
HEURISTICS FOR BROAD-COVERAGE
NATURAL LANGUAGE PARSING

Michael C. McCord

I B M T. J. W a t s o n R e s e a r c h C e n t e r

P O B 7 0 4 Y o r k t o w n H e i g h t s , N Y 10598

A B S T R A C T

The Slot Grammar system is interesting for natural language applica-
tions because it can deliver parses with deep grammatical information
on a reasonably broad scale. The paper describes a numerical scoring
system used in Slot Grammar for ambiguity resolution, which not
only ranks parses but also contributes to parsing efficiency through a
parse space pruning algorithm. Details of the method of computing
parse scores are given, and test results for the English Slot Grammar
are presented.

1. I N T R O D U C T I O N

As everyone who has tried it knows, the hardest part of build-
ing a broad-coverage parser is not simply covering all the
constructions of the language, but dealing with ambiguity.

One approach to ambiguity resolution is to "understand" the
text well enough - to have a good semantic interpretation
system, to use real-world modeling, inference, etc. This can
work well in small domains, and it is, in this author's opin-
ion, ultimately necessary for the highest quality of natural
language processing in any domain; but it is probably not
feasible on a broad scale today. So some kind of heuristic
method is needed for disambiguation, some way of ranking
analyses and choosing the best. Even in the ideal model of
human language processing (which would use a great deal of
knowledge representation and inference), ranking heuristics
seem appropriate as a mechanism since humans must work
with incomplete knowledge most of the time.

Two major questions that can be asked about a heuristic
method for ambiguity resolution are these:

1. What level of representation is used for disambiguation
and is involved in the statements of the heuristic rules -
lexical/morphological, surface syntactic, deep syntactic,
or logical/semantic?

2. Where do the heuristic rules come from? Are they largely
created through human linguistic insight, or are they
induced by processing corpora?

This paper describes the heuristic method used in the Slot
Grammar (SG)system [10, 11, 13, 16, 17] for ambiguity res-
olution - the SG parse scoring system. This scoring system

operates during parsing (with a bottom-up chart parser), as-
signing real number scores to partial analyses as well as to
analyses of the complete sentence. The scores are used not
only for ranking the final analyses but also for pruning the
parse space during parsing, thus increasing time and space
efficiency.

The level of representation being disambiguated is thus the
level of SG parses. SG parse structures are dependency-
or head-oriented, and include, in a single tree, both surface
structure and deep syntactic information such as predicate-
argument structure, remote dependencies, control informa-
tion, and unwinding of passives. 1

SG parse structures also include a choice of word senses. The
extent to which these represent semantic sense distinctions
depends on the lexicon. The SG system is set up to deal
with semantic word-sense distinctions and to resolve them by
doing semantic type-checking during parsing. However, in
the lexicon for ESG (English Slot Grammar), nearly all word
sense distinctions are a matter of part of speech or syntactic
slot frame. Some semantic types are shown in the lexicon
and are used in parsing, but generally very few. Thus one
would say that ESG parse structures are basically syntactic
structures, although the deep information like argument struc-
ture, passive unwinding, etc., counts for "semantics" in some
people's books.

Where do the SG scoring rules come from - human linguistic
insight or induction from corpus processing? The score of
an SG parse, which will be described in Section 4, is the
sum of several components. Most of these come completely
from human linguistic insight, though some of them get their
numeric values from corpus processing. In the tests reported
in the final section, only the "linguistic-insight"rules are used.
Some previous tests using the corpus-based heuristic rules
together with the main SG heuristic rules showed that the
former could improve the parse rate by a few percentage
points. It is definitely worth pursuing both approaches, and
more work will be done with a combination of the two.

I No attempt is made to resolve quantifier scoping in SG parses, although
there is a post-processing system that produces a logical form with scope
resolution for quantifiers and other "focalizers"[12]. Anaphora resolution
[8, 9] is also done by post-processing SG parses.

127

In the next section we give a brief overview of Slot Grammar.
In Section 3 we describe the scoring system generally and its
use in parse space pruning, and in Section 4 we give some de-
tails of the computation of scores. Finally, Section 5 presents
the results of some tests of ESG.

2. O V E R V I E W O F S L O T G R A M M A R

The slots that figure in Slot Grammar rules and parsing come in
two varieties: complement slots and adjunct slots. Analysis is
word-oriented, and slots are associated with word senses. The
complement slots for a word sense are associated with it in the
lexicon. The adjunct slots depend only on the part of speech
of the word sense and are listed for that part of speech in the
grammar. Slots have names like subj and obj and should be
thought of basically as syntactic relations, though complement
slot frames in the lexicon can be viewed as corresponding to
arguments in logical form.

