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A B S T R A C T  

The Slot Grammar system is interesting for natural language applica- 
tions because it can deliver parses with deep grammatical information 
on a reasonably broad scale. The paper describes a numerical scoring 
system used in Slot Grammar for ambiguity resolution, which not 
only ranks parses but also contributes to parsing efficiency through a 
parse space pruning algorithm. Details of the method of computing 
parse scores are given, and test results for the English Slot Grammar 
are presented. 

1. I N T R O D U C T I O N  

As everyone who has tried it knows, the hardest part of build- 
ing a broad-coverage parser is not simply covering all the 
constructions of the language, but dealing with ambiguity. 

One approach to ambiguity resolution is to "understand" the 
text well enough - to have a good semantic interpretation 
system, to use real-world modeling, inference, etc. This can 
work well in small domains, and it is, in this author's opin- 
ion, ultimately necessary for the highest quality of  natural 
language processing in any domain; but it is probably not 
feasible on a broad scale today. So some kind of  heuristic 
method is needed for disambiguation, some way of  ranking 
analyses and choosing the best. Even in the ideal model of 
human language processing (which would use a great deal of 
knowledge representation and inference), ranking heuristics 
seem appropriate as a mechanism since humans must work 
with incomplete knowledge most of  the time. 

Two major questions that can be asked about a heuristic 
method for ambiguity resolution are these: 

1. What level of  representation is used for disambiguation 
and is involved in the statements of  the heuristic rules - 
lexical/morphological, surface syntactic, deep syntactic, 
or logical/semantic? 

2. Where do the heuristic rules come from? Are they largely 
created through human linguistic insight, or are they 
induced by processing corpora? 

This paper describes the heuristic method used in the Slot 
Grammar (SG)system [10, 11, 13, 16, 17] for ambiguity res- 
olution - the SG parse scoring system. This scoring system 

operates during parsing (with a bottom-up chart parser), as- 
signing real number scores to partial analyses as well as to 
analyses of the complete sentence. The scores are used not 
only for ranking the final analyses but also for pruning the 
parse space during parsing, thus increasing time and space 
efficiency. 

The level of  representation being disambiguated is thus the 
level of SG parses. SG parse structures are dependency- 
or head-oriented, and include, in a single tree, both surface 
structure and deep syntactic information such as predicate- 
argument structure, remote dependencies, control informa- 
tion, and unwinding of passives. 1 

SG parse structures also include a choice of  word senses. The 
extent to which these represent semantic sense distinctions 
depends on the lexicon. The SG system is set up to deal 
with semantic word-sense distinctions and to resolve them by 
doing semantic type-checking during parsing. However, in 
the lexicon for ESG (English Slot Grammar), nearly all word 
sense distinctions are a matter of  part of  speech or syntactic 
slot frame. Some semantic types are shown in the lexicon 
and are used in parsing, but generally very few. Thus one 
would say that ESG parse structures are basically syntactic 
structures, although the deep information like argument struc- 
ture, passive unwinding, etc., counts for "semantics" in some 
people's books. 

Where do the SG scoring rules come from - human linguistic 
insight or induction from corpus processing? The score of  
an SG parse, which will be described in Section 4, is the 
sum of several components. Most of  these come completely 
from human linguistic insight, though some of  them get their 
numeric values from corpus processing. In the tests reported 
in the final section, only the "linguistic-insight"rules are used. 
Some previous tests using the corpus-based heuristic rules 
together with the main SG heuristic rules showed that the 
former could improve the parse rate by a few percentage 
points. It is definitely worth pursuing both approaches, and 
more work will be done with a combination of  the two. 

I No attempt is made to resolve quantifier scoping in SG parses, although 
there is a post-processing system that produces a logical form with scope 
resolution for quantifiers and other "focalizers"[12]. Anaphora resolution 
[8, 9] is also done by post-processing SG parses. 
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In the next section we give a brief overview of Slot Grammar. 
In Section 3 we describe the scoring system generally and its 
use in parse space pruning, and in Section 4 we give some de- 
tails of the computation of scores. Finally, Section 5 presents 
the results of some tests of ESG. 

