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A B S T R A C T  
The stack decoder is an attractive algorithm for controlling 
the acoustic and language model matching in a continuous 
speech recognizer. A previous paper described a near-optimal 
admissible Viterbi A* search algorithm for use with non- 
cross-word acoustic models and no-grammar language models 
[16]. This paper extends this algorithm to include unigram 
language models and describes a modified version of the algo- 
rithm which includes the full (forward) decoder, cross-word 
acoustic models and longer-span language models. The resul- 
tant algorithm is not admissible, but has been demonstrated 
to have a low probability of search error and to be very effi- 
cient. 

I N T R O D U C T I O N  
Speech recognition may be treated as a tree network 
search problem. As one proceeds f rom the root toward 
the leaves, the branches leaving each junction represent 
the set of words which may be appended to the current 
partial  sentence. Each of the branches leaving a junc- 
tion has a probabil i ty and each word has a likelihood 
of being produced by the observed acoustic data. The 
recognition problem is to identify the most  likely pa th  
(word sequence, W*) from the root (beginning of the 
sentence) to a leaf (end of the sentence) taking into ac- 
count the junction probabilities (the stochastic language 
model, p(W)) and the acoustic match (including t ime 
alignment, p(OIW)) given that  pa th  [2]: 

W* =argmax p( OIW)p (W) (1) 
(w} 

where O is the acoustic observation sequence and W is 
a word sequence. 

This paper  is concerned with the network search prob- 
lem and therefore correct recognition is defined as out- 
putt ing the most  likely sentence W* given the language 
model, the acoustic models, and the observed acoustic 
data.  I f  the most  likely sentence is not the one spoken, 
it is a modeling e r ro r - -no t  a search error. This paper  
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will assume for simplicity tha t  an isolated sentence is the 
object to be recognized. (The algori thm extends trivially 
to recognize continuous input.)  

T H E  B A S I C  S T A C K  D E C O D E R  
The stack decoder [8], as used in speech, is an implemen- 
tat ion of a best-first tree search. The basic operation of 
a sentence decoder is as follows [2,5]: 

1. Initialize the stack with a null theory. 

2. Pop the best (highest scoring) theory off the stack. 

3. if(end-of-sentence) output  the sentence and termi- 
nate. 

4. Perform acoustic and language-model fast matches 
to obtain a short list of candidate word extensions 
of the theory. 

5. For each word on the candidate list: 

(a) Perform acoustic and language-model detailed 
matches to compute the new theory output  log- 
likelihood. 

i. if(not end-of-sentence) insert into the 
stack. 

ii. if(end-of-sentence) insert into the stack 
with end-of-sentence flag = TRUE.  

6. Go to 2. 

The fast matches [4,5,7] are computat ional ly cheap 
methods for reducing the number  of word extensions 
which must be checked by the more accurate, but  com- 
putat ionally expensive detailed matches. 1 (The fast 
matches may also be considered a predictive compo- 
nent for the detailed matches.) Top-N (N-best) mode 
is achieved by delaying terminat ion until N sentences 
have been output .  

1 The following discussion concerns the basic stack decoder and 
therefore it will be assumed that the correct word will always be on 
the fast match list. This can be guaranteed by the scheme outlined 
in reference [5]. 
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The stack itself is just a sorted list which supports the 
following operations: pop the best entry and insert new 
entries according to their scores. The following items 
must be contained in the ith stack entry: 

1. a stack score: StSci 

2. a reference time: t_refl 

3. a word history i: (path or theory identification) 

4. an output log-likelihood distribution: Li(t) 

5. an end-of-sentence flag 

T H E  A* STACK C R I T E R I O N  
A key issue in the stack decoder is deciding which theory 
should be popped from the stack to be extended. This is 
decided by the stack score and the reference time. (All 
scores used here are log-likelihoods or log-probabilities.) 

The near-optimal A* criterion [11] used here is the dif- 
ference between the actual log-likelihood of reaching a 
point in time on a path and a least upper bound on the 
log-likelihood of any path reaching that point in time: 

Ai( t )  = Li(t) -lubL(t) (2) 

where Ai(t) is the A* scoring function, Li(t) is the output 
log-likelihood, t denotes time, i denotes the path (tree 
branch or left sentence fragment) and lubL(f) is the least 
upper bound on Li(f). (This criterion is derived in the 
appendix.) In order to sort the stack entries, it is nec- 
essary to reduce the Ai(t) to a single number (the stack 
score): 

StSci =max Ai(f). (3) 
, 

It is also convenient at this point to define the minimum 
time which satisfies equation 3: 

t_mini =argmin (StSci = Ai(t)). (4) 
t 

It is also possible to estimate the most likely theory exit 
time as 

t_ezifi =argmax Li (f) - a t  (5) 

for an appropriately chosen value for a. 