The notion that a phrase fills a slot of a word (sense) is primi-
tive in the grammar, and the conditions under which this can
happen are given by the slot-fillerrules. Grammatical analy-
sis of a phrase consists basically of choosing, for each word
of the phrase, (1) a word sense, (2) a feature structure, and (3)
filler subphrases for its slots. A slot is obligatory or optional
according as it must be, or need not be, filled in order for the
analysis to be complete. Adjunct slots are normally optional.
A complement slot can be filled at most once, but adjunct slots
can, by default, be filled multiply.

The parser works bottom-up, beginning with one-word
phrases and attaching other phrases as left and right modi-
fiers as they can fill slots. As a phrase is built up in this way,
it retains a distinguished head word, and the slots associated
with this head word are considered slots of the phrase.

An example of a slot-filler rule is the following for the subject
slot (in simplified form):

subj ~ f (noun(nom, N um)) & h f (verb(f in(N urn))).

A goal f(Feat) on the right hand side of a filler rule tests that
the feature structure of the filler phrase matches Feat. A goal
hf(Feat) tests the feature structure of the higher phrase- the
phrase (with possibly other modifiers attached) with which
the slot is associated. The SG formalism includes a rich set of
special predicates like f and hf that can be used for examining
any aspects of the filler phrase and higher phrase for a slot
filling.

Slot-filler rules normally do not constrain left-to-right order-
ing of the phrases involved. Instead, there are modularly
stated ordering rules, which are applied as constraints in pars-
ing after slot-filler rules apply.

Generally, there is a modular treatment of different gram-

matical phenomena in a Slot Grammar. There are separate
rule systems not only for slot-filling and ordering, but also
for coordination, unbounded dependencies, obligatory slots,
adjunct slot declaration, "or-slots", punctuation, and parse
scoring. All these rule types make use of the same system of
special predicates (mentioned above for slot-filler rules) for
examining the phrases involved in slot filling. Modularization
of the rule system makes large grammars more manageable
and also makes it easier to adapt a grammar for one language
to another language.

There are currently Slot Grammars (in various states of com-
pleteness) for English, German, Spanish, Danish, Norwegian,
and Hebrew. A great deal of attention has been paid to the
development of a large, language-universal component of the
system, the Slot Grammar shell. For a particular language,
the shell represents roughly 65% of the rules/facts, not count-
ing lexicons. All of the rule types mentioned above have part
of their treatment in the shell, but there are especially large
language-universal components for coordination, unbounded
dependencies, punctuation, and parse scoring. Nevertheless,
for all of these, there can be rules in the language-specific
grammar that override or augment the language-universal
rules.

The lexicon for ESG consists of a hand-coded portion for
approximately 6,000 lemmas (basically most frequent words),
plus a large back-up lexicon of approximately 60,000 lemmas
derived from UDICT [1, 7] and other sources. Mary Neff is
working on improvements of the large ESG lexicon through
extraction from standard dictionaries.

Slot Grammars are used for source analysis in the MT system
LMT [14, 15].

For a more detailed description of current version of the SG
system, see [16, 17, 18]. In this paper we concentrate on the
scoring system, in its latest form.

3. SCORING AND PARSE SPACE
PRUNING

During parsing, each analysis P of a subphrase is assigned a
real number score(P). A larger number represents a worse
score. As described in the next section, most of the ingredients
that go into scores are positive numbers that are like penalties
for unusual structure, and total scores are normally positive.

Parse space pruning involves comparison of scores of partial
analyses and pruning away analyses that have relatively bad
scores; but the comparisons are made only within certain
equivalence classes of analyses. Two partial analyses are
equivalent when they have the same boundaries, the same
head word, and the same basic feature. For most categories,
the basic feature is just the part of speech, but for verbs a finer
distinction is made according to the inflection type (finite,

128

infinitive, etc.) of the verb. The notion of equivalence is
loosened in certain ways for coordinated phrases that will not
be described here.

Pruning is done as follows. Suppose P is a new, candi-
date partial analysis obtained in parsing. Let compar(P)
denote the set of existing partial analyses that are equivalent
to P (not including P itself). Because of previous pruning,
all members of compar(P) have the same score; call this
number scompar(P). (If corn/mr(P) = 0 then consider
scompar(P) = +oo.) The system stores this best score
scompar(P) for the equivalence class of P in a way that can
immediately be computed from P without searching the chart.

