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1. I N T R O D U C T I O N  

Gemini is a natural language understanding system de- 
veloped for spoken language applications. This paper 
describes the details of the system, and includes rele- 
vant measurements of size, efficiency, and performance 
of each of its sub-components in detail. 

The demands on a natural language understanding sys- 
tem used for spoken language differ somewhat from the 
demands of text processing. For processing spoken lan- 
guage, there is a tension between the system being as 
robust as necessary, and as constrained as possible. The 
robust system will a t tempt  to find as sensible an inter- 
pretation as possible, even in the presence of perfor- 
mance errors by the speaker, or recognition errors by 
the speech recognizer. In contrast, in order to provide 
language constraints to a speech recognizer, a system 
should be able to detect that  a recognized string is not 
a sentence of English, and disprefer that recognition hy- 
pothesis from the speech recognizer. If the coupling is to 
be tight, with parsing and recognition interleaved, then 
the parser should be able to enforce as many constraints 
as possible for partial utterances. The approach taken 
in Gemini is to tightly constrain language recognition to 
limit overgeneration, but to extend the language anal- 
ysis to recognize certain characteristic patterns of spo- 
ken utterances (but not generally thought of as part of 
grammar) and to recognize specific types of performance 
errors by the speaker. 

Processing starts in Gemini when syntactic, semantic, 
and lexical rules are applied by a bottom-up all-paths 
constituent parser to populate a chart with edges con- 
taining syntactic, semantic, and logical form informa- 
tion. Then, a second utterance parser is used to apply 
a second set of syntactic and semantic rules that  are re- 
quired to span the entire utterance. If no semantically- 

acceptable utterance-spanning edges are found during 
this phase, a component to recognize and correct certain 
grammatical disfluencies is applied. When an accept- 
able interpretation is found, a set of parse preferences 
are used to choose a single best-interpretation from the 
chart to be used for subsequent processing. Quantifier 
scoping rules are applied to this best-interpretation to 
produce the final logical form, which is then used as in- 
put to a query answering system. The following sections 
will describe each of these components in detail, with the 
exception of the query answering subsystem, which will 
not be described in this paper. 

Since this paper describes a component by component 
view of Gemini, we will provide detailed statistics on 
the size, speed, coverage, and accuracy of the various 
components. These numbers detail our performance on 
the subdomain of air-travel planning that  is currently be- 
ing used by the DARPA spoken language understanding 
community[13]. Gemini was trained on a 5875 utterance 
dataset from this domain, with another 688 utterances 
used as a blind test (not explicitly trained on, but run 
multiple times) to monitor our performance on a dataset 
that  we didn't  train on. We will also report here our re- 
sults on another 756 utterance fair test set, that  we ran 
only once. Table 1 contains a summary of the cover- 
age of the various components on the both the training 
and fair test sets. More detailed explanations of these 
numbers are given in the relevant sections. 

Training Test 
Lexicon 99.1% 95.9% 
Syntax 94.2% 90.9% 
Semantics 87.4% 83.7% 
Syntax (Repair Correction) 96.0% 93.1% 
Semantics (Repair Correction) 89.1% 86.0% 

*This research was supported by the Advanced Research 
Projects Agency under Contract ONR N00014-90~C-0085 with the 
Office of Naval Research. The views and conclusions contained in 
this document are those of the authors and should not he inter- 
preted as necessarily representing the official policies, either ex- 
pressed or implied, of the Advanced Research Projects Agency of 
the U.S. Government. 

Table 1: Domain Coverage by Component 

2 .  S Y S T E M  D E S C R I P T I O N  

Gemini maintains a firm separation between the 
language- and domain-specific portions of the system, 
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and the underlying infrastructure and execution strate- 
gies. The Gemini kernel consists of a set of compilers to 
interpret the high-level languages in which the lexicon 
and syntactic and semantic grammar rules are written, 
as wellI as the parser, semantic interpretation, quanti- 
fier scoping, and repair correction mechanisms, as well 
as all other aspects of Gemini that are not specific to 
a language or domain. Although this paper describes 
the lexicon, grammar, and semantics of English, Gem- 
ini has also been used in a Japanese spoken language 
understanding system [10]. 

2 . 1 .  G r a m m a r  F o r m a l i s m  

Gemini includes a midsized constituent grammar of En- 
glish (described in section 2.3), a small utterance gram- 
mar for assembling constituents into utterances (de- 
scribed in section 2.7), and a lexicon. All three are writ- 
ten in a variant of the unification formalism used in the 
Core Language Engine [1]. 

