
An Efficient A* Stack Decoder Algor i thm for Cont inuous
Speech Recogni t ion with a Stochast ic Language Model*

Douglas B. Paul

Lincoln Laboratory, MIT
Lexington, Ma. 02173

A B S T R A C T
The stack decoder is an attractive algorithm for controlling
the acoustic and language model matching in a continuous
speech recognizer. A previous paper described a near-optimal
admissible Viterbi A* search algorithm for use with non-
cross-word acoustic models and no-grammar language models
[16]. This paper extends this algorithm to include unigram
language models and describes a modified version of the algo-
rithm which includes the full (forward) decoder, cross-word
acoustic models and longer-span language models. The resul-
tant algorithm is not admissible, but has been demonstrated
to have a low probability of search error and to be very effi-
cient.

I N T R O D U C T I O N
Speech recognition may be treated as a tree network
search problem. As one proceeds f rom the root toward
the leaves, the branches leaving each junction represent
the set of words which may be appended to the current
partial sentence. Each of the branches leaving a junc-
tion has a probabil i ty and each word has a likelihood
of being produced by the observed acoustic data. The
recognition problem is to identify the most likely pa th
(word sequence, W*) from the root (beginning of the
sentence) to a leaf (end of the sentence) taking into ac-
count the junction probabilities (the stochastic language
model, p(W)) and the acoustic match (including t ime
alignment, p(OIW)) given that pa th [2]:

W* =argmax p(OIW)p (W) (1)
(w}

where O is the acoustic observation sequence and W is
a word sequence.

This paper is concerned with the network search prob-
lem and therefore correct recognition is defined as out-
putt ing the most likely sentence W* given the language
model, the acoustic models, and the observed acoustic
data. I f the most likely sentence is not the one spoken,
it is a modeling e r ro r - -no t a search error. This paper

*This work was sponsored by the Defense Advanced Research
Projects Agency. The views expressed are those of the author and
do not reflect the official policy or position of the U.S. Government.

will assume for simplicity tha t an isolated sentence is the
object to be recognized. (The algori thm extends trivially
to recognize continuous input.)

T H E B A S I C S T A C K D E C O D E R
The stack decoder [8], as used in speech, is an implemen-
tat ion of a best-first tree search. The basic operation of
a sentence decoder is as follows [2,5]:

1. Initialize the stack with a null theory.

2. Pop the best (highest scoring) theory off the stack.

3. if(end-of-sentence) output the sentence and termi-
nate.

4. Perform acoustic and language-model fast matches
to obtain a short list of candidate word extensions
of the theory.

5. For each word on the candidate list:

(a) Perform acoustic and language-model detailed
matches to compute the new theory output log-
likelihood.

i. if(not end-of-sentence) insert into the
stack.

ii. if(end-of-sentence) insert into the stack
with end-of-sentence flag = TRUE.

6. Go to 2.

The fast matches [4,5,7] are computat ional ly cheap
methods for reducing the number of word extensions
which must be checked by the more accurate, but com-
putat ionally expensive detailed matches. 1 (The fast
matches may also be considered a predictive compo-
nent for the detailed matches.) Top-N (N-best) mode
is achieved by delaying terminat ion until N sentences
have been output .

1 The following discussion concerns the basic stack decoder and
therefore it will be assumed that the correct word will always be on
the fast match list. This can be guaranteed by the scheme outlined
in reference [5].

405

The stack itself is just a sorted list which supports the
following operations: pop the best entry and insert new
entries according to their scores. The following items
must be contained in the ith stack entry:

1. a stack score: StSci

2. a reference time: t_refl

3. a word history i: (path or theory identification)

4. an output log-likelihood distribution: Li(t)

5. an end-of-sentence flag

T H E A* STACK C R I T E R I O N
A key issue in the stack decoder is deciding which theory
should be popped from the stack to be extended. This is
decided by the stack score and the reference time. (All
scores used here are log-likelihoods or log-probabilities.)

The near-optimal A* criterion [11] used here is the dif-
ference between the actual log-likelihood of reaching a
point in time on a path and a least upper bound on the
log-likelihood of any path reaching that point in time:

Ai(t) = Li(t) -lubL(t) (2)

where Ai(t) is the A* scoring function, Li(t) is the output
log-likelihood, t denotes time, i denotes the path (tree
branch or left sentence fragment) and lubL(f) is the least
upper bound on Li(f). (This criterion is derived in the
appendix.) In order to sort the stack entries, it is nec-
essary to reduce the Ai(t) to a single number (the stack
score):

StSci =max Ai(f). (3)
,

It is also convenient at this point to define the minimum
time which satisfies equation 3:

t_mini =argmin (StSci = Ai(t)). (4)
t

It is also possible to estimate the most likely theory exit
time as

t_ezifi =argmax Li (f) - a t (5)

for an appropriately chosen value for a.