Now three things can happen: (1) If score(P) >
scornpar(P), then P is discarded. (2) If score(P) =
scompar(P), then P is simply added to the chart. (3) If
score(P) < scorapar(P), then P is added to the chart and
all members of compar(P) are discarded.

This parse space pruning can be turned on or off at run time,
but scoring is done in any case, and final parses are ranked by
the scoring system whether pruning is on or off. Generally,
parse space pruning is crucial to the running of the system for
large sentences because of space and time problems if it is
not used. When pruning is turned on, there are generally very
few final parses obtained for a sentence - on average about
1.3 (per successfully parsed sentence).

When parsing of a sentence fails, the system pieces together a
"fitted parse" in a manner somewhat similar to that in [5]. The
scores obtained for partial analyses figure heavily in choosing
the pieces for this result.

4. C O M P U T A T I O N O F S C O R E S

The score of a partial analysis is obtained incrementally in
building up the analysis. The initial score, for a one-word
analysis, is associated with the word sense, and the score is
incremented whenever a slot is filled or a coordinate structure
is formed. All in all, there are eight main components of the
total score (the score is the sum of them). We first list them
with a brief description and then discuss them individually.
The list is in decreasing order of"importance" - the amount of
effort put into the rules/data for the component and roughly the
current contribution of the component to successful parsing.
Components 1, 2, 3, 4, 5, 8 are totally "human-coded", and
components 6, 7 get their data from corpus processing.

Most of the heuristics described in [4] are covered by these
rules (and were developed independently).

1. SlotPref. Computed when a modifier is attached by fill-
ing a slot. Measures the preference for using that slot vs.
other slots for attaching the given modifier to the given
higher phrase.

.

3.

4.

.

.

.

.

ParallelCoord. Favors parallelism in coordination.

CloseAttach. Favors close attachment.

PhrasePref. Tests the characteristics of a "completed"
phrase - a phrase that becomes a modifier or is taken as
an analysis of the complete input segment. Similar to
SlotPref, but independent of the slot.

WordSensePref. Favors one sense of a word over other
senses.

HeadSlotFiller. Used, like SlotPref, when a slot is filled,
but tests for specific choices for the head words of the
higher phrase and the filler phrase, as well their parts of
speech, and tests only these things.

POSPref. Similar to WordSensePref, but tests only for
part of speech.

LexSlotPref. Another score associated with filling a
given slot, but coded in the lexicon in a given slot frame
and can test semantic type conditions on the filler.

In the following more detailed description of the scoring com-
ponents, we will use "XSG" to refer to the language-specific
part of the Slot Grammar of language X. Thus the rules for
grammar of X reside in both the SG shell and XSG.

SlotPref The rules for SlotPref are coded in both the shell
and XSG. The default score, given in the shell, is +I for an
adjunct slot and 0 for a complement slot, so that complement
slots are preferred over adjuncts.

For an example, consider the sentence John sent the file to
Bill. The PP to Bill can attach tofile by an adjunct slot or to
sent by a complement slot (its indirect object), but the default
SlotPrefscore is 1 for the adjunct and 0 for the complement,
2 so the analysis with the complement wins and the other is
pruned away. 3

Slot-scoringrules in XSG can override the default. Currently,
out of a total of 678 rules of various types in ESG, 216 are
slot-scoring rules. Most of the day-to-day effort in improving
ESG consists of work on these scoring rules.

A slot-scoring rule is of the form:

Slot + E (4-- Body).

E is normally a real number and is the contribution of this
rule to SlotPref. The Body, if present, can contain special
predicates like those mentioned in Section 2 for slot-filler

2Actually, a slot-scoring rule in ESG gives the adjunct a score of 2 in this
instance.

3The CloseAttach component by itself favors the closer attachment of
the PP tofile, but this score component is dominated by SlotPref.

129

rules that test any characteristics of the filler phrase and the
higher' phrase.

Two examples of slot-scoring rules in ESG are as follows
(given: in simplified form).

ndet + 0 ~-- hf(noun(T, . , *))&(T = chiT = gerund).

vadv + 0 /(noun(*, *, *))&,t(tm).

The first says that the determiner slot for nouns is rewarded if
the higher noun is a common noun or a gerund. The second
says that the vadv slot for verbs is rewarded when it is tilled
by a time noun phrase. The special goal st(Type) says that
Type is a semantic type of the (sense of) the filler phrase, and
ira is a semantic type used in ESG for time words.