The basic building block of the grammar formalism is a 
category with feature-constraints. Here is an example: 

up: [wh=ynq, case=(nomVacc),pers_num=(3rdAsg)] 

This category can be instantiated by any noun phrase 
with the value ynq for its wh feature (which means it 
must be a wh-bearing noun phrase like which book, who, 
or whose mother), either acc  (accusative) or nora (nom- 
inative) for its case feature, and the conjunctive value 
3rdAsg (third and singular) for its person-number fea- 
ture. This formalism is related directly to the Core Lan- 
guage Engine, but  more conceptually it is closely related 
to that  of other unification-based grammar formalisms 
with a context-free skeleton, such as PATR-II [21], Cat- 
egorial Unification Grammar  [23], Generalized Phrase- 
Structure Grammar  [6] and Lexical Functional Grammar  
[3]. 
We list some ways in which Gemini differs from other 
unification formalisms. Since many of the most inter- 
esting issues regarding the formalism concern typing, we 
defer discussing motivation until section 2.5. 

. Gemini uses typed-unification. Each category has 
a set of features declared for it. Each feature has a 
declared value-space of possible values (value spaces 
may be shared by different features). Feature struc- 
tures in Gemini can be recursive, but only by having 
categories in their value-space, so typing is also re- 
cursive. Typed feature-structures are also used in 
HPSG [19]. One important  difference with the use 
in Gemini is that  Gemini has no type-inheritance. 

2. Some approaches do not assume a syntactic skeleton 

of category-introducing rules (for example, Func- 
tional Unification Grammar  [11]). Some make such 
rules implicit (for example, the various categorial 
unification approaches, such as Unification Catego- 
rial Grammar [24]). 

. Even when a syntactic skeleton is assumed, some 
approaches do not distinguish the category of a con- 
stituent (np, vp, etc.) from its other features (for 
example, pers_num, gaps in ,  gapsout ) .  Thus for ex- 
ample, in one version of GPSG, categories were sim- 
ply feature bundles (attribute-value structures) and 
there was a feature MAJ taking values like N,V,A,P 
which determined the major category of constituent. 

4. Gemini does not allow rules schematizing over syn- 
tactic categories. 

2 . 2 .  L e x i c o n  

The Gemini lexicon uses the same category notation as 
the Gemini syntactic rules. Lexical categories are types 
as well, with sets of features defined for them. The lexical 
component of Gemini includes the lexicon of base forms, 
lexical templates, morphological rules, and the lexical 
type and feature default specifications. 

The Gemini lexicon used for the air-travel planning do- 
main contains 1,315 base entries. These expand by mor- 
phological rules to 2,019. In the 5875 utterance train- 
ing set, 52 sentences contained unknown words (0.9%), 
compared to 31 sentences in the 756 utterance fair test 
(4.1%). 

2 . 3 .  C o n s t i t u e n t  G r a m m a r  

A simplified example of a syntactic rule is: 

syn (whq_ynq_s 1 ash.up, 
[s: [sentence_type=whq, form=tnsd, 

gapsin=G, gapsout=G], 
up: [wh=ynq, persmum=N], 
s : [sentence_type=ynq, form=tnsd, 

gaps in=up: [pers mum=N], gapsout =null] ] ). 

This syntax rule (named whq_ynq_slash_up) says that 
a sentence (category s) can be built by finding a noun 
phrase (category up) followed by a sentence. It requires 
that  the daughter np have the value ynq for its wh fea- 
ture and that  it have the value N (a variable) for its 
person-number feature. It requires that the daughter 
sentence have a category value for its g aps in  feature, 
namely an np with a person number value N, which is 
the same as the person number value on the wh;bearing 
noun phrase. The interpretation of the entire rule is 
that  a gapless sentence with s en t ence_ type  whq can be 
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built by finding a wh-phrase followed by a sentence with 
a noun-phrase gap in it that  has the same person number 
as the wh-phrase. 

Semantic rules are written in much the same rule format, 
except that  in a semantic rule, each of the constituents 
mentioned in the phrase-structure skeleton is associated 
with a logical form. Thus, the semantics for the rule 
above is: 

sem (whq_ynq_s lash_np, 
[([whq,S], s: []), 
(Np, np:[]), 
(S, s: [gapsin=np: [gapsem=Np]] )]). 