A STACK D E C O D E R  F O R  C S R  W I T H  
A U N I G R A M  L A N G U A G E  M O D E L  

It is not possible to compute the exact least upper bound 
on the theory likelihoods without first performing the 
recognition. It is, however, possible to compute the least- 
upper-bound-so-far (lubsf) on the likelihoods that have 
already been computed, which requires negligible com- 
putation and is sufficient to perform the near-optimal A* 
search. This creates two difficulties: 

1. Since lubL(f) = lubsfL(t) can change as the theories 
are evaluated, the stack order can also change. 

2. A degeneracy in determining the best path by SfSc 
alone can occur since lubsfL(t) can equal Li(t) for 
more than one i (path) at different times. 

Problem 1 is easily cured by reevaluating the stack scores 
StSc every time lubsfL(t) is updated and reorganizing 
the stack. This is easily accomplished if the stack is 
stored as a heap [10]. 

Problem 2 occurs because different theories may domi- 
nate different parts of the current upper bound. Thus 
all of these theories will have a score of zero. The cure 
is to extend the shortest theory (minimum t_min) which 
has a stack score equal to the best. If f_refi = f-mini, 
this can be accomplished by performing a major sort on 
the stack score StSc and a minor sort on the reference 
time f_re f . 

This guarantees that lubsfL(t) = lubL(f) for t < t_refp 
(where p denotes the theory which is about to be 
popped) and therefore the relevant part of the least- 
upper-bound has been computed by the time that it is 
needed. Since the bound, at the time that it is needed, 
is the least-upper-bound, the search is admissible and 
near-optimal. Furthermore, when the first sentence is 
output, the least-upper-bound-so-far will be the exact 
least-upper-bound. 

A stack pruning threshold can be used to limit the stack 
size [16]. Any theory whose SfSc falls below the thresh- 
old can be deleted from the stack. This can be applied 
on stack insertions and any time the stack is reorganized. 
This stack pruning threshold has little effect on the com- 
putational requirements and can therefore be set very 
conservatively to essentially eliminate any chance that 
the correct theory will be pruned. 

In a time-synchronous (TS) no-grammar/unigram lan- 
guage model Viterbi decoder, all word output likelihoods 
are compared and only the maximum is passed on as 
input to the word models. Thus by comparison, only 
theories that dominate the lubsf need be retained on 
the stack and the stack pruning threshold can be set to 
zero for top-1 recognition. Since all stack scores, StSc, 
of all theories popped from the stack will be zero until 
the first sentence is output, all theories popped from the 
stack will be in reference time t_min order. (Of course, 
the stack pruning threshold must be non-zero if a top-N 
list of sentences is desired.) For top-N recognition, this 
algorithm adaptively raises the effective computational 
pruning threshold (which equals the current best StSc) 
by the minimum required to produce N output sentences, 
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subject to the limit placed by the stack pruning thresh- 
old. 

This algorithm is near-optimal and admissible only for 
a Viterbi decode using non-cross word acoustic models 
and a no-grammar or unigram language model. 

recognition. (While this algorithm can also perform top- 
N recognition with or without a language model, it can- 
not be made equivalent to the no-grammar/unigram lan- 
guage model version for top-N. Its pruning threshold is 
fixed and it will only output theories whose relative like- 
lihoods do not fall below the threshold.) 

A S T A C K  D E C O D E R  F O R  C S R  W I T H  
A L O N G - S P A N  L A N G U A G E  M O D E L  

The above algorithm fails with a long span language 
model because the overall best theory can have a less- 
than-best intermediate score. This less-than-best inter- 
mediate score can be locally "shadowed" by the best 
score and thus will not be popped from the stack [6]. 

An efficient stack decoder algorithm which can be used 
with cross-word acoustic models, the full (forward) de- 
coder, and longer-span (> 2) language models can be 
produced by two simple changes: 

1. change the stack ordering to be a major sort on the 
reference time t_ref  (favoring the lesser times) and 
a minor sort on the stack score StSe  and 

2. use a non-zero stack pruning threshold. 

The reference time t_re f  may also be changed from the 
minimum time which satisfies equation 3 used in the no- 
grammar/unigram language-model version to t_exit as 
defined in equation 5. (Either will work and both re- 
quired similar amounts of computation in tests.) This 
algorithm appears to be a simplification of one devel- 
oped at IBM [3]. 