A slot-scoring rule might be used to penalize the use of a
complement slot under certain conditions, by assigning it a
score higher than the default 0. An example of this in ESG is

comp(bin f) + 1 ~ headf(noun(*, *, *))&hrrnods(nil).

Here comp(binf) is a verb complement slot filled by a bare
infinitive VP. This is penalized if the head word of the filler is
also a noun and the higher verb has (so far) no right modifiers.
This is to discourage use of the cornp(binf) analysis when
the phrase may really be an NP, maybe an object. Several
of the slot-scoring rules in ESG involve checks on existing
alternative analyses of words, as in this example. It is quite
useful to have such heuristics because of the great ambiguity
of English in part of speech of words.

Slot-scoring may use conditions on punctuation. For example,
for the slot nprep that finds adjunct PP modifiers of nouns,
we might have:

nprep + 2 ~ ~sep(nil)&~hrmodf(*, prep(*, *, .)) .

This penalizes nprep if the separator is not nil (say, if there
is a comma separator) and there is no other PP postmodifier
already. Thus, in an example like John noticed his neighbor,
from across the street, there will be a preference for the PP to
modify noticed instead of neighbor.

ParalleICoord Most of the rules for this score component
are in the shell. Parallelism in coordinate structures is mea-
sured by similarity of the conjuncts with respect to several
different characteristics. Explicitly, when a coordinate struc-
ture is formed, the increment in the total score due to the
ParallelCoord component is currently given by a formula
(slightly simplified):

P F ea + P Frarne-F P Sense 4- P M ods + P Len-F PConj +
P X S G .

Here the first five ingredients measure similarity of the con-
juncts with respect to the following: (1) PFea: feature struc-

tures; (2) PFrame: complement slot frames; (3) PSense:
word senses; (4) PMods: modifier list lengths; (5) PLen:
word list lengths.

The ingredient PConj tests for certain characteristics of the
conjunction itself (which can include punctuation).

The ingredient P X S G represents a contribution from
language-specific coordination rules in XSG.

CloseAttach This score is essentially the same as that de-
veloped by Heidorn [3], and is designed to favor close attach-
ment, although SlotPrefand ParallelCoordcan easily override
it.

For a phrase P, the default for CloseAttaeh(P) is defined
recursively as the sum of all terms

0.1, (CloseAttaeh(Mod) + 1),

where MOd varies over the modifiers of P. (One need not
state the base of this recursive formula separately, since one
arrives eventually at phrases with no modifiers, and then the
sum over the empty list is understood to be zero.) The factor
0.1 used in the recursive formula is the default, and it can be
overridden by an option in slot-scoring rules. Also, a slot-
scoring rule can change the basic formula applied, in a way
that will not be described here.

The combination of SlotPref and CloseAttach is closely related
to preference rules discussed in [19].

PhrasePref Some rules for this component are coded in the
shell and have to do with preferences for the feature structure
of the analysis of a complete input phrase, for example pref-
erence of finite clauses over noun phrases (except in certain
environments).

Phrase-scoring rules in XSG contribute to PhrasePref, and
are of a form similar to slot-scoring ru les - without mentioning
a slot:

+E ~ Body.

The real number E is added to the total score whenever a
phrase satisfying Body fills any slot, or is used as a conjunct
in a coordinate structure, or is taken as a top-level analysis.

A sample phrase-scoring rule in ESG is

-I-I ~-- f (n o u n (, , , , *))&-~Imod(ndet , ,) &
t od(nadj, P)&h odst(P, qu nt d).

This penalizes (by +1) a complete noun phrase that has no
determiner but does have an adjective modifier which has
some analysis with the feature quantadv. This rule penalizes
for example the analysis of even Bill in which even is an
adjective.

130

WordSensePref All of the rules for this component are
coded in the lexicon. An example is a lexical entry for the
word man:

man < n(human&male, nil) < v(ev(2), *, obj l).

The first lexical analysis element shows man as a noun with
features human and male. The second analysis shows a verb
word sense with a WordSensePref penalty of +2.

These scores for word sense choices can also be coded con-
ditionally on subject area codes, and there is an if-then-else
formalism for expressing this.

The WordSensePrefscore is added when an initial (one-word)
phrase analysis is formed.

HeadSlotFiller Following a method due largely to Ido Da-
gan [2], counts of head-slot-filler occurrences are obtained
by parsing a corpus with ESG. Actually parts of speech are
stored along with the head words of the higher and modifier
phrases, so the counts are of quintuples:

(HWord, H POS, Slot, MWord, M POS).