2. O V E R V I E W  O F  S L O T  G R A M M A R  

The slots that figure in Slot Grammar rules and parsing come in 
two varieties: complement slots and adjunct slots. Analysis is 
word-oriented, and slots are associated with word senses. The 
complement slots for a word sense are associated with it in the 
lexicon. The adjunct slots depend only on the part of speech 
of the word sense and are listed for that part of speech in the 
grammar. Slots have names like subj and obj and should be 
thought of basically as syntactic relations, though complement 
slot frames in the lexicon can be viewed as corresponding to 
arguments in logical form. 

The notion that a phrase fills a slot of a word (sense) is primi- 
tive in the grammar, and the conditions under which this can 
happen are given by the slot-fillerrules. Grammatical analy- 
sis of a phrase consists basically of choosing, for each word 
of the phrase, (1) a word sense, (2) a feature structure, and (3) 
filler subphrases for its slots. A slot is obligatory or optional 
according as it must be, or need not be, filled in order for the 
analysis to be complete. Adjunct slots are normally optional. 
A complement slot can be filled at most once, but adjunct slots 
can, by default, be filled multiply. 

The parser works bottom-up, beginning with one-word 
phrases and attaching other phrases as left and right modi- 
fiers as they can fill slots. As a phrase is built up in this way, 
it retains a distinguished head word, and the slots associated 
with this head word are considered slots of the phrase. 

An example of a slot-filler rule is the following for the subject 
slot (in simplified form): 

subj ~ f ( noun( nom, N um) ) & h f ( verb( f in( N urn) ) ). 

A goal f(Feat) on the right hand side of a filler rule tests that 
the feature structure of the filler phrase matches Feat. A goal 
hf(Feat) tests the feature structure of the higher phrase-  the 
phrase (with possibly other modifiers attached) with which 
the slot is associated. The SG formalism includes a rich set of 
special predicates like f and hf  that can be used for examining 
any aspects of the filler phrase and higher phrase for a slot 
filling. 

Slot-filler rules normally do not constrain left-to-right order- 
ing of the phrases involved. Instead, there are modularly 
stated ordering rules, which are applied as constraints in pars- 
ing after slot-filler rules apply. 

Generally, there is a modular treatment of different gram- 

matical phenomena in a Slot Grammar. There are separate 
rule systems not only for slot-filling and ordering, but also 
for coordination, unbounded dependencies, obligatory slots, 
adjunct slot declaration, "or-slots", punctuation, and parse 
scoring. All these rule types make use of the same system of 
special predicates (mentioned above for slot-filler rules) for 
examining the phrases involved in slot filling. Modularization 
of the rule system makes large grammars more manageable 
and also makes it easier to adapt a grammar for one language 
to another language. 

There are currently Slot Grammars (in various states of com- 
pleteness) for English, German, Spanish, Danish, Norwegian, 
and Hebrew. A great deal of attention has been paid to the 
development of a large, language-universal component of the 
system, the Slot Grammar shell. For a particular language, 
the shell represents roughly 65% of the rules/facts, not count- 
ing lexicons. All of the rule types mentioned above have part 
of their treatment in the shell, but there are especially large 
language-universal components for coordination, unbounded 
dependencies, punctuation, and parse scoring. Nevertheless, 
for all of these, there can be rules in the language-specific 
grammar that override or augment the language-universal 
rules. 

The lexicon for ESG consists of a hand-coded portion for 
approximately 6,000 lemmas (basically most frequent words), 
plus a large back-up lexicon of approximately 60,000 lemmas 
derived from UDICT [1, 7] and other sources. Mary Neff is 
working on improvements of the large ESG lexicon through 
extraction from standard dictionaries. 

Slot Grammars are used for source analysis in the MT system 
LMT [14, 15]. 

For a more detailed description of current version of the SG 
system, see [16, 17, 18]. In this paper we concentrate on the 
scoring system, in its latest form. 

