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1. ABSTRACT 

Benchmarking the performance for telephone-network-based 
speech recognition systems is hampered by two factors: lack of 
standardized databases for telephone network speech, and insuffi- 
cient understanding of the impact of the telephone network on rec- 
ognition systems. The N-TIMIT database was used in the 
experiments described in this paper in order to "calibrate" the 
effect of the telephone network on phonetic classification algo- 
fithrns. Phonetic classification algorithms have been developed for 
wide-band and telephone quality speech, and were tested on sub- 
sets of the TIMIT and N-TIMIT databases. The classifier 
described in this paper provides accuracy of 75% on wide-band 
TIM1T data and 66.5% on telephone quality N-TIMIT data. Over- 
all the telephone network seems to increase the error rate by a fac- 
tor of 1.3. 

2. INTRODUCTION 

Researchers typically make use of standardized databases 
in order to benchmark the performance of speech recogni- 
tion/understanding systems between and within laborato- 
ries. Comparisons between laboratories are important in 
order to benchmark the progress of the field in general. 
Comparisons within a laboratory are important to bench- 
mark progress as a function of the research-and-develop- 
ment cycle. Benchmarking phonetic classification 
algorithms for telephone-network-based speech recogni- 
tion/understanding systems poses two problems. First, there 
is no commonly-accepted standard database for evaluating 
phonetic classification for telephone quality speech. As a 
result, few if any inter-laboratory comparisons have been 
made. Second, the telephone network presents speech rec- 
ognition/understanding systems with a band-limited, noisy, 
and in some cases distorted speech signal. While we would 
like to benchmark the performance of recognition systems 
intended for network speech against that of systems 
intended for wide-band speech, we do not have adequate 
quantification of the impact of the telephone network's sig- 
nal degradation on the performance of phonetic classifica- 
tion algorithms. Therefore, we do not know whether the 
performance of a telephone-speech classification algorithm 

is limited by characteristics of the algorithm(s) or by char- 
actedstics of the test utterances themselves. 

Both problems noted above could be addressed given a 
standardized database in which the speech data is presented 
in two forms: speech with wide-band characteristics and 
the same speech data with telephone network characteris- 
tics. As reported in Jankowski et al. [1], the N-TIMIT data- 
base was created for this purpose. The N-TIMIT database 
is identical to TIMIT [2] except that the former has been 
transmitted over the telephone network. Figure 1 shows a 
sample spectrogram of a TIMIT and N-TIMIT utterance. 
The N-TIMIT versions were recorded over many different 
transmission paths in order to get a representative sample 
of the range of telephone network conditions. This data 
presents a platform to "calibrate" the impact of the tele- 
phone network on the performance of phonetic classifica- 
tion algorithms. 

The telephone network affects the speech signal it carries 
in many ways. Chigier and Spitz[3] discussed the possible 
effects of source characteristics (how the speech is pro- 
duced) and transmission characteristics (the environment in 
which the speech is produced, including ambient noise lev- 
els and the characteristics of the channel through which the 
speech is recorded). Some of the more obvious changes are 
due to band limitation (the signal is band-passed between 
approximately 300 Hz and 3400 Hz), addition of noise 
(both switching and line noise), and crosstalk. The goal of 
this experiment is to quantify the combined effects of sig- 
nal changes due to telephone transmission characteristics 
on phonetic classification and to present the performance of 
a classifier under development. In doing this we hope to 
provide a model for inter-laboratory and intra-laboratory 
benchmarking of telephone-based vs. wide-band algo- 
rithms. 

3. EXPERIMENTAL DESIGN 

The wide-band speech data used in this experiment consists 
of a subset of utterances from the TIMIT database[2]. In 
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Figure 1: Spectrograms of an utterance in TIMIT (above) and N-TIMIT (below). 

order to investigate the effects of telephone network trans- 
mission characteristics, the same subset of the TIMIT utter- 
ances used by Lee[5], and their N-TIMIT counterparts, 
were selected. Specifically, the test set consisted of three 
sentences selected at random from the Brown Corpus[4] 
("si" utterances), and five sentences that provide a wide 
coverage of phoneme pairs ("sx" utterances), all for each of 
20 speakers. This resulted in 6016 phonetic segments in 
160 unique sentences to be classified into one of 39 catego- 
ries, also defined by Lee. The "si" and "sx" utterances for 
the remaining 610 speakers were used to train the classifica- 
tion system. 

product between the spectral slice and each of the 40 fre- 
quency responses of Seneff's auditory model[6]. This is 
similar to passing the signal through a bank of critical-band 
filters. 

5. CLASSIFICATION 

A full-covariance gaussian classifier was then used to clas- 
sify each of the incoming segments into one of the 39 pho- 
nemes. The gaussian classifier used 56 context-independent 
models based on a uni-gram model for the phonemes. 

