
Gemini: A Natural Language System for
Spoken-Language Understanding*

John Dowding, Jean Mark Gawron, Doug Appelt,
John Bear, Lynn Cherny, Robert Moore, and Doug Moran

S R I I n t e r n a t i o n a l

333 R a v e n s w o o d A v e n u e

M e n l o P a r k , C A 94025

1. I N T R O D U C T I O N

Gemini is a natural language understanding system de-
veloped for spoken language applications. This paper
describes the details of the system, and includes rele-
vant measurements of size, efficiency, and performance
of each of its sub-components in detail.

The demands on a natural language understanding sys-
tem used for spoken language differ somewhat from the
demands of text processing. For processing spoken lan-
guage, there is a tension between the system being as
robust as necessary, and as constrained as possible. The
robust system will a t tempt to find as sensible an inter-
pretation as possible, even in the presence of perfor-
mance errors by the speaker, or recognition errors by
the speech recognizer. In contrast, in order to provide
language constraints to a speech recognizer, a system
should be able to detect that a recognized string is not
a sentence of English, and disprefer that recognition hy-
pothesis from the speech recognizer. If the coupling is to
be tight, with parsing and recognition interleaved, then
the parser should be able to enforce as many constraints
as possible for partial utterances. The approach taken
in Gemini is to tightly constrain language recognition to
limit overgeneration, but to extend the language anal-
ysis to recognize certain characteristic patterns of spo-
ken utterances (but not generally thought of as part of
grammar) and to recognize specific types of performance
errors by the speaker.

Processing starts in Gemini when syntactic, semantic,
and lexical rules are applied by a bottom-up all-paths
constituent parser to populate a chart with edges con-
taining syntactic, semantic, and logical form informa-
tion. Then, a second utterance parser is used to apply
a second set of syntactic and semantic rules that are re-
quired to span the entire utterance. If no semantically-

acceptable utterance-spanning edges are found during
this phase, a component to recognize and correct certain
grammatical disfluencies is applied. When an accept-
able interpretation is found, a set of parse preferences
are used to choose a single best-interpretation from the
chart to be used for subsequent processing. Quantifier
scoping rules are applied to this best-interpretation to
produce the final logical form, which is then used as in-
put to a query answering system. The following sections
will describe each of these components in detail, with the
exception of the query answering subsystem, which will
not be described in this paper.

Since this paper describes a component by component
view of Gemini, we will provide detailed statistics on
the size, speed, coverage, and accuracy of the various
components. These numbers detail our performance on
the subdomain of air-travel planning that is currently be-
ing used by the DARPA spoken language understanding
community[13]. Gemini was trained on a 5875 utterance
dataset from this domain, with another 688 utterances
used as a blind test (not explicitly trained on, but run
multiple times) to monitor our performance on a dataset
that we didn't train on. We will also report here our re-
sults on another 756 utterance fair test set, that we ran
only once. Table 1 contains a summary of the cover-
age of the various components on the both the training
and fair test sets. More detailed explanations of these
numbers are given in the relevant sections.

Training Test
Lexicon 99.1% 95.9%
Syntax 94.2% 90.9%
Semantics 87.4% 83.7%
Syntax (Repair Correction) 96.0% 93.1%
Semantics (Repair Correction) 89.1% 86.0%

*This research was supported by the Advanced Research
Projects Agency under Contract ONR N00014-90~C-0085 with the
Office of Naval Research. The views and conclusions contained in
this document are those of the authors and should not he inter-
preted as necessarily representing the official policies, either ex-
pressed or implied, of the Advanced Research Projects Agency of
the U.S. Government.

Table 1: Domain Coverage by Component

2 . S Y S T E M D E S C R I P T I O N

Gemini maintains a firm separation between the
language- and domain-specific portions of the system,

43

and the underlying infrastructure and execution strate-
gies. The Gemini kernel consists of a set of compilers to
interpret the high-level languages in which the lexicon
and syntactic and semantic grammar rules are written,
as wellI as the parser, semantic interpretation, quanti-
fier scoping, and repair correction mechanisms, as well
as all other aspects of Gemini that are not specific to
a language or domain. Although this paper describes
the lexicon, grammar, and semantics of English, Gem-
ini has also been used in a Japanese spoken language
understanding system [10].

2 . 1 . G r a m m a r F o r m a l i s m

Gemini includes a midsized constituent grammar of En-
glish (described in section 2.3), a small utterance gram-
mar for assembling constituents into utterances (de-
scribed in section 2.7), and a lexicon. All three are writ-
ten in a variant of the unification formalism used in the
Core Language Engine [1].