This algorithm is not admissible because the correct 
theory can be pruned from the stack. The stack- 
pruning threshold now becomes the computational prun- 
ing threshold which controls the trade-off between the 
amount of computation and the probability of prun- 
ing the the correct theory by controlling the likelihood 
"depth" that will be searched. Unlike the previous algo- 
rithm, an (unpruned) theory cannot be shadowed be- 
cause it will be extended when its reference time is 
reached. This algorithm is quasi-time-synchronous be- 
cause it, in effect, moves a time bound forward and when- 
ever this time bound becomes equal to the reference time 
of a theory, the theory is expanded. 

Note that the stack pruning threshold can also be set 
to zero for no-grammar/unigram language model top-1 
recognition with this algorithm. With a zero stack prun- 
ing threshold and t_refl = t_minl,  it becomes equivalent 
to the near-optimal, admissible no-grammar/unigram 
language model algorithm described above for top-1 

D I S C U S S I O N  A N D  C O N C L U S I O N S  

The above stack-search algorithms have been imple- 
mented in a prototype implementation which uses real 
speech input, but does not yet have all of the features 
of the Lincoln TS CSR [13,14,15]. (The primary missing 
feature is cross-word phonetic modeling.) The proto- 
type runs faster than does the TS system on the cor- 
responding recognition task, frequently by a significant 
factor. (In fairness, the TS system does not include a fast 
match.) Current experience using the DARPA Resource 
Management Database [17] shows the required number 
of stack pops and the stack size to be surprisingly small. 
In addition, the prototype includes a proposed CSR-NL 
interface [12] and has been run with unigram, word-pair, 
bigram, and trigram language models accessed through 
the interface without difficulty. (It has also been run 
using a no-grammar language model, which, of course, 
does not require the interface.) This prototype imple- 
mentation has also been tested with vocabulary sizes up 
to 64K words. The CSR computation, which is dom- 
inated by the fast match, scales approximately as the 
square root of the vocabulary size. 

Methods for joining the acoustic matching of separate 
theories and caching of acoustic computations to reduce 
the acoustic match computation were described in ref- 
erence [16]. These algorithms were tested in a stack- 
decoder simulator (real stack decoder with simulated in- 
put data). The path join accelerator is used in the pro- 
totype stack decoder to remove copies of theories which 
are identical except for non-grammatical items such as 
optional intermediate silences. 

A* search using the scoring function described by Nils- 
son [11] (equation 6) requires computing the likelihood 
of the future data (h*(t) in equation 7). The optimal 
A* decoder requires exact evaluation of h*(t) which re- 
quires solving the top-1 recognition problem by some 
other means, such as a reverse direction TS decoder 
[19], before the A* search can begin. The alternative 
described here substitutes a near-optimal scoring func- 
tion which is derived from the A* search and requires 
negligible additional computation over that required by 
the search itselfl Since, as noted above, the Lincoln 
top-1 TS decoder takes more CPU time than does the 
near-optimal stack decoder, the near-optimal stack de- 
coder algorithm appears to be the most efficient of the 
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three approaches for top-1 recognition. In addition, the 
long-span language model version of the stack decoder 
can very easily integrate long-span language models into 
the search. However, if top-N recognition is the goal, 
the optimal A* search may be preferred because, once 
the price is paid for computing h*(t), the A* search can 
find the additional N-1 sentences very efficiently for no- 
grammar/unigram language models [19]. 

Recently, several other algorithms have been proposed 
for top-N recognition using A* search [9,19,22] which 
use the Nilsson formulation of the scoring function. All 
of these approaches use a reverse direction TS decoder 
to compute h*(t). (A reverse direction top-1 stack de- 
coder could also be used to compute h*(t).) (There are 
also some proposed non-A* methods for recognizing the 
top-N sentences [1,18,21]. In general, the bidirectional 
approaches appear to be more efficient than the unidi- 
rectional approaches.) These bidirectional A* methods 
must wait for the end of data (or a pseudo-end-of-data 
[9]) to begin the A* (or the reverse direction) pass. In 
contrast, because they do not need data beyond that nec- 
essary to extend the current theory (this includes data 
up to t_re f  required to choose the current theory), the 
two stack decoder formulations proposed here can pro- 
ceed totally left-to-right as the input data becomes avail- 
able from the front end. The long-span language-model 
version of the stack search will output all top-N theories 
with minimal delay following the end-of-data because all 
theories are pursued in quasi-parallel or, in top-1 mode, 
it can output the partial sentence as soon as all unpruned 
theories have a common partial history (initial word se- 
quence). (A similar technique for continuous output af- 
ter a short delay from continuous input exists for TS 
decoders [20].) 