Here the semantics of the mother s is just  the seman- 
tics of the daughter s with the illocutionary force marker 
whq wrapped around it. Also the semantics of the s gap's 
np's gapsem has been unified with the semantics of the 
wh-phrase. Through a succession of unifications this will 
end up assigning the wh-phrases semantics to the gap po- 
sition in the argument structure of the s. Although each 
semantic rule must be keyed to a pre-existing syntactic 
rule, there is no assumption of rule-to-rule uniqueness. 
Any number of semantic rules maybe written for a sin- 
gle syntactic rule. We discuss some further details of the 
semantics in section . 

The constituent grammar used in Gemini contains 243 
syntactic rules, and 315 semantic ru le s .  Syntactic cov- 
erage on the 5875 utterance training set was 94.2%, and 
on the 756 utterance test set was 90.9%. 

2.4. Parser 

Since Gemini was designed with spoken language inter- 
pretation in mind, key aspects of the Gemini parser are 
motivated by the increased needs for robustness and ef- 
ficiency that  characterize spoken language. Gemini uses 
essentially a pure bottom-up chart parser, with some lim- 
ited left-context constraints applied to control creation 
of categories containing syntactic gaps. 

Some key properties of the parser are: 

. The parser is all-paths bottom-up, so that all pos- 
sible edges admissible by the grammar are found. 

• The parser uses subsumption checking to reduce the 
size of the chart. Essentially, an edge is not added 
to the chart if it is less general than a pre-existing 
edge, and pre-existing edges are removed from the 
chart if the new edge is more general. 

• The parser is on-line [7], essentially meaning that 
all edges that  end at position i are constructed 

before any that end at position i + 1. This fea- 
ture is particularly desirable if the final architecture 
of the speech-understanding system couples Gemini 
tightly with the speech recognizer, since it guaran- 
tees for any partial recognition input that all possi- 
ble constituents will be built. 

An important  feature of the parser is the mechanism 
used to constrain the construction of categories contain- 
ing syntactic gaps. In earlier work [17], we showed that 
approximately 80% of the edges built in an all-paths 
bottom-up parser contained gaps, and that  it is possible 
to use prediction in a bottom-up parser only to constrain 
the gap categories, without requiring prediction for non- 
gapped categories. This limited form of left context con- 
straint greatly reduces the total number of edges built 
for a very low overhead. In the 5875 utterance train- 
ing set, the chart for the average sentence contained 313 
edges, but only 23 predictions. 

2.5. Typing 

The main advantage of typed-unification is for grammar 
development. The type information on features allows 
the lexicon, grammar, and semantics compilers to pro- 
vide detailed error analysis regarding the flow of values 
through the grammar, and warn if features are assigned 
improper values, or variables of incompatible types are 
unified. Since the type-analysis is performed statically at 
compile-time, there is no run-time overhead associated 
with adding types to the grammar. 

Syntactic categories play a special role in the typing- 
scheme of Gemini. For each syntactic category, Gemini 
makes a set of declarations stipulating its allowable fea- 
tures and the relevant value spaces. Thus, the distinction 
between the syntactic category of a constituent and its 
other features can be cashed out as follows: the syntac- 
tic category can be thought of as the feature-structure 
type. The only other types needed by Gemini are the 
value-spaces used by features. Thus for example, the 
type v (verb) admits a feature v:form, whose value-space 
v f o r m - t y p e s  can be instantiated with values like present 
participle, finite, and past participle. Since all recursive 
features are category-valued, these two kinds of types 
SUf~Ce. 

2.6. Interleaving Syntact ic  and Semantic  
Information 

S o r t a l  C o n s t r a i n t s  Selectional restrictions are im- 
posed in Gemini through the sorts mechanism. Selec- 
tional restrictions include both highly domain specific 
information about predicate-argument and very general 
predicate restrictions. For example, in our application 
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Edges Time 
Syntax Only 197 3.4 sec. 
Syntax + Semantics 234 4.47 sec. 
Syntax + Semantics + Sorts 313 13.5 sec. 

Table 2: Average number of edges built by interleaved 
processing 

the object of the transitive verb depart (as in flights de- 
parting Boston) is restricted to be an airport or a city, 
obviously a domain-specific requirement. But the same 
machinery also restricts a determiner like all to take two 
propositions, and an adjective like further to take dis- 
tances as its measure-specifier (as in thirty miles fur- 
ther). In fact, sortal constraints are assigned to every 
atomic predicate and operator appearing in the logical 
forms constructed by the semantic rules. 

Sorts are located in a conceptual hierarchy and are im- 
plemented as Prolog terms such that  more general sorts 
subsume more specific sorts [16]. This allows the sub- 
sumption checking and packing in the parser to share 
structure whenever possible. Semantic coverage when 
applying sortal constraints was 87.4% on the training 
set, and on the test set was 83.7%. 