A STACK D E C O D E R F O R C S R W I T H
A U N I G R A M L A N G U A G E M O D E L

It is not possible to compute the exact least upper bound
on the theory likelihoods without first performing the
recognition. It is, however, possible to compute the least-
upper-bound-so-far (lubsf) on the likelihoods that have
already been computed, which requires negligible com-
putation and is sufficient to perform the near-optimal A*
search. This creates two difficulties:

1. Since lubL(f) = lubsfL(t) can change as the theories
are evaluated, the stack order can also change.

2. A degeneracy in determining the best path by SfSc
alone can occur since lubsfL(t) can equal Li(t) for
more than one i (path) at different times.

Problem 1 is easily cured by reevaluating the stack scores
StSc every time lubsfL(t) is updated and reorganizing
the stack. This is easily accomplished if the stack is
stored as a heap [10].

Problem 2 occurs because different theories may domi-
nate different parts of the current upper bound. Thus
all of these theories will have a score of zero. The cure
is to extend the shortest theory (minimum t_min) which
has a stack score equal to the best. If f_refi = f-mini,
this can be accomplished by performing a major sort on
the stack score StSc and a minor sort on the reference
time f_re f .

This guarantees that lubsfL(t) = lubL(f) for t < t_refp
(where p denotes the theory which is about to be
popped) and therefore the relevant part of the least-
upper-bound has been computed by the time that it is
needed. Since the bound, at the time that it is needed,
is the least-upper-bound, the search is admissible and
near-optimal. Furthermore, when the first sentence is
output, the least-upper-bound-so-far will be the exact
least-upper-bound.

A stack pruning threshold can be used to limit the stack
size [16]. Any theory whose SfSc falls below the thresh-
old can be deleted from the stack. This can be applied
on stack insertions and any time the stack is reorganized.
This stack pruning threshold has little effect on the com-
putational requirements and can therefore be set very
conservatively to essentially eliminate any chance that
the correct theory will be pruned.

In a time-synchronous (TS) no-grammar/unigram lan-
guage model Viterbi decoder, all word output likelihoods
are compared and only the maximum is passed on as
input to the word models. Thus by comparison, only
theories that dominate the lubsf need be retained on
the stack and the stack pruning threshold can be set to
zero for top-1 recognition. Since all stack scores, StSc,
of all theories popped from the stack will be zero until
the first sentence is output, all theories popped from the
stack will be in reference time t_min order. (Of course,
the stack pruning threshold must be non-zero if a top-N
list of sentences is desired.) For top-N recognition, this
algorithm adaptively raises the effective computational
pruning threshold (which equals the current best StSc)
by the minimum required to produce N output sentences,

406

subject to the limit placed by the stack pruning thresh-
old.

This algorithm is near-optimal and admissible only for
a Viterbi decode using non-cross word acoustic models
and a no-grammar or unigram language model.

recognition. (While this algorithm can also perform top-
N recognition with or without a language model, it can-
not be made equivalent to the no-grammar/unigram lan-
guage model version for top-N. Its pruning threshold is
fixed and it will only output theories whose relative like-
lihoods do not fall below the threshold.)

A S T A C K D E C O D E R F O R C S R W I T H
A L O N G - S P A N L A N G U A G E M O D E L

The above algorithm fails with a long span language
model because the overall best theory can have a less-
than-best intermediate score. This less-than-best inter-
mediate score can be locally "shadowed" by the best
score and thus will not be popped from the stack [6].

An efficient stack decoder algorithm which can be used
with cross-word acoustic models, the full (forward) de-
coder, and longer-span (> 2) language models can be
produced by two simple changes:

1. change the stack ordering to be a major sort on the
reference time t_ref (favoring the lesser times) and
a minor sort on the stack score StSe and

2. use a non-zero stack pruning threshold.

The reference time t_re f may also be changed from the
minimum time which satisfies equation 3 used in the no-
grammar/unigram language-model version to t_exit as
defined in equation 5. (Either will work and both re-
quired similar amounts of computation in tests.) This
algorithm appears to be a simplification of one devel-
oped at IBM [3].

