I consider a series of models. Model 
0 is a zero-parameter, random-guess model; it establishes a 
lower bound on performance. Model 1 estimates one 
parameter, the proportion of true chunks among candidates. 
Model XK takes the category and length of candidates into 
account. Model G induces a simple grammar from the 
training corpus. Model C considers a small amount of 
context. And model S is a sentence-level model based on 
G. 

4.1. Models  0 and  1 

Models 0 and 1 take P(TIc) to be constant. Model 0 (the 
random-guess model) takes P(T) = 1/2, and provides a 
lower bound on performance. Model 1 (the one-parameter 
model) estimates P(T) as the proportion of  true chunks 
among candidates in a training corpus. The training corpus 
I used consists of 1706 sentences, containing 19,025 true 
chunks (11.2 per sentence), and 14,442,484 candidates 
(8470 per sentence). The test corpus consisted of 1549 
sentences, 17,676 true chunks (11.4 per sentence), and 
13,753,628 candidates (8880 per sentence). The 
performance of the random-guess and one-parameter models 
is as follows: 

b/c prs/sent EP ER 

0 1 102670 .129% (50%) 
1 .014 2 1038 .129% (.132%) 

For these two models (in fact, for any model with P(TIc) 
constan0, precision is at a minimum, and equals the 
proportion of  true chunks in the test corpus. Recall i s  
uninformative, being equal to P(TIc). 

4.2. Model  XK 

Model XK is motivated by the observation that very long 
chunks are highly unlikely. It takes P(TIc) = P(TIx,k), for 
x the category of  c and k its length. It estimates P(TIx, k) 
as the proportion of  true chunks among candidates of 
category x and length k in the training corpus. As 
expected, this model does better than the previous ones: 

b/c prs/sent EP ER 

XK .007 95 1021 5.5% 5.6% 

4.3. Models  G and C 

For model G, I induced a simple grammar from the training 
corpus. I used Ken Church's tagger (Church 1988) to 
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assign part-of-speech probabilities to words. The grammar 
contains a rule x ---> T for every Treebank chunk [x "t] in 
the training corpus. (x is the syntactic category of the 
chunk, and y is the part-of-speech sequence assigned to the 
words of the chunk.) Ix V] is counted as being observed 
P(y) times, for P('t) the probability of assigning the part- 
of-speech sequence y to the words of the chunk. I used a 
second corpus to estimate P(TIx,¥) for each rule in the 
grammar, by counting the proportion of true phrases 
among candidates of form Ix Y]. For candidates that 
matched no rule, I estimated the probabilities P(TIx, k) as in 
the XK model. 

Model C is a variant of model G, in which a small amount 
of context, namely, the following part of speech, is also 
taken into account. 

The results on the test corpus are as follows: 

b/c prs/sent EP ER 

G .003 81 10 lo 47.3% 48.2% 
C .003 36 109 54.5% 58.7% 

The improvement in expected precision and recall is 
dramatic. 

4.4 Assigning Blame 

We can make some observations about the sources of 
For example, we can break out entropy by entropy. 

category: 

%H -E(%H) 

NP 39.0 +18.7 
PP 21.1 +7.2 
VP 19.0 +4.4 
Null 7.5 -8.4 
AdjP 3.9 +1.4 
other (23) 9.5 -23.4 

The first column represents the percentage of total entropy 
accounted for by candidates of the given category. In the 
second column, I have subtracted the amount we would 
have expected if entropy were divided among candidates 
without regard to category. The results clearly confirm our 
intuitions that, for example, noun phrases are more 
difficult to recognize than verb clusters, and that the Null 
category,  consisting mostly of  punctuation and 
connectives, is easy to recognize. 

We can also break out entropy among candidates covered by 
the grammar, and those not covered by the grammar. The 
usual measure of  grammar coverage is simply the 
proportion of true chunks covered, but we can more 
accurately determine how much of a problem coverage is 
by measuring how much we stand to gain by improving 

coverage, versus how much we stand to gain by improving 
our model of covered candidates. On our test corpus, only 
4% of  the candidates are uncovered by the grammar, but 
19% of the information cost (entropy) is due to uncovered 
candidates. 

4.5. Model S 

None of the models discussed so far take into account the 
constraint that the set of true chunks must partition the 
sentence. Now, if a perfect sentence model exists--if  an 
algorithm exists that assigns to each sentence its Treebank 
parse---then a perfect phrase model also exists. And to the 
extent that a model uses highly reliably local patterns (as I 
would like), little information is lost by not evaluating at 
the sentence level. But for other phrase-level models, such 
as those considered here, embedding them in a sentence- 
level model can significantly improve performance. 

Model S is designed to gauge how much information is 
lost in model G by not evaluating parses as a whole. It 
uses model O's  assignments of  probabilities P(TIc) for 
individual candidates as the basis for assigning probabilities 
P(s) to entire parses, that is, to chunk-sequences s that 
cover the entire sentence. 

To choose a sequence of chunks stochastically, we begin 
with s = the null sequence at position i = 0. We choose 
from among the candidates at position i, taking the 
probability P(c) of choosing candidate c to be proportional 
to P(TIc). The chosen chunk c is appended to s, and the 
current position i is advanced to the end position of c. We 
iterate to the end of the sentence. In brief: 

P(c)=P(TIc) /  Z P(TIc') 
c 'a t  i 

for i the start 
position of c 

P(s) = IF[ P(c) 
c i n s  

The entropy of a sentence given the model is - lg P(s), for s 
the true sequence of chunks. We can also compute actual 
(not expected) precision and recall by counting the true 
chunks in the most-likely parse according to the model. 
The results on the test corpus are: 

M b/s present P~dsion Recall 

S 14.1 104 74.1% 75.6% 

(By way of comparison, the bits/sentence numbers for the 
other models are as follows:) 

0 1 XK G C S 
8880 126 70.6 33.8 29.8 14.1 

For model S, the number o f  parses per sentence is still 
rather high, but the precision and recall are surprisingly 
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good, given the rudimentary information that the model 
takes into account. I think there is cause for optimism that 
the chunk recognition problem can be solved in the near 
term, using models that take better account of context and 
word-level information. 

4. C O N C L U S I O N  

To summarize, I have approached the problem of parsing 
English as a problem of  statistically approximating the 
Penn Treebank. For the purposes of parsing, English is a 
function from sentences to parse-trees, and the Treebank 
provides a (sufficiently representative) sample from the 
extension of that function. A parsing model approximates 
Treebank annotation. Our basic measure of the goodness 
of the approximation is the amount of additional 
information we must provide in order to specify the 
Treebank parse, given the probabilities assigned by the 
parser. I have presented a series of models to "calibrate" 
the measure, showing what kind of  performance is 
achievable using obvious kinds of information. 

An impetus for this work is the success of parsers like 
Fidditch and Cass, which are able to greatly reduce search, 
and increase parsing speed, by using highly reliable 
patterns for recognizing phrases. The limitation of such 
work is the impracticality of constructing reliable patterns 
by hand, past a certain point. One hindrance to automatic 
acquisition of  reliable patterns has been the lack of a 
framework for evaluating such parsers at a fine grain, and 
exploring which kinds of information contribute most to 
parsing accuracy. 

In the current work, I have presented a framework for fine- 
grained evaluation of parsing models. It does not assume 
stochastic context-free grammars, and it quantifies parsers' 
performance at parsing, rather than at a more indirectly 
related task like word prediction. 
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