4. SIGNAL PROCESSING 5.1. Feature Extraction 

Identical signal processing was performed on TIMIT and 
N-TIMIT. The speech signals were sampled at 16 kHz and 
pre-emphasized. We have developed a new signal represen- 
tation: bark auditory spectral coefficients (BASC). The 
BASC was obtained by filtering the FFT representation 
with the filters of Seneff's auditory model[6]. Specifically, a 
128-point FFT was performed with a 28-ms Hanning win- 
dow every 5 ms. The window size of 28 ms was empirically 
determined to be the best for this task given this classifica- 
tion system. Each spectral slice, produced by the FFT, was 
down-sampled to 40 coefficients by computing the dot 

Each segment was divided in time into three equal parts. 
Forty coefficients were averaged across each third, resulting 
in 120 features for each phoneme. The average spectral dif- 
ference was computed with its center at the begin boundary 
and then calculated again with its center at the end bound- 
ary. This spectral difference measure was computed for 
each spectral coefficient (there are 40 spectral coefficients) 
around each boundary in a segment. Therefore this gave a 
total of 80 spectral difference features. In calculating the 
spectral average, the frames further away from the center of 
the boundary were weighted more heavily than the frames 
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close to the boundary. This weighting scheme is similar to 
that proposed by Rabiner et al. [7]. Let S[f,c] be the value of 
the spectral representation at f ramef and spectral coeffi- 
cient c. Thus, the spectral difference coefficient at a seg- 
ment boundary, sb (begin or end boundary), AS[sb,c] is 
defined as: 

N 1 
Eq. 1: AS[sb, c] = R { ~ w(S[(sb-w),c]-S[(sb+w),c])  } 

w = |  

where 2N is the number of frames in the overall window, 
and w is the weighting factor. 

A pilot study was conducted to determine whether weighted 
averages provide better classification performance than tra- 
ditional unweighted (the special case of w = 1 in Eq. 1) 
averages using the current classification system. The 
weighted versions slightly outperformed the unweighted 
averages when testing on the cross-validation set described 
above. 

Another pilot study was designed to determine the optimal 
number of frames to use when computing the weighted 
averages. The number of frames included was systemati- 
cally varied from 0 to 10 (0 _< N _< 10 in Eq 1), both preced- 
ing and following the boundary, which resulted in a 
weighted average difference for each coefficient. (Note that 
for N = 0 frames, no difference information is denved). The 
optimal number of frames to include in the weighted aver- 
age was found to be 7, which provided the highest classifi- 
cation score on the cross-validation set. 

The average spectral distance calculations result in 40 fea- 
tures at the begin boundary and 40 features at the end 
boundary. These were combined with the 120 features 
derived for each segment described above. Duration and 
maximum zero crossing count were added to the pool of 
features, resulting in 202 features that were passed on to the 
classification system. 

5.2. Feature Selection 

Principal component analysis was used to reduce the num- 
ber of input dimensions to the classifiers. The principal 
components were ranked in decreasing order according to 
amount of variance accounted for in the original data (i.e., 
based on the eigenvalues). The final set of principal compo- 
nents used was determined empirically by adding one pnn- 
cipal component at a time to the classifier, training the 
classifier, and then evaluating performance on the cross- 
validation set. Finally, the set of pnncipal components that 
produced the best performance on the cross-validation set 
was used to train the classifier on the entire training set. 
This procedure was carried out separately for the N-TIMIT 
and the TIMIT database. The resulting two classifiers were 
evaluated on their respective test sets. 

Ranking the pnncipal components according to the amount 
of variance they account for may not reflect how well they 
discriminate between classes. Therefore, another procedure 
was also evaluated to determine which of the principal com- 
ponents have the most discriminating power. This proce- 
dure was a stepwise add-on procedure based on adding the 
principal component that improves the performance of the 
classifier the most on the cross-validation set. This ranking 
of the pnncipal components was determined by first train- 
ing a classifier on all 202 principal components. Another 
classifier was then created by taking the features from the 
initial classifier, one at a time, and testing on the cross-vali- 
dation set. The pnncipal component that performed the best 
was next used with the remaining features one at a time, and 
now the pair of features that gave the best performance was 
used with the remaining features. This procedure was car- 
ried out by incrementally adding pnncipal components to 
the classifier based on their ability to improve performance. 
This procedure is not an optimal procedure, but it is compu- 
tationally feasible (the optimal procedure would require 
testing 2202 (approximately 6.4x106°) classifiers). 

6. R E S U L T S  

The eigenvectors are ordered according to the amount of 
variance that they account for in the original feature space; 
we can therefore draw a plot of the percentage of the total 
variance the pnncipal components account for of the origi- 
nal data as the number of pnncipal components increases. 
Figure 2 displays the number of pnncipal components in the 
system vs. the percentage of the total variance that is 
accounted for by those principal components. In N-TIMIT 
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Figure 2: Number of principal components used vs. the 
percentage of variance accounted for by the principal 
components. 
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information in the spectrum above 3400 Hz is small (due to 
the bandpass characteristics of the telephone network) and 
so the variance of the features that represent this informa- 
tion is small. Consequently fewer principal components are 
needed to account for the variability of these features. This 
can be seen in Figure 2, where the N-TIMIT curve is higher 
than the TIMIT curve. A larger percentage of the variance 
is accounted for in N-TIMIT than in TIMIT for the same 
number of eigenvectors. 