This algorithm is not admissible because the correct
theory can be pruned from the stack. The stack-
pruning threshold now becomes the computational prun-
ing threshold which controls the trade-off between the
amount of computation and the probability of prun-
ing the the correct theory by controlling the likelihood
"depth" that will be searched. Unlike the previous algo-
rithm, an (unpruned) theory cannot be shadowed be-
cause it will be extended when its reference time is
reached. This algorithm is quasi-time-synchronous be-
cause it, in effect, moves a time bound forward and when-
ever this time bound becomes equal to the reference time
of a theory, the theory is expanded.

Note that the stack pruning threshold can also be set
to zero for no-grammar/unigram language model top-1
recognition with this algorithm. With a zero stack prun-
ing threshold and t_refl = t_minl, it becomes equivalent
to the near-optimal, admissible no-grammar/unigram
language model algorithm described above for top-1

D I S C U S S I O N A N D C O N C L U S I O N S

The above stack-search algorithms have been imple-
mented in a prototype implementation which uses real
speech input, but does not yet have all of the features
of the Lincoln TS CSR [13,14,15]. (The primary missing
feature is cross-word phonetic modeling.) The proto-
type runs faster than does the TS system on the cor-
responding recognition task, frequently by a significant
factor. (In fairness, the TS system does not include a fast
match.) Current experience using the DARPA Resource
Management Database [17] shows the required number
of stack pops and the stack size to be surprisingly small.
In addition, the prototype includes a proposed CSR-NL
interface [12] and has been run with unigram, word-pair,
bigram, and trigram language models accessed through
the interface without difficulty. (It has also been run
using a no-grammar language model, which, of course,
does not require the interface.) This prototype imple-
mentation has also been tested with vocabulary sizes up
to 64K words. The CSR computation, which is dom-
inated by the fast match, scales approximately as the
square root of the vocabulary size.

Methods for joining the acoustic matching of separate
theories and caching of acoustic computations to reduce
the acoustic match computation were described in ref-
erence [16]. These algorithms were tested in a stack-
decoder simulator (real stack decoder with simulated in-
put data). The path join accelerator is used in the pro-
totype stack decoder to remove copies of theories which
are identical except for non-grammatical items such as
optional intermediate silences.

A* search using the scoring function described by Nils-
son [11] (equation 6) requires computing the likelihood
of the future data (h*(t) in equation 7). The optimal
A* decoder requires exact evaluation of h*(t) which re-
quires solving the top-1 recognition problem by some
other means, such as a reverse direction TS decoder
[19], before the A* search can begin. The alternative
described here substitutes a near-optimal scoring func-
tion which is derived from the A* search and requires
negligible additional computation over that required by
the search itselfl Since, as noted above, the Lincoln
top-1 TS decoder takes more CPU time than does the
near-optimal stack decoder, the near-optimal stack de-
coder algorithm appears to be the most efficient of the

407

three approaches for top-1 recognition. In addition, the
long-span language model version of the stack decoder
can very easily integrate long-span language models into
the search. However, if top-N recognition is the goal,
the optimal A* search may be preferred because, once
the price is paid for computing h*(t), the A* search can
find the additional N-1 sentences very efficiently for no-
grammar/unigram language models [19].

Recently, several other algorithms have been proposed
for top-N recognition using A* search [9,19,22] which
use the Nilsson formulation of the scoring function. All
of these approaches use a reverse direction TS decoder
to compute h*(t). (A reverse direction top-1 stack de-
coder could also be used to compute h*(t).) (There are
also some proposed non-A* methods for recognizing the
top-N sentences [1,18,21]. In general, the bidirectional
approaches appear to be more efficient than the unidi-
rectional approaches.) These bidirectional A* methods
must wait for the end of data (or a pseudo-end-of-data
[9]) to begin the A* (or the reverse direction) pass. In
contrast, because they do not need data beyond that nec-
essary to extend the current theory (this includes data
up to t_re f required to choose the current theory), the
two stack decoder formulations proposed here can pro-
ceed totally left-to-right as the input data becomes avail-
able from the front end. The long-span language-model
version of the stack search will output all top-N theories
with minimal delay following the end-of-data because all
theories are pursued in quasi-parallel or, in top-1 mode,
it can output the partial sentence as soon as all unpruned
theories have a common partial history (initial word se-
quence). (A similar technique for continuous output af-
ter a short delay from continuous input exists for TS
decoders [20].)