3. SCORING AND PARSE SPACE 
PRUNING 

During parsing, each analysis P of a subphrase is assigned a 
real number score(P). A larger number represents a worse 
score. As described in the next section, most of the ingredients 
that go into scores are positive numbers that are like penalties 
for unusual structure, and total scores are normally positive. 

Parse space pruning involves comparison of scores of partial 
analyses and pruning away analyses that have relatively bad 
scores; but the comparisons are made only within certain 
equivalence classes of analyses. Two partial analyses are 
equivalent when they have the same boundaries, the same 
head word, and the same basic feature. For most categories, 
the basic feature is just the part of speech, but for verbs a finer 
distinction is made according to the inflection type (finite, 
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infinitive, etc.) of the verb. The notion of equivalence is 
loosened in certain ways for coordinated phrases that will not 
be described here. 

Pruning is done as follows. Suppose P is a new, candi- 
date partial analysis obtained in parsing. Let compar(P) 
denote the set of existing partial analyses that are equivalent 
to P (not including P itself). Because of previous pruning, 
all members of compar(P) have the same score; call this 
number scompar(P). (If corn/mr(P) = 0 then consider 
scompar(P) = +oo.) The system stores this best score 
scompar(P) for the equivalence class of P in a way that can 
immediately be computed from P without searching the chart. 

Now three things can happen: (1) If  score(P) > 
scornpar(P), then P is discarded. (2) If  score(P) = 
scompar(P), then P is simply added to the chart. (3) If 
score(P) < scorapar(P), then P is added to the chart and 
all members of compar(P) are discarded. 

This parse space pruning can be turned on or off at run time, 
but scoring is done in any case, and final parses are ranked by 
the scoring system whether pruning is on or off. Generally, 
parse space pruning is crucial to the running of the system for 
large sentences because of space and time problems if it is 
not used. When pruning is turned on, there are generally very 
few final parses obtained for a sentence - on average about 
1.3 (per successfully parsed sentence). 

When parsing of a sentence fails, the system pieces together a 
"fitted parse" in a manner somewhat similar to that in [5]. The 
scores obtained for partial analyses figure heavily in choosing 
the pieces for this result. 

4. C O M P U T A T I O N  O F  S C O R E S  

The score of a partial analysis is obtained incrementally in 
building up the analysis. The initial score, for a one-word 
analysis, is associated with the word sense, and the score is 
incremented whenever a slot is filled or a coordinate structure 
is formed. All in all, there are eight main components of the 
total score (the score is the sum of them). We first list them 
with a brief description and then discuss them individually. 
The list is in decreasing order of"importance" - the amount of 
effort put into the rules/data for the component and roughly the 
current contribution of the component to successful parsing. 
Components 1, 2, 3, 4, 5, 8 are totally "human-coded", and 
components 6, 7 get their data from corpus processing. 

Most of the heuristics described in [4] are covered by these 
rules (and were developed independently). 

1. SlotPref. Computed when a modifier is attached by fill- 
ing a slot. Measures the preference for using that slot vs. 
other slots for attaching the given modifier to the given 
higher phrase. 

. 

3. 

4. 

. 

. 

. 

. 

ParallelCoord. Favors parallelism in coordination. 

CloseAttach. Favors close attachment. 

PhrasePref. Tests the characteristics of a "completed" 
phrase - a phrase that becomes a modifier or is taken as 
an analysis of the complete input segment. Similar to 
SlotPref, but independent of the slot. 

WordSensePref. Favors one sense of a word over other 
senses. 

HeadSlotFiller. Used, like SlotPref, when a slot is filled, 
but tests for specific choices for the head words of the 
higher phrase and the filler phrase, as well their parts of 
speech, and tests only these things. 

POSPref. Similar to WordSensePref, but tests only for 
part of speech. 

LexSlotPref. Another score associated with filling a 
given slot, but coded in the lexicon in a given slot frame 
and can test semantic type conditions on the filler. 

In the following more detailed description of the scoring com- 
ponents, we will use "XSG" to refer to the language-specific 
part of the Slot Grammar of language X. Thus the rules for 
grammar of X reside in both the SG shell and XSG. 