Figure 3 is a plot of  TIMIT error rate and N-TIMIT error 
rate on the cross-validation set. It is interesting to note that 
after the top 10 principal components have been used, the 
mean value of  the ratio of  N-TIMIT error rate to TIMIT 
error rate is 1.3, with a standard deviation of  only 0.019. 
The error rate with 10 principal components is 39.6% and 
48.1% for TIMIT and N-TIMIT respectively and goes 
down to a minimum of 25.8% and 34.1% for TIMIT and N- 
TIMIT respectively on the cross-validation set. The number 
of principal components discovered to give the best classifi- 
cation performance on the cross-validation set was 58 for 
the TIMIT classifier and 65 for the N-TIMIT classifier. The 
improvements in classification accuracy, however are very 
small after approximately 35 principal components have 
been included. 
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Figure 3: Number of principal components used vs. 
error rates for TIMIT and N-TIMIT classifiers on the 
cross-validation set. 

The two procedures for ranking the principal components 
were compared. The first procedure ranked the principal 
components according to the variance they accounted for; 
the second ranked them according to their discriminative 
power. No difference in classification accuracy was found 
between these two procedures. This finding concurs with 
Brown[8]; The performance of  his system when a large 

number of principal components was used was the same as 
when he used discriminative analysis. 

The first-choice accuracies of  the TIMIT and N-TIMIT 
classifiers on the test set are 74.8% and 66.5% respectively. 
Error rates of the two classifiers on the test set appear in 
Table 1. As on the cross-validation set, the phonetic classifi- 
cation error rate on the test set is also increased by a factor 
of  1.3 by the telephone network. In order to determine 
whether TIM1T and N-TIMIT classification accuracy differ 
significantly, a McNemar test of symmetry was conducted. 
The results of this analysis revealed significant differences 
between TIMIT and N-TIMIT classifier performance (p < 
0.01). 

First Choice Top 2 Choices Top 3 Choice 
Database 

Error Rate Error Rate Error Rate 

TIMIT i 25.2% 11.6% 6.4% 
i 

N-TIMIT 33.5% 17.5% 11.4% 

Table 1: Error rotes on test seL 

A McNemar test of  symmetry was also conducted sepa- 
rately on each of the 39 phonemes to determine which pho- 
nemes accounted for the significant differences. The results 
of this analysis revealed a significant effect of database on 
13 of  the 39 phonemes (p < 0.01). These phonemes are 
shown in Table 2. The percentage of N-TIMIT phonemes 

Difference in Difference in 
Phoneme 

% correct # correct 

f I 29 25 
I 

g 28 14 

k 27 45 

s 22 55 

hh 20 13 

m 18 24 

r 17 34 

p 17 19 

z 15 22 

1 13 29 

er 12 23 

n 8 30 

el 3 38 

Table 2: Phonemes that are significantly different 
(p < 0.01) between TIMIT and N-TIMIT. 

correctly classified were subtracted from the percentage of 
TIMIT phonemes correctly classified. Results are presented 
in decreasing order. For example, the accuracy on the pho- 
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neme,/f / ,  is 29% higher on TIMIT than on N-TIMIT. A 
large number of these errors are predictable based on the 
acoustic characteristics of the segments and their sensitivity 
,to band-passing or noise. A spectrogram of the same TIMIT 

J and N-TIMIT utterance is shown in Figure 1. This utterance 
was chosen because it highlights several of the phonemes 
that are classified significantly differently in TIMIT and N- 
TIMIT. Many of the classification errors are explainable 
from the spectrogram. The ffication for/s/, for example, is a 
visible and salient cue in the TIMIT utterance, but is nearly 
non-existent in the telephone quality N-TIMIT version. 

7. CONCLUSIONS 

In developing  the TIMIT and N-TIMIT classif iers  
described in this experiment, three findings emerged for 
improving classification performance: 

1. A Hanning window size of 28 ms was determined to 
be the best for this task; 

2. Weighted average spectral differences outperformed 
unweighted averages; 

3. The number of frames to include in the weighted 
average spectral difference was found to be 7. 

The advantage of weighted spectral differences is supported 
by earlier results reported by Rabiner et al. [7]. It remains to 
be seen whether the characteristics determined in this set- 
ting will transfer well to other recognition tasks. 

The performance of the TIMIT classifier (75%) compares 
f a v o r a b l y  to r e su l t s  r epo r t ed  by o ther  r e sea rch-  
ers[5,9,10,11]. Results indicate that the telephone network, 
in general, increases the phonetic classification error rate by 
a factor of 1.3. This correction factor may be useful in our 
attempts to benchmark the performance of wide-band vs. 
network based recognition systems. Furthermore, this study 
sets a first benchmark on the N-TIMIT database. We hope 
to encourage others to evaluate their systems on this data- 
base and in so doing follow the model established by our 
colleagues working on wide-band speech. 
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