The basic building block of the grammar formalism is a
category with feature-constraints. Here is an example:

up: [wh=ynq, case=(nomVacc),pers_num=(3rdAsg)]

This category can be instantiated by any noun phrase
with the value ynq for its wh feature (which means it
must be a wh-bearing noun phrase like which book, who,
or whose mother), either acc (accusative) or nora (nom-
inative) for its case feature, and the conjunctive value
3rdAsg (third and singular) for its person-number fea-
ture. This formalism is related directly to the Core Lan-
guage Engine, but more conceptually it is closely related
to that of other unification-based grammar formalisms
with a context-free skeleton, such as PATR-II [21], Cat-
egorial Unification Grammar [23], Generalized Phrase-
Structure Grammar [6] and Lexical Functional Grammar
[3].
We list some ways in which Gemini differs from other
unification formalisms. Since many of the most inter-
esting issues regarding the formalism concern typing, we
defer discussing motivation until section 2.5.

. Gemini uses typed-unification. Each category has
a set of features declared for it. Each feature has a
declared value-space of possible values (value spaces
may be shared by different features). Feature struc-
tures in Gemini can be recursive, but only by having
categories in their value-space, so typing is also re-
cursive. Typed feature-structures are also used in
HPSG [19]. One important difference with the use
in Gemini is that Gemini has no type-inheritance.

2. Some approaches do not assume a syntactic skeleton

of category-introducing rules (for example, Func-
tional Unification Grammar [11]). Some make such
rules implicit (for example, the various categorial
unification approaches, such as Unification Catego-
rial Grammar [24]).

. Even when a syntactic skeleton is assumed, some
approaches do not distinguish the category of a con-
stituent (np, vp, etc.) from its other features (for
example, pers_num, gaps in , gapsout) . Thus for ex-
ample, in one version of GPSG, categories were sim-
ply feature bundles (attribute-value structures) and
there was a feature MAJ taking values like N,V,A,P
which determined the major category of constituent.

4. Gemini does not allow rules schematizing over syn-
tactic categories.

2 . 2 . L e x i c o n

The Gemini lexicon uses the same category notation as
the Gemini syntactic rules. Lexical categories are types
as well, with sets of features defined for them. The lexical
component of Gemini includes the lexicon of base forms,
lexical templates, morphological rules, and the lexical
type and feature default specifications.

The Gemini lexicon used for the air-travel planning do-
main contains 1,315 base entries. These expand by mor-
phological rules to 2,019. In the 5875 utterance train-
ing set, 52 sentences contained unknown words (0.9%),
compared to 31 sentences in the 756 utterance fair test
(4.1%).

2 . 3 . C o n s t i t u e n t G r a m m a r

A simplified example of a syntactic rule is:

syn (whq_ynq_s 1 ash.up,
[s: [sentence_type=whq, form=tnsd,

gapsin=G, gapsout=G],
up: [wh=ynq, persmum=N],
s : [sentence_type=ynq, form=tnsd,

gaps in=up: [pers mum=N], gapsout =null]]).

This syntax rule (named whq_ynq_slash_up) says that
a sentence (category s) can be built by finding a noun
phrase (category up) followed by a sentence. It requires
that the daughter np have the value ynq for its wh fea-
ture and that it have the value N (a variable) for its
person-number feature. It requires that the daughter
sentence have a category value for its g aps in feature,
namely an np with a person number value N, which is
the same as the person number value on the wh;bearing
noun phrase. The interpretation of the entire rule is
that a gapless sentence with s en t ence_ type whq can be

44

built by finding a wh-phrase followed by a sentence with
a noun-phrase gap in it that has the same person number
as the wh-phrase.

Semantic rules are written in much the same rule format,
except that in a semantic rule, each of the constituents
mentioned in the phrase-structure skeleton is associated
with a logical form. Thus, the semantics for the rule
above is:

sem (whq_ynq_s lash_np,
[([whq,S], s: []),
(Np, np:[]),
(S, s: [gapsin=np: [gapsem=Np]])]).

Here the semantics of the mother s is just the seman-
tics of the daughter s with the illocutionary force marker
whq wrapped around it. Also the semantics of the s gap's
np's gapsem has been unified with the semantics of the
wh-phrase. Through a succession of unifications this will
end up assigning the wh-phrases semantics to the gap po-
sition in the argument structure of the s. Although each
semantic rule must be keyed to a pre-existing syntactic
rule, there is no assumption of rule-to-rule uniqueness.
Any number of semantic rules maybe written for a sin-
gle syntactic rule. We discuss some further details of the
semantics in section .