SlotPref The rules for SlotPref are coded in both the shell 
and XSG. The default score, given in the shell, is +I for an 
adjunct slot and 0 for a complement slot, so that complement 
slots are preferred over adjuncts. 

For an example, consider the sentence John sent the file to 
Bill. The PP to Bill can attach tofile by an adjunct slot or to 
sent by a complement slot (its indirect object), but the default 
SlotPrefscore is 1 for the adjunct and 0 for the complement, 
2 so the analysis with the complement wins and the other is 
pruned away. 3 

Slot-scoringrules in XSG can override the default. Currently, 
out of a total of 678 rules of various types in ESG, 216 are 
slot-scoring rules. Most of the day-to-day effort in improving 
ESG consists of work on these scoring rules. 

A slot-scoring rule is of the form: 

Slot + E ( 4-- Body). 

E is normally a real number and is the contribution of this 
rule to SlotPref. The Body, if present, can contain special 
predicates like those mentioned in Section 2 for slot-filler 

2Actually, a slot-scoring rule in ESG gives the adjunct a score of 2 in this 
instance. 

3The CloseAttach component by itself favors the closer attachment of 
the PP tofile, but this score component is dominated by SlotPref. 
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rules that test any characteristics of the filler phrase and the 
higher' phrase. 

Two examples of slot-scoring rules in ESG are as follows 
(given: in simplified form). 

ndet + 0 ~-- hf(noun(T, . ,  *))&(T = chiT = gerund). 

vadv + 0 /(noun(*, *, *))&,t(tm). 

The first says that the determiner slot for nouns is rewarded if 
the higher noun is a common noun or a gerund. The second 
says that the vadv slot for verbs is rewarded when it is tilled 
by a time noun phrase. The special goal st(Type) says that 
Type is a semantic type of the (sense of) the filler phrase, and 
ira is a semantic type used in ESG for time words. 

A slot-scoring rule might be used to penalize the use of a 
complement slot under certain conditions, by assigning it a 
score higher than the default 0. An example of this in ESG is 

comp(bin f )  + 1 ~ headf(noun( *, *, * ) )&hrrnods(nil). 

Here comp(binf) is a verb complement slot filled by a bare 
infinitive VP. This is penalized if the head word of the filler is 
also a noun and the higher verb has (so far) no right modifiers. 
This is to discourage use of the cornp(binf) analysis when 
the phrase may really be an NP, maybe an object. Several 
of the slot-scoring rules in ESG involve checks on existing 
alternative analyses of words, as in this example. It is quite 
useful to have such heuristics because of the great ambiguity 
of English in part of speech of words. 

Slot-scoring may use conditions on punctuation. For example, 
for the slot nprep that finds adjunct PP modifiers of nouns, 
we might have: 

nprep + 2 ~ ~sep(nil)&~hrmodf( *, prep(*, *, .)) .  

This penalizes nprep if the separator is not nil (say, if there 
is a comma separator) and there is no other PP postmodifier 
already. Thus, in an example like John noticed his neighbor, 
from across the street, there will be a preference for the PP to 
modify noticed instead of neighbor. 

ParalleICoord Most of the rules for this score component 
are in the shell. Parallelism in coordinate structures is mea- 
sured by similarity of the conjuncts with respect to several 
different characteristics. Explicitly, when a coordinate struc- 
ture is formed, the increment in the total score due to the 
ParallelCoord component is currently given by a formula 
(slightly simplified): 

P F ea + P Frarne-F P Sense 4- P M ods + P Len-F PConj  + 
P X S G .  

Here the first five ingredients measure similarity of the con- 
juncts with respect to the following: (1) PFea: feature struc- 

tures; (2) PFrame: complement slot frames; (3) PSense: 
word senses; (4) PMods: modifier list lengths; (5) PLen: 
word list lengths. 

The ingredient PConj  tests for certain characteristics of the 
conjunction itself (which can include punctuation). 

The ingredient P X S G  represents a contribution from 
language-specific coordination rules in XSG. 