One of the motivations for some of these other A* (and
top-N) algorithms is as a method for using weaker and
cheaper initial acoustic and language models to produce
a top-N sentence list for later refinement by more de-
tailed and expensive acoustic and/or language models,
which now need only consider a few theories. In con-
trast the algorithm proposed here integrates both the
detailed acoustic and language models directly in the
stack search and therefore need only produce a top-1
output. It attempts to minimize the computation by ap-
plying all available information to constrain the search.
(The stack decoder as described here can, of course, also
be used with weak and cheap acoustic and/or language
models to produce a top-N list for later processing.) The
ultimate choice between the two methods may be deter-
mined by the number of sentences required by the top-N
approaches and the relative computational costs of the
various modules in each system. The architectural sim-

plicity of each system may also have some bearing.

The stack decoder has long shown promise for integrat-
ing long-span language models and acoustic models into
a single effective search which applies information from
both sources into controlling the search. It has not been
used at many sites, primarily due to the difficulty of
making the search efficient. The algorithms described
above will hopefully remove this barrier.

A P P E N D I X : D E R I V A T I O N OF
T H E A* C R I T E R I O N U S E D IN

E Q U A T I O N 2
Nilsson [11] states the optimal A* criterion (slightly
rewritten to match the speech recognition problem) as

f i (t) = gi(t) + h*(t) (6)

where f i (t) is the log-likelihood of a sentence with the
partial theory i ending at time t, gi(t) is the log-
likelihood of partial theory i, and h*(t) is the log-
likelihood of the best extension of any theory from time
t to the end of the data. (Nilsson uses costs which are
interpreted here as negative log-likelihoods. All descrip-
tions here will use sign conventions appropriate for log-
likelihoods to be consistent with the rest of the paper.)
The theory argmax (mtax fi(t)) is chosen as the next to

i
be popped from the stack and expanded.

Equation 6 requires that the computation of the total
likelihood of a sentence must be separable into a begin-
ning part and an end part separated by a single time,
which disallows this derivation for the full (forward) de-
coder because the full decoder does not have a unique
transition time between two words. Thus, the deriva-
tion is limited to a decoder which is Viterbi between
words. It also limits the derivation to non-cross-word
acoustic models and no-grammar or unigram language
model recognition tasks.

Define
f*(t) = g*(t) + h*(t). (7)

for the best theory with a word transition at time t.
The function f* (t) is slowly varying with global maxima
at the word transition points of the correct theory, at
which points it equals the likelihood of the correct theory.
Specifically, it is maximum at t = 0 and t = T. (T is the
end of data.) Since gi(t) is an exact value (rather than
a bound or estimate) for a tree search, g*(t) = lubgi(t)
and since h*(t) is not a function of i, f*(t) = lubfi(t).

Subtract equation 7 from equation 6 and define]i(t)

]i(t) = f i (t) -- f*(t) = gi(t) -- g '(t) . (8)

408

This is just equation 2 in a different notation: gi(t) =
Li (t) and g* (t) = ubL(t) (specifically lubL(t)) and there-
fore] i(t) = Ai(t). Thus, if f*(t) were a constant,]i(t)
would just be an offset from fi(t) and the search would be
opt imum because argmax (n~ax]i(t)) would always be

i

equal to argTax (n ax fi(t)) As noted earlier, f*(t) has
maxima at word transition times of the correct theory.
Thus]i(t) is zero at word transition times on the correct
theory and < 0 for all other i and t. Thus the search
is admissible because it can never block the correct the-
ory by giving a better score to an incorrect theory, but
sub-optimal because it can cause incorrect theories to
be popped from the stack and be evaluated. The eval-
uation function "error" f* (t) - f* (0) is slowly varying
and small, therefore the search is near-optimal.

Since the stack decoder treats each theory and all points
on the likelihood distribution Li(t)) as a unit, each the-
ory is evaluated at its opt imum point: the max Ai(t) as

t
defined in equation 3, to give it its "best" chance and
then, for efficiency, the likelihood of all points on the
distribution Li(t) are extended in one operation.

The fact that all StSci are zero until the first sentence is
output and the tie is broken by choosing the theory with
the minimum reference time t_min, insures that all can-
didate theories which might alter lubsfLi(t <_ t_minpop)
have already been computed. Thus the lubsfL(t) =
lubL(t) for t _< t_minpop.

This derivation shows the stack criterion max StSci
with a minimum t_minl tie-breaker to be adequate to
perform a near-optimal admissible A*-search Viterbi-
recognition with non-cross word acoustic models and
a no-grammar/unigram language-model using the stack
decoder algorithm.

R E F E R E N C E S
1. S. Austin, R. Schwartz, and P. Placeway "The Forward-

Backward Search Algorithm," ICASSP 91, Toronto,
May 1991.