The constituent grammar used in Gemini contains 243
syntactic rules, and 315 semantic ru le s . Syntactic cov-
erage on the 5875 utterance training set was 94.2%, and
on the 756 utterance test set was 90.9%.

2.4. Parser

Since Gemini was designed with spoken language inter-
pretation in mind, key aspects of the Gemini parser are
motivated by the increased needs for robustness and ef-
ficiency that characterize spoken language. Gemini uses
essentially a pure bottom-up chart parser, with some lim-
ited left-context constraints applied to control creation
of categories containing syntactic gaps.

Some key properties of the parser are:

. The parser is all-paths bottom-up, so that all pos-
sible edges admissible by the grammar are found.

• The parser uses subsumption checking to reduce the
size of the chart. Essentially, an edge is not added
to the chart if it is less general than a pre-existing
edge, and pre-existing edges are removed from the
chart if the new edge is more general.

• The parser is on-line [7], essentially meaning that
all edges that end at position i are constructed

before any that end at position i + 1. This fea-
ture is particularly desirable if the final architecture
of the speech-understanding system couples Gemini
tightly with the speech recognizer, since it guaran-
tees for any partial recognition input that all possi-
ble constituents will be built.

An important feature of the parser is the mechanism
used to constrain the construction of categories contain-
ing syntactic gaps. In earlier work [17], we showed that
approximately 80% of the edges built in an all-paths
bottom-up parser contained gaps, and that it is possible
to use prediction in a bottom-up parser only to constrain
the gap categories, without requiring prediction for non-
gapped categories. This limited form of left context con-
straint greatly reduces the total number of edges built
for a very low overhead. In the 5875 utterance train-
ing set, the chart for the average sentence contained 313
edges, but only 23 predictions.

2.5. Typing

The main advantage of typed-unification is for grammar
development. The type information on features allows
the lexicon, grammar, and semantics compilers to pro-
vide detailed error analysis regarding the flow of values
through the grammar, and warn if features are assigned
improper values, or variables of incompatible types are
unified. Since the type-analysis is performed statically at
compile-time, there is no run-time overhead associated
with adding types to the grammar.

Syntactic categories play a special role in the typing-
scheme of Gemini. For each syntactic category, Gemini
makes a set of declarations stipulating its allowable fea-
tures and the relevant value spaces. Thus, the distinction
between the syntactic category of a constituent and its
other features can be cashed out as follows: the syntac-
tic category can be thought of as the feature-structure
type. The only other types needed by Gemini are the
value-spaces used by features. Thus for example, the
type v (verb) admits a feature v:form, whose value-space
v f o r m - t y p e s can be instantiated with values like present
participle, finite, and past participle. Since all recursive
features are category-valued, these two kinds of types
SUf~Ce.

2.6. Interleaving Syntact ic and Semantic
Information

S o r t a l C o n s t r a i n t s Selectional restrictions are im-
posed in Gemini through the sorts mechanism. Selec-
tional restrictions include both highly domain specific
information about predicate-argument and very general
predicate restrictions. For example, in our application

45

Edges Time
Syntax Only 197 3.4 sec.
Syntax + Semantics 234 4.47 sec.
Syntax + Semantics + Sorts 313 13.5 sec.

Table 2: Average number of edges built by interleaved
processing

the object of the transitive verb depart (as in flights de-
parting Boston) is restricted to be an airport or a city,
obviously a domain-specific requirement. But the same
machinery also restricts a determiner like all to take two
propositions, and an adjective like further to take dis-
tances as its measure-specifier (as in thirty miles fur-
ther). In fact, sortal constraints are assigned to every
atomic predicate and operator appearing in the logical
forms constructed by the semantic rules.

Sorts are located in a conceptual hierarchy and are im-
plemented as Prolog terms such that more general sorts
subsume more specific sorts [16]. This allows the sub-
sumption checking and packing in the parser to share
structure whenever possible. Semantic coverage when
applying sortal constraints was 87.4% on the training
set, and on the test set was 83.7%.

I n t e r l e a v i n g S e m a n t i c s w i t h P a r s i n g In Gemini
syntactic and semantic processing is fully interleaved.
Building an edge requires that syntactic constraints be
applied, which results in a tree structure, to which se-
mantic rules can be applied, which results in a logical
form to which sortal contraints can be applied.