CloseAttach This score is essentially the same as that de- 
veloped by Heidorn [3], and is designed to favor close attach- 
ment, although SlotPrefand ParallelCoordcan easily override 
it. 

For a phrase P,  the default for CloseAttaeh(P) is defined 
recursively as the sum of all terms 

0.1,  (CloseAttaeh(Mod) + 1), 

where MOd varies over the modifiers of P.  (One need not 
state the base of this recursive formula separately, since one 
arrives eventually at phrases with no modifiers, and then the 
sum over the empty list is understood to be zero.) The factor 
0.1 used in the recursive formula is the default, and it can be 
overridden by an option in slot-scoring rules. Also, a slot- 
scoring rule can change the basic formula applied, in a way 
that will not be described here. 

The combination of SlotPref and CloseAttach is closely related 
to preference rules discussed in [19]. 

PhrasePref Some rules for this component are coded in the 
shell and have to do with preferences for the feature structure 
of the analysis of a complete input phrase, for example pref- 
erence of finite clauses over noun phrases (except in certain 
environments). 

Phrase-scoring rules in XSG contribute to PhrasePref, and 
are of a form similar to slot-scoring ru les -  without mentioning 
a slot: 

+E ~ Body. 

The real number E is added to the total score whenever a 
phrase satisfying Body fills any slot, or is used as a conjunct 
in a coordinate structure, or is taken as a top-level analysis. 

A sample phrase-scoring rule in ESG is 

-I-I ~-- f ( n o u n (  , ,  , ,  * ) )&-~Imod(ndet ,  , ) &  
t od(nadj, P)&h odst(P, qu nt d ). 

This penalizes (by +1) a complete noun phrase that has no 
determiner but does have an adjective modifier which has 
some analysis with the feature quantadv. This rule penalizes 
for example the analysis of even Bill in which even is an 
adjective. 

130 



WordSensePref All of the rules for this component are 
coded in the lexicon. An example is a lexical entry for the 
word man: 

man < n( human&male, nil) < v( ev( 2 ), *, obj l ). 

The first lexical analysis element shows man as a noun with 
features human and male. The second analysis shows a verb 
word sense with a WordSensePref penalty of +2. 

These scores for word sense choices can also be coded con- 
ditionally on subject area codes, and there is an if-then-else 
formalism for expressing this. 

The WordSensePrefscore is added when an initial (one-word) 
phrase analysis is formed. 

HeadSlotFiller Following a method due largely to Ido Da- 
gan [2], counts of head-slot-filler occurrences are obtained 
by parsing a corpus with ESG. Actually parts of speech are 
stored along with the head words of the higher and modifier 
phrases, so the counts are of quintuples: 

( HWord, H POS, Slot, MWord,  M POS). 

These counts are then used (with certain coefficients) to add a 
reward (a negative number) to the score each time a modifier 
is attached with a match to a stored quintuple. 

POSPref Using an idea of Ido Dagan and Herbert Leass, 
ESG corpus parsing is used to obtain counts of occurrences 
of pairs 

(Word, PartO f Speech). 

When an initial (one-word)phrase analysis is formed, and the 
word and its part of speech match an entry in the table just 
mentioned, then the count, with a certain negative coefficient, 
is added as the POSPrefcontribution to the phrase score. This 
is of course similar to WordSensePref, taken from the lexicon, 
and there is an overlap. 

LexSIotPref Rules for this component are coded in the lex- 
icon. A slot apprearing in a slot frame in a lexicai entry can 
have an associated semantic type test on its filler. For example 
consider the following entry for give (not an actual entry for 
ESG): 

give < v(obj . iobj : human). 

Here the iobj slot requires a filler with the semantic type 
human. (In general, any Boolean combination of type tests 
can be coded.) If this analysis is used, then aLexSlotPrefscore 
of -1 is added. As it is stated, this semantic type requirement 
is absolute. But if one writes 

give < v( obj . iobj : pre f ( human) ). 

then the test is not an absolute requirement, but merely gives 
a score increment of -1 if it is satisfied. In both the absolute 
and the "fallsoft" forms of semantic type tests, the formalism 
allows one to specify arbitrary score increments. 