These counts are then used (with certain coefficients) to add a
reward (a negative number) to the score each time a modifier
is attached with a match to a stored quintuple.

POSPref Using an idea of Ido Dagan and Herbert Leass,
ESG corpus parsing is used to obtain counts of occurrences
of pairs

(Word, PartO f Speech).

When an initial (one-word)phrase analysis is formed, and the
word and its part of speech match an entry in the table just
mentioned, then the count, with a certain negative coefficient,
is added as the POSPrefcontribution to the phrase score. This
is of course similar to WordSensePref, taken from the lexicon,
and there is an overlap.

LexSIotPref Rules for this component are coded in the lex-
icon. A slot apprearing in a slot frame in a lexicai entry can
have an associated semantic type test on its filler. For example
consider the following entry for give (not an actual entry for
ESG):

give < v(obj . iobj : human).

Here the iobj slot requires a filler with the semantic type
human. (In general, any Boolean combination of type tests
can be coded.) If this analysis is used, then aLexSlotPrefscore
of -1 is added. As it is stated, this semantic type requirement
is absolute. But if one writes

give < v(obj . iobj : pre f (human)).

then the test is not an absolute requirement, but merely gives
a score increment of -1 if it is satisfied. In both the absolute
and the "fallsoft" forms of semantic type tests, the formalism
allows one to specify arbitrary score increments.

5. T E S T S O F E S G

Three recent tests of ESG coverage will be described, two on
computer manual text and one on Wall Street Journal (WSJ)
text. In all of the tests, there were no restrictions placed on
vocabulary or length of test segments. Only the first parse
given by ESG for each segment was considered. 4

For each segment, parse output was rated with one of three
categories- p: perfect parse, pa: approximate parse, or bad:
not p or pa. To get a p rating, all of the SG structure had to be
correct, including for example slot labels; so this is a stricter
requirement than just getting surface structure or bracketing
correct. An approximate parse is a non-perfect one for which
nevertheless all the feature structures are correct and surface
structureis correct except for level of attachment of modifiers.
In MT applications, one can often get reasonable translations
using approximate parses.

This way of rating parses is not an ideal one, because a parse
for a very long sentence can be rated bad even when it has
a single word with a wrong feature or slot. A combination
of measures of partial success, such as those obtained by
counting bracketing crossings, would be reasonable, since
partially correct parses may still be useful. I can make up
for this partially by reporting results as a function of segment
length.

Test 1 This was done using a set of approximately 88,000
segments from computer manuals on which no training of
ESG had been done. Half of the corpus, simply consisting
of the odd-numbered segments, was used for some lexical
training. Slava Katz's terminology identification program [6]
was run on this portion as well as a program that finds candi-
date terms by looking (roughly) for sequences of capitalized
words. About one day was spent editing this auxiliary multi-
word lexicon; theedited result consisted of 2176 entries. Then
100 segments were selected (automatically) at random from
the (blind) even-numbered segments. The segments ranged
in token list length from 2 to 38. The following table shows
rating percentages for the segments of token list length < N
for selected _h r.

N %p % p o r p a
10 7 5 75
17 71 79
25 66 76
38 61 73

4"nlis first parse had the best score, but w h e n m o r e than o n e parse had the
best, only the first one output by the system was used.

131

Test 2 From a set of about 2200 computer manual segments,
20% had been selected automatically at random, removed,
and kept as a blind test set, and some E S G grammatical and
lexicaAt work had been done on the remaining. The test was on
100 of the blind test sentences, which happened to have the
same range in token list length, 2 to 38, as in the preceding
test. The following table, similar in form to the preceding,
shows results.

N % p % p o r p a

10 72 75
17 74 84

25 70 80
38 67 80

Test 3 This used a corpus of over 4 million segments from
the WSJ. No attempt was made to isolate a blind test set.
However, little work on E S G has been done for WSJ text -
maybe looking at a total of 500 sentences over the span of
work on ESG, with most of these obtained in other ways (I
do not know if they were in the corpus in question). At any
rate, automatic random choice from the 4M-segment corpus
presumably resulted in segments that E S G had never seen in
its life.

Prior to selection of the test set, Katz 's terminology identifica-
tion was run on approximately 40% of the corpus. A portion
of the results (based on frequency) underwent about a day 's
worth of editing, giving an auxiliary multiword lexicon with
1513 entries.