I n t e r l e a v i n g  S e m a n t i c s  w i t h  P a r s i n g  In Gemini 
syntactic and semantic processing is fully interleaved. 
Building an edge requires that  syntactic constraints be 
applied, which results in a tree structure, to which se- 
mantic rules can be applied, which results in a logical 
form to which sortal contraints can be applied. 

Table 2 contains average edge counts and parse timing 
statistics I statistics for the 5875 utterance training set. 

2 . 7 .  U t t e r a n c e  G r a m m a r  a n d  U t t e r a n c e  

Parser 

The constituent parser uses the constituent grammar to 
build all possible categories bottom-up, independent of 
location within the string. Thus, the constituent parser 
does not force any constituent to occur either at the be- 
ginning of the utterance, or at the end. The utterance 
parser is a top-down back-tracking parser that uses a dif- 
ferent grammar called the utterance grammar to glue the 
constituents found during constituent parsing together 
to span the entire utterance. 

Many systems [4], [9], [20], [22] have added robustness 

1 Gemini is implemented primarily in Quintus Prolog version 
3.1.1. All timing numbers given in this paper were run on a lightly 
loaded Sun Spaxcstation 2 with at least 48MB of memory. Under 
normal conditions, Gemini runs in under 12MB of memory. 

with a similar post-processing phase. The approach 
taken in Gemini differs in that  the utterance grammar 
uses the same syntactic and semantic rule formalism 
used by the constituent grammar. Thus the same kinds 
of logical forms built during constituent-parsing are the 
output  of utterance-parsing, with the same sortal con- 
straints enforced. For example, an utterance consisting 
of a sequence of modifier fragments (like on Tuesday at 
3'o'clock on United) is interpreted as a conjoined prop- 
erty of a flight, because the only sort of thing in the ATIS 
domain which can be on Tuesday at 3'o'clock on United 
is a flight. 

The utterance grammar is significantly smaller than the 
constituent grammar, only 37 syntactic rules and 43 se- 
mantic rules. 

2 . 8 .  R e p a i r s  

Grammatical  disfluencies occur frequently in sponta- 
neous spoken language. We have implemented a com- 
ponent to detect and correct a large sub-class of these 
disfluencies (called repairs, or self-corrections) where 
the speaker intends that  the meaning of the utterance 
be gotten by deleting one or more words. Often, the 
speaker gives clues of their intention by repeating words 
or adding cue words that  signal the repair: 

(1) a. How many American airline flights leave Denver 
on June June tenth. 

b. Can you give me information on all the flights 
from San Francisco no from Pittsburgh to San 
Francisco on Monday. 

The mechanism used in Gemini to detect and correct re- 
pairs is currently applied as a fall-back mechanism if no 
semantically acceptable interpretation is found for the 
complete utterance. The mechanism finds sequences of 
identical or related words, possibly separated by a cue 
word indicating a repair, and at tempts to interpret the 
string with the first of the sequences deleted. This ap- 
proach is presented in detail in [2]. 

The repair correction mechanism helps increase the syn- 
tactic and semantic coverage of Gemini (as reported in 
Table 1), at the cost miscorrecting some sentences that 
do not contain repairs. In the 5875 utterance train- 
ing set, there were 178 sentences containing nontriv- 
ial repairs 2, of which Gemini found 89 (50%). Of the 
sentences Gemini corrected, 81 were analyzed correctly 
(91%), 8 contained repairs, but  were corrected wrongly. 

2For these results, we ignored repairs consisting of only an iso- 
late fragment word, or sentence-initial filler words like "yes" and 
"okay". 
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In the entire training set, Gemini only misidentified 15 
sentences (0.25%) as containing repairs when they did 
not. Similarly, the 756 utterance test set contained 26 
repairs, of which Gemini found 11 (42%). Of those 11, 8 
were analyzed correctly (77%), and 3 were analysed in- 
correctly. In the training set, 2 sentences were misiden- 
tiffed as containing repairs (0.26%). 

2 .9 .  P a r s e  P r e f e r e n c e  M e c h a n i s m  

The parse preference mechanism used in Gemini begins 
with a simple strategy to disprefer parse trees contain- 
ing specific "marked" syntax rules. As an example of 
a dispreferred rule, consider: Book those three flights to 
Boston. This sentence has a parse on which those three 
is a noun phrase with a missing head (consider a contin- 
uation of the discourse Three of our clients have suffi- 
cient credit). After penalizing such dispreferred parses, 
the preference mechanism applies attachment heuristics 
based on the work by Pereira [18]. 