5. T E S T S  O F  E S G  

Three recent tests of ESG coverage will be described, two on 
computer manual text and one on Wall Street Journal (WSJ) 
text. In all of the tests, there were no restrictions placed on 
vocabulary or length of test segments. Only the first parse 
given by ESG for each segment was considered. 4 

For each segment, parse output was rated with one of three 
categories- p: perfect parse, pa: approximate parse, or bad: 
not p or pa. To get a p rating, all of the SG structure had to be 
correct, including for example slot labels; so this is a stricter 
requirement than just getting surface structure or bracketing 
correct. An approximate parse is a non-perfect one for which 
nevertheless all the feature structures are correct and surface 
structureis correct except for level of attachment of modifiers. 
In MT applications, one can often get reasonable translations 
using approximate parses. 

This way of rating parses is not an ideal one, because a parse 
for a very long sentence can be rated bad even when it has 
a single word with a wrong feature or slot. A combination 
of measures of partial success, such as those obtained by 
counting bracketing crossings, would be reasonable, since 
partially correct parses may still be useful. I can make up 
for this partially by reporting results as a function of segment 
length. 

Test 1 This was done using a set of approximately 88,000 
segments from computer manuals on which no training of 
ESG had been done. Half of the corpus, simply consisting 
of the odd-numbered segments, was used for some lexical 
training. Slava Katz's terminology identification program [6] 
was run on this portion as well as a program that finds candi- 
date terms by looking (roughly) for sequences of capitalized 
words. About one day was spent editing this auxiliary multi- 
word lexicon; theedited result consisted of 2176 entries. Then 
100 segments were selected (automatically) at random from 
the (blind) even-numbered segments. The segments ranged 
in token list length from 2 to 38. The following table shows 
rating percentages for the segments of token list length < N 
for selected _h r. 

N %p  % p o r p a  
10 7 5  75 
17 71 79 
25 66 76 
38 61 73 

4"nlis first parse had the best score, but w h e n  m o r e  than o n e  parse had the 
best, only the first one output by the system was used. 
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Test 2 From a set of  about 2200 computer manual segments, 
20% had been selected automatically at random, removed, 
and kept as a blind test set, and some E S G  grammatical and 
lexicaAt work had been done on the remaining. The test was on 
100 of  the blind test sentences, which happened to have the 
same range in token list length, 2 to 38, as in the preceding 
test. The following table, similar in form to the preceding, 
shows results. 

N % p  % p o r p a  

10 72 75 
17 74 84 

25 70 80 
38 67 80 

Test 3 This used a corpus of over 4 million segments from 
the WSJ. No attempt was made to isolate a blind test set. 
However, little work on E S G  has been done for WSJ text - 
maybe looking at a total of 500 sentences over the span of  
work on ESG,  with most of these obtained in other ways (I 
do not know if  they were in the corpus in question). At  any 
rate, automatic random choice from the 4M-segment corpus 
presumably resulted in segments that E S G  had never seen in 
its life. 

Prior to selection of the test set, Katz 's  terminology identifica- 
tion was run on approximately 40% of the corpus. A portion 
of the results (based on frequency) underwent about a day 's  
worth of editing, giving an auxiliary multiword lexicon with 
1513 entries. 

Then 100 segments were selected at random from the 4M- 
segment corpus. They ranged in token list length from 6 to 
57. E S G  was run, with the following results, shown again as 
percentages for segments of length < N:  

N % p  % p  o r p a  
10 75 75 

17 48 56 
25 45 55 

38 33 48 
57 29 45 

E S G  delivered some kind of analysis for all of  the segments in 
the three tests, with about 11% fitted parses for the computer 
manual texts, and 26% fitted parses for the WSJ. The average 
parse time per segment was 1.5 seconds for the computer 
manuals and 5.6 seconds for the WSJ-  on an IBM mainframe 
with a Prolog interpreter (not compiled). 
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