Then 100 segments were selected at random from the 4M-
segment corpus. They ranged in token list length from 6 to
57. E S G was run, with the following results, shown again as
percentages for segments of length < N:

N % p % p o r p a
10 75 75

17 48 56
25 45 55

38 33 48
57 29 45

E S G delivered some kind of analysis for all of the segments in
the three tests, with about 11% fitted parses for the computer
manual texts, and 26% fitted parses for the WSJ. The average
parse time per segment was 1.5 seconds for the computer
manuals and 5.6 seconds for the WSJ- on an IBM mainframe
with a Prolog interpreter (not compiled).

References
1. Byrd, R. J. "Word Formation in Natural Language Processing

Systems," Proceedings oflJCAI-VIlI, 1983, pp. 704-706.

2. Dagan, I. and Itai, A. "Automatic Acquisition of Constraints for
the Resolution of Anaphoric References and Syntactic Ambi-
guities," Proceedings of Coling -90, vol. 3, 1990, pp. 162-167.

3. Heidom, G. E. "Experience with an Easily Computed Met-
tic for Ranking Alternative Parses," Proceedings of the 20th
AnnualMeeting oftheACL, 1982, pp. 82-84.

4. Hobbs, J. R. and Bear, J. "Two Principles of Parse Preference,"
Proceedings of Coling-90, vol. 3, 1990, pp. 162-167.

5. Jensen, K. and Heidorn, G. E. "The Fitted Parse: 100% Parsing
Capability in a Syntactic Grammar of English," Research Re-
port RC9729, 1982, IBM T.J. Watson Research Center, York-
town Heights, NY 10598.

6. Justeson, J.S. and Katz, S.M. "Technical Terminology: Its
Linguistic Properties and an Algorithm for Identification in
Text" (to appear).

7. Klavans, J. L. and Wacbolder, N. "Documentation of Features
and Attributes in UDICT," Research Report RC14251, 1989,
IBM T.J. Watson Research Center, Yorktown Heights, N.Y.

8. Lappin, S. and McCord, M.C. "A Syntactic Filter on Pronom-
inal Anaphora in Slot Grammar" in Proceedings of the 28th
Annual Meeting of the Association for Computational Linguis-
tics, 1990,pp. 135-142.

9. Lappin, S. and McCord, M.C. "Anaphora Resolution in Slot
Grammar," Computational Linguistics 16, 1990, pp. 197-212.

10. McCord, M. C. "Slot Grammars," Computational Linguistics,
vol. 6, 1980, pp. 31-43.

11. McCord, M. C. "Using Slots and Modifiers in Logic Grammars
for Natural Language," Artificial Intelligence, vol. 18, 1982,
pp. 327-367.

12. McCord, M. C. "Natural Language Processing in Prolog," in
Walker, A. (Ed.), McCord, M., Sowa, J. F., and Wilson, W. G.,
Knowledge Systems and Prolog : A Logical Approach to Expert
Systems and Natural Language Processing, Addison-Wesley,
Reading, Mass., 1987.

13. McCord, M. C. "A New Version of Slot Grammar," Research
Report RC14506, 1989, IBM T.J. Watson Research Center,
Yorktown Heights, NY.

14. McCord, M. C. "Design of LMT: A Prolog-based Machine
Translation System," Computational Linguistics, 15, 1989, pp.
33-52.

15. McCord, M. C. "LMT," Proceedings of MT Summit II, 1989,
pp. 94-99, Deutsche Gesellschaft fur Dokumentation, Frank-
furt.

16. McCord, M. C. "Slot Grammar: A System for Simpler Con-
struction of Practical Natural Language Grammars," In R.
Studer (ed.), Natural Language and Logic: International
Scientific Symposium, Lecture Notes in Computer Science,
Springer Verlag, Berlin, 1990, pp. 118-145.

17. McCord, M. C. "The Slot Grammar System," Research Report
RC17313, 1991, IBM T.J. Watson Research Center, Yorktown
Heights, NY. To appear in J. Wedekind and C. Rohrer (Eds.),
Unification in Grammar, M1T Press.

18. McCord, M. C., Bemth, A., Lappin, S., and Zadrozny, W.
"Natural Language Processing within a Slot Grammar Frame-
work," International Journal on Artificial Intelligence Tools,
vol. 1, 1992, pp. 229-277.

19. Wilks, Y., Huang, X-M., and Fass, D. "Syntax, Preference and
Right-Attachment," Proceedings of the 9th International Joint
Conference on Artificial Intelligence, 1985, pp. 779-784.

132