Pereira's paper shows how the heuristics of Minimal At- 
tachment and Right Association [12] can both be imple- 
mented using a bottom-up shift-reduce parser. 

(2) (a) John sang a song for Mary. 
(b) John canceled the room Mary reserved yester- 

day. 

Minimal Attachment selects for the tree with the fewest 
nodes, so in (2a) ,  the parse which makes for Mary a 
complement of sings is preferred. Right Association se- 
lects for the tree which incorporates a constituent A into 
the rightmost possible constituent (where rightmost here 
means beginning the furthest to the right). Thus, in 
(2b)  the parse in which yesterday modifies reserved is 
preferred. 

The problem with these heuristics is that when they are 
formulated loosely, as in the previous paragraph, they 
appear to conflict. In particular, in (2a), Right Associ- 
ation seems to call for the parse which makes for Mary 
a modifier of song. 

Pereira's goal is to show how a shift-reduce parser can 
enforce both heuristics without conflict and enforce the 
desired preferences for examples like (2a) and (2b). He 
argues that Minimal Attachment and Right Association 
can be enforced in the desired way by adopting the fol- 
lowing heuristics for the oracle to resolve conflicts with: 

1. Right Association: In a shift-reduce conflict, prefer 
shifts to reduces. 

2. Minimal Attachment: In a reduce-reduce conflict, 
prefer longer reduces to shorter reduces. 

Since these two principles never apply to the same choice, 
they never conflict. 

In Gemini, Pereira's heuristics are enforced when extract- 
ing syntactically and semantically well-formed parse- 
trees from the chart. In this respect, our approach 
differs from many other approaches to the problem of 
parse preferences, which make their preference decisions 
as parsing progresses, pruning subsequent parsing paths 
[5], [8], [14]. Applying parse preferences requires com- 
paring two subtrees spanning the same portion of the 
utterance. For purposes of invoking Pereira's heuristics, 
the derivation of a parse can be represented as the se- 
quence of S's (Shift) and R's (Reduce) needed to con- 
struct the parse's unlabeled bracketing. Consider, for 
example, tim choice between two unlabeled bracketings 
of ( 2a): 

(a) [John [sang [a song ] [for Mary ] ] ] 
S S S S R S S RRR 

(b) [John [sang [ [a song ] [for Mary ]] ]] 
S S S S R S S RRRR 

There is a shift for each word and a reduce for each right 
bracket. Comparison of the two parses consists simply 
of pairing the moves in the shift-reduce derivation from 
left to right. Any parse making a shift move that cor- 
responds to a reduce move loses by Right Association. 
Any parse making a reduce move that corresponds to a 
longer reduce loses by Minimal Attachment. In deriva- 
tion (b) above the third reduce move builds the con- 
stituent a song for Mary from two constituents, while 
the corresponding reduce in (a) builds sang a song for 
Mary from three constituents. Parse (b) thus loses by 
Minimal Attachment. 

Questions about the exact nature of parse preferences 
(and thus about the empirical adequacy of Pereira's pro- 
posal) still remain open, but the mechanism sketched 
does provide plausible results for a number of examples. 

2 .10 .  S c o p i n g  

The final logical form produced by Gemini is the re- 
sult of applying a set of quantifier scoping rules to the 
best-interpretation chosen by the parse preference mech- 
anism. The semantic rules build quasi-logical forms, 
which contain complete semantic predicate-argument 
structure, but do not specify quantifier scoping. The 
scoping algorithm that we use combines syntactic and 
semantic information with a set of quantifier scoping 
preference rules to rank the possible scoped logical forms 
consistent with the quasi-logical form selected by parse 
preferences. This algorithm is described in detail in [15]. 
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3.  C O N C L U S I O N  

This paper describes the approach we have taken to ree- 
solving the tension between overgeneration and robust- 
ness in a spoken language understanding system. Some 
aspects of Gemini are specifically oriented towards lim- 
iting overgeneration, such as the on-line property for the 
parser, and fully interleaved syntactic and semantic pro- 
cessing. Other components, such as the fragment and 
run-on processing provided by the utterance grammar, 
and the correction of recognizable grammatical repairs, 
increase the robustness of Gemini. We believe a robust 
system can still recognize and disprefer utterances con- 
taining recognition errors. 

We have described the current state of the research in the 
construction of the Gemini system. Research is ongoing 
to improve the speed and coverage of Gemini, as well 
as examining deeper integration strategies with speech 
recognition, and integration of prosodic information into 
spoken language disambiguation. 
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