2. L. R. Bahl, F. Jelinek, and R. L. Mercer, "A Maxi-
mum Likelihood Approach to Continuous Speech Recog-
nition," IEEE Trans. Pattern Analysis and Machine In-
telligence, PAMI-5, March 1983.

3. L. R. Bahl and F. Jelinek, "Apparatus and Method for
Determining a Likely Word Sequence from Labels Gen-
erated by an Acoustic Processor," US Patent 4,748,670,
May 31, 1988.

4. L. Bahl, S. V. De Gennaro, P. S. Gopalakrishnam, R. L.
Mercer, "A Fast Approximate Acoustic Match for Large
Vocabulary Speech Recognition," submitted to ASSP.

5. L. Bahl, P. S. Gopalakrishnam, D. Kanevsky, D. Na-
hamoo, "Matrix Fast Match: A Fast Method for Iden-
tifying a Short List of Candidate Words for Decoding,"
ICASSP 89, Glasgow, May 1989.

6. J. K. Baker, personal communication, June 1990.
7. L. S. Gillick and R. Roth, "A Rapid Match Algorithm

for Continuous Speech Recognition," Proceedings June
1990 Speech and Natural Language Workshop, Morgan
Kaufmann Publishers, June, 1990.

8. F. Jelinek, "A Fast Sequential Decoding Algorithm Us-
ing a Stack," IBM J. Res. Develop., vol. 13, November
1969.

9. P. Kenny, R. Hollan, V. Gupta, M. Lennig, P. Mermel-
stein, and D. O'Shaughnessy, "A* - Admissible Heuris-
tics for Rapid Lexical Access," ICASSP 91, Toronto,
May 1991.

10. D. E. Knuth, "The Art of Computer Programming:
Sorting and Searching,", Vol. 3., Addison-Wesly, Menlo
Park, California, 1973.

11. N. J. Nilsson, "Problem-Solving Methods of Artificial
Intelligence," McGraw-Hill, New York, 1971.

12. D. B. Paul, "A CSR-NL Interface Specification," Pro-
ceedings October, 1989 DARPA Speech and Natural
Language Workshop, Morgan Kanfmann Publishers,
October, 1989.

13. D. B. Paul, "Speech Recognition using Hidden Markov
Models," Lincoln Laboratory Journal, Vol. 3, no. 1,
Spring 1990.

14. D.B. Paul, "New Results with the Lincoln Tied-Mixture
HMM CSR System," Proceedings Fourth DARPA
Speech and Natural Language Workshop, Morgan Kauf-
mann Publishers, February, 1991.

15. D. B. Paul, "The Lincoln Tied-Mixture HMM Contin-
uous Speech Recognizer," ICASSP 91, Toronto, May
1991.

16. D. B. Paul, "Algorithms for an Optimal A* Search and
Linearizing the Search in the Stack Decoder," ICASSP
91, Toronto, May 1991.
also
D. B. Paul, "Algorithms for an Optimal A* Search and
Linearizing the Search in the Stack Decoder," Proceed-
ings June 1990 Speech and Natural Language Workshop,
Morgan Kaufmann Publishers, June, 1990.

17. P. Price, W. Fisher, J. Bernstein, and D. Pallett, "The
DARPA 1000-Word Resource Management Database
for Continuous Speech Recognition," ICASSP 88, New
York, April 1988.

18. R. Schwartz and S. Austin, "A Comparison of Several
Approximate Algorithms for Finding Multiple (N-Best)
Sentence Hypotheses," ICASSP 91, Toronto, May 1991.

19. F. K. Soong and E. F. Huang, "A Tree-Trellis Fast
Search for Finding the N Best Sentence Hypotheses in
Continuous Speech Recognition," ICASSP 91, Toronto,
May 1991.

20. J. C. Spohrer, P. F. Brown, P. H. Hochschild, and J. K.
Baker, "Partial Backtrace in Continuous Speech Recog-
nition," Proc. Int. Conf. on Systems, Man, and Cyber-
netics, 1980.

21. V. Steinbiss, "Sentence-Hypothesis Generation in a Con-
tinuous Speech Recognition System," EUROSPEECtt
89, Paris, Sept 1989.

22. V. Zue, J. Glass, D. Goodine, H. Leung, M. Phillips, J.
Polifroni, and S. Seneff, "Integration of Speech Recogni-
tion and Natural Language Processing in the MIT Voy-
ager System," ICASSP 91, Toronto, May 1991.

409