Table 2 contains average edge counts and parse timing
statistics I statistics for the 5875 utterance training set.

2 . 7 . U t t e r a n c e G r a m m a r a n d U t t e r a n c e

Parser

The constituent parser uses the constituent grammar to
build all possible categories bottom-up, independent of
location within the string. Thus, the constituent parser
does not force any constituent to occur either at the be-
ginning of the utterance, or at the end. The utterance
parser is a top-down back-tracking parser that uses a dif-
ferent grammar called the utterance grammar to glue the
constituents found during constituent parsing together
to span the entire utterance.

Many systems [4], [9], [20], [22] have added robustness

1 Gemini is implemented primarily in Quintus Prolog version
3.1.1. All timing numbers given in this paper were run on a lightly
loaded Sun Spaxcstation 2 with at least 48MB of memory. Under
normal conditions, Gemini runs in under 12MB of memory.

with a similar post-processing phase. The approach
taken in Gemini differs in that the utterance grammar
uses the same syntactic and semantic rule formalism
used by the constituent grammar. Thus the same kinds
of logical forms built during constituent-parsing are the
output of utterance-parsing, with the same sortal con-
straints enforced. For example, an utterance consisting
of a sequence of modifier fragments (like on Tuesday at
3'o'clock on United) is interpreted as a conjoined prop-
erty of a flight, because the only sort of thing in the ATIS
domain which can be on Tuesday at 3'o'clock on United
is a flight.

The utterance grammar is significantly smaller than the
constituent grammar, only 37 syntactic rules and 43 se-
mantic rules.

2 . 8 . R e p a i r s

Grammatical disfluencies occur frequently in sponta-
neous spoken language. We have implemented a com-
ponent to detect and correct a large sub-class of these
disfluencies (called repairs, or self-corrections) where
the speaker intends that the meaning of the utterance
be gotten by deleting one or more words. Often, the
speaker gives clues of their intention by repeating words
or adding cue words that signal the repair:

(1) a. How many American airline flights leave Denver
on June June tenth.

b. Can you give me information on all the flights
from San Francisco no from Pittsburgh to San
Francisco on Monday.

The mechanism used in Gemini to detect and correct re-
pairs is currently applied as a fall-back mechanism if no
semantically acceptable interpretation is found for the
complete utterance. The mechanism finds sequences of
identical or related words, possibly separated by a cue
word indicating a repair, and at tempts to interpret the
string with the first of the sequences deleted. This ap-
proach is presented in detail in [2].

The repair correction mechanism helps increase the syn-
tactic and semantic coverage of Gemini (as reported in
Table 1), at the cost miscorrecting some sentences that
do not contain repairs. In the 5875 utterance train-
ing set, there were 178 sentences containing nontriv-
ial repairs 2, of which Gemini found 89 (50%). Of the
sentences Gemini corrected, 81 were analyzed correctly
(91%), 8 contained repairs, but were corrected wrongly.

2For these results, we ignored repairs consisting of only an iso-
late fragment word, or sentence-initial filler words like "yes" and
"okay".

46

In the entire training set, Gemini only misidentified 15
sentences (0.25%) as containing repairs when they did
not. Similarly, the 756 utterance test set contained 26
repairs, of which Gemini found 11 (42%). Of those 11, 8
were analyzed correctly (77%), and 3 were analysed in-
correctly. In the training set, 2 sentences were misiden-
tiffed as containing repairs (0.26%).

2 .9 . P a r s e P r e f e r e n c e M e c h a n i s m

The parse preference mechanism used in Gemini begins
with a simple strategy to disprefer parse trees contain-
ing specific "marked" syntax rules. As an example of
a dispreferred rule, consider: Book those three flights to
Boston. This sentence has a parse on which those three
is a noun phrase with a missing head (consider a contin-
uation of the discourse Three of our clients have suffi-
cient credit). After penalizing such dispreferred parses,
the preference mechanism applies attachment heuristics
based on the work by Pereira [18].

Pereira's paper shows how the heuristics of Minimal At-
tachment and Right Association [12] can both be imple-
mented using a bottom-up shift-reduce parser.

(2) (a) John sang a song for Mary.
(b) John canceled the room Mary reserved yester-

day.

Minimal Attachment selects for the tree with the fewest
nodes, so in (2a) , the parse which makes for Mary a
complement of sings is preferred. Right Association se-
lects for the tree which incorporates a constituent A into
the rightmost possible constituent (where rightmost here
means beginning the furthest to the right). Thus, in
(2b) the parse in which yesterday modifies reserved is
preferred.