One of the motivations for some of these other A* (and 
top-N) algorithms is as a method for using weaker and 
cheaper initial acoustic and language models to produce 
a top-N sentence list for later refinement by more de- 
tailed and expensive acoustic and/or language models, 
which now need only consider a few theories. In con- 
trast the algorithm proposed here integrates both the 
detailed acoustic and language models directly in the 
stack search and therefore need only produce a top-1 
output. It attempts to minimize the computation by ap- 
plying all available information to constrain the search. 
(The stack decoder as described here can, of course, also 
be used with weak and cheap acoustic and/or language 
models to produce a top-N list for later processing.) The 
ultimate choice between the two methods may be deter- 
mined by the number of sentences required by the top-N 
approaches and the relative computational costs of the 
various modules in each system. The architectural sim- 

plicity of each system may also have some bearing. 

The stack decoder has long shown promise for integrat- 
ing long-span language models and acoustic models into 
a single effective search which applies information from 
both sources into controlling the search. It has not been 
used at many sites, primarily due to the difficulty of 
making the search efficient. The algorithms described 
above will hopefully remove this barrier. 

A P P E N D I X :  D E R I V A T I O N  OF 
T H E  A* C R I T E R I O N  U S E D  IN 

E Q U A T I O N  2 
Nilsson [11] states the optimal A* criterion (slightly 
rewritten to match the speech recognition problem) as 

f i ( t )  = gi(t) + h*(t) (6) 

where f i ( t )  is the log-likelihood of a sentence with the 
partial theory i ending at time t, gi(t) is the log- 
likelihood of partial theory i, and h*(t) is the log- 
likelihood of the best extension of any theory from time 
t to the end of the data. (Nilsson uses costs which are 
interpreted here as negative log-likelihoods. All descrip- 
tions here will use sign conventions appropriate for log- 
likelihoods to be consistent with the rest of the paper.) 
The theory argmax (mtax fi(t)) is chosen as the next to 

i 
be popped from the stack and expanded. 

Equation 6 requires that the computation of the total 
likelihood of a sentence must be separable into a begin- 
ning part and an end part separated by a single time, 
which disallows this derivation for the full (forward) de- 
coder because the full decoder does not have a unique 
transition time between two words. Thus, the deriva- 
tion is limited to a decoder which is Viterbi between 
words. It also limits the derivation to non-cross-word 
acoustic models and no-grammar or unigram language 
model recognition tasks. 

Define 
f*( t )  = g*(t) + h*(t). (7) 

for the best theory with a word transition at time t. 
The function f* (t) is slowly varying with global maxima 
at the word transition points of the correct theory, at 
which points it equals the likelihood of the correct theory. 
Specifically, it is maximum at t = 0 and t = T. (T is the 
end of data.) Since gi(t) is an exact value (rather than 
a bound or estimate) for a tree search, g*(t) = lubgi(t) 
and since h*(t) is not a function of i, f*( t )  = lubfi(t). 

Subtract equation 7 from equation 6 and define ]i(t) 

]i(t) = f i ( t )  -- f*( t)  = gi(t) -- g '( t ) .  (8) 
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This is just  equation 2 in a different notation: gi(t) = 
Li (t) and g* (t) = ubL(t)  (specifically lubL(t))  and there- 
fore ] i( t)  = Ai(t). Thus, if f*(t) were a constant, ]i(t) 
would just  be an offset from fi(t) and the search would be 
opt imum because argmax (n~ax ]i(t)) would always be 

i 

equal to argTax (n ax fi(t)) As noted earlier, f*(t) has 
maxima at word transition times of the correct theory. 
Thus ]i(t) is zero at word transition times on the correct 
theory and < 0 for all other i and t. Thus the search 
is admissible because it can never block the correct the- 
ory by giving a better  score to an incorrect theory, but 
sub-optimal because it can cause incorrect theories to 
be popped from the stack and be evaluated. The eval- 
uation function "error" f* (t) - f* (0) is slowly varying 
and small, therefore the search is near-optimal. 

Since the stack decoder treats each theory and all points 
on the likelihood distribution Li(t)) as a unit, each the- 
ory is evaluated at its opt imum point: the max Ai(t) as 

t 
defined in equation 3, to give it its "best" chance and 
then, for efficiency, the likelihood of all points on the 
distribution Li(t)  are extended in one operation. 

The fact that  all StSci are zero until the first sentence is 
output  and the tie is broken by choosing the theory with 
the minimum reference time t_min, insures that  all can- 
didate theories which might alter lubsfLi(t  <_ t_minpop) 
have already been computed. Thus the lubsfL(t) = 
lubL(t) for t _< t_minpop. 

This derivation shows the stack criterion max StSci 
with a minimum t_minl tie-breaker to be adequate to 
perform a near-optimal admissible A*-search Viterbi- 
recognition with non-cross word acoustic models and 
a no-grammar/unigram language-model using the stack 
decoder algorithm. 
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