The problem with these heuristics is that when they are
formulated loosely, as in the previous paragraph, they
appear to conflict. In particular, in (2a), Right Associ-
ation seems to call for the parse which makes for Mary
a modifier of song.

Pereira's goal is to show how a shift-reduce parser can
enforce both heuristics without conflict and enforce the
desired preferences for examples like (2a) and (2b). He
argues that Minimal Attachment and Right Association
can be enforced in the desired way by adopting the fol-
lowing heuristics for the oracle to resolve conflicts with:

1. Right Association: In a shift-reduce conflict, prefer
shifts to reduces.

2. Minimal Attachment: In a reduce-reduce conflict,
prefer longer reduces to shorter reduces.

Since these two principles never apply to the same choice,
they never conflict.

In Gemini, Pereira's heuristics are enforced when extract-
ing syntactically and semantically well-formed parse-
trees from the chart. In this respect, our approach
differs from many other approaches to the problem of
parse preferences, which make their preference decisions
as parsing progresses, pruning subsequent parsing paths
[5], [8], [14]. Applying parse preferences requires com-
paring two subtrees spanning the same portion of the
utterance. For purposes of invoking Pereira's heuristics,
the derivation of a parse can be represented as the se-
quence of S's (Shift) and R's (Reduce) needed to con-
struct the parse's unlabeled bracketing. Consider, for
example, tim choice between two unlabeled bracketings
of (2a):

(a) [John [sang [a song] [for Mary]]]
S S S S R S S RRR

(b) [John [sang [[a song] [for Mary]]]]
S S S S R S S RRRR

There is a shift for each word and a reduce for each right
bracket. Comparison of the two parses consists simply
of pairing the moves in the shift-reduce derivation from
left to right. Any parse making a shift move that cor-
responds to a reduce move loses by Right Association.
Any parse making a reduce move that corresponds to a
longer reduce loses by Minimal Attachment. In deriva-
tion (b) above the third reduce move builds the con-
stituent a song for Mary from two constituents, while
the corresponding reduce in (a) builds sang a song for
Mary from three constituents. Parse (b) thus loses by
Minimal Attachment.

Questions about the exact nature of parse preferences
(and thus about the empirical adequacy of Pereira's pro-
posal) still remain open, but the mechanism sketched
does provide plausible results for a number of examples.

2 .10 . S c o p i n g

The final logical form produced by Gemini is the re-
sult of applying a set of quantifier scoping rules to the
best-interpretation chosen by the parse preference mech-
anism. The semantic rules build quasi-logical forms,
which contain complete semantic predicate-argument
structure, but do not specify quantifier scoping. The
scoping algorithm that we use combines syntactic and
semantic information with a set of quantifier scoping
preference rules to rank the possible scoped logical forms
consistent with the quasi-logical form selected by parse
preferences. This algorithm is described in detail in [15].

47

3. C O N C L U S I O N

This paper describes the approach we have taken to ree-
solving the tension between overgeneration and robust-
ness in a spoken language understanding system. Some
aspects of Gemini are specifically oriented towards lim-
iting overgeneration, such as the on-line property for the
parser, and fully interleaved syntactic and semantic pro-
cessing. Other components, such as the fragment and
run-on processing provided by the utterance grammar,
and the correction of recognizable grammatical repairs,
increase the robustness of Gemini. We believe a robust
system can still recognize and disprefer utterances con-
taining recognition errors.

We have described the current state of the research in the
construction of the Gemini system. Research is ongoing
to improve the speed and coverage of Gemini, as well
as examining deeper integration strategies with speech
recognition, and integration of prosodic information into
spoken language disambiguation.

R e f e r e n c e s
1. Alshawi, H. (ed) (1992). The Core Language Engine,

MIT Press, Cambridge.
2. Bear, J., Dowding, J., and Shriberg, E. (1992). "Inte-

grating Multiple Knowledge Sources for the Detection
and Correction of Repairs in Human-Computer Dialog",
30th Annual Meeting of the Association for Computa-
tional Linguists, Newark, DE, pp. 56-63.

3. Bresnan, J. (ed) (1982) The Mental Representation of
Grammatical Relations. MIT Press, Cambridge.

4. Carbonell, J. and P. Hayes, P., (1983). "Recovery Strate-
gies for Parsing Extragrammatical Language," Ameri-
can Journal of Computational Linguistics, Vol. 9, Num-
bers 3-4, pp. 123-146.

5. Frazier, L. and Fodor, J.D. (1978). "The Sausage Ma-
chine: A New Two-Stage Parsing Model", Cognition,
Vol. 6, pp. 291-325.

6. Gazdar, G., Klein, E., Pullum, G., Sag, I. (1982). Gen-
eralized Phrase Structure Grammar. Harvard University
Press, Cambridge.

7. Graham, S., Harrison, M., Ruzzo, W. (1980). "An Im-
proved Context-Free Recognizer", in A CM Transactions
on Programming Languages and Systems, Vol. 2, No. 3,
pp. 415-462.

8. Hobbs,J., Bear, J. (1990). "Two Principles of Parse Pref-
erence", in Proceedings of the 13th International Confer-
ence on Computational Linguistics, Helsinki, Vol. 3, pp.
162-167.

9. Hobbs, J., Appelt, D., Bear, J., Tyson, M., Magerman,
D. (1992). "Robust Processing of Real-World Natural-
Language Texts", in Text Based Intelligent Systems, ed.
P. Jacobs, Lawrence Erlbaum Associates, Hillsdale, N J,
pp. 13-33.

10. Kameyama, M., (1992). "The syntax and semantics
of the Japanese Language Engine." forthcoming. In
Mazuka, R. and N. Nagai Eds. Japanese Syntactic Pro-
cessing Hillsdale, N J: Lawrence Erlbaum Associates.

11. Kay, M. (1979). "Functional Grammar". In Proceedings
of the 5th Annual Meeting of the Berkeley Linguistics
Society. pp. 142-158.

12. Kimball, J. (1973) "Seven Principles of Surface Struc-
ture Parsing in Natural Language," Cognition, Vol. 2,
No. 1, pp. 15-47.

13. MADCOW (1992). "Multi-site Data Collection for a
Spoken Language Corpus," Proceedings of the DARPA
Speech and Natural Language Workshop, February 23-
26, 1992.

14. Marcus, M. (1980). A Theory of Syntactic Recognition
for Natural Language, MIT Press, Cambridge, Mas-
sachusetts.

15. Moran, D. (1988). "Quantifier Scoping in the SRI Core
Language Engine", Proceedings of the 26th Annual Meet-
ing of the Association for Computational Linguistics,
State University of New York at Buffalo, Buffalo, NY,
pp. 33-40.

16. Mellish, C. (1988). "Implementing Systemic Classifica-
tion by Unification". Computational Linguistics Vol. 14,
pp. 40-51.

17. Moore, R. and J. Dowding (1991). "Efficient Bottom-up
Parsing," Proceedings of the DARPA Speech and Natural
Language Workshop, February 19-22, 1991, pp. 200-203.

18. Pereira, F. (1985). "A New Characterization of Attach-
ment Preferences.", in Natural Language Parsing, Ed. by
Dowty, D., Karttunen, L., and Zwicky, A., Cambridge
University Press, Cambridge, pp. 307-319.

19. Pollard, C. and Sag, I. (in press) Information-BasedSyn-
tax and Semantics, Vol. 2, CSLI Lecture Notes.

20. Seneff, S. (1992) "A Relaxation Method for Understand-
ing Spontaneous Speech Utterances", in Proceedings of
the Speech and Natural Language Workshop, Harriman,
NY, pp. 299-304.

21. Shieber, S., Uszkoreit, H., Pereira, F., Robinson, J., and
Tyson, M. (1983). "The Formalism and Implementation
of PATR-II", In Grosz,B. and Stickel,M. (eds) Research
on Interactive Acquisition and Use of Knowledge, SRI
International. pp. 39-79.

22. Stallard, D. and Bobrow, R. (1992) "Fragment Process-
ing in the DELPHI System", in Proceedings of the Speech
and Natural Language Workshop, Harriman, NY, pp.
305-310.

23. Uszkoreit, H. (1986) "Categorial Unification Gram-
mars". In Proceedings of the 11th International Con-
ference on Computational Linguistics and the the 2~th
Annual Meeting of the Association for Computational
Linguistics, Institut fur Kummunikkationsforschung und
Phonetik, Bonn University.

24. Zeevat, H., Klein, E., and Calder, J. (1987) "An Intro-
duction to Unification Categorial Grammar". In Had-
dock, N.,Klein,E., Merrill, G. (eds.) Edinburgh Work-
ing Papers in Cognitive Science, Volume 1: Categorial
Grammar, Unification Grammar, and Parsing.

48

