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ABSTRACT 
We describe two attempt to improve our stochastic language models. 
In the first, we identify a systematic overestimation in the traditional 
backoff model, and use statisticalreasoning to correct it. Our modifi- 
cation results in up to 6% reduction in the perplexity of various tasks. 
Although the improvement is modest, it is achieved with hardly any 
increasein the complexity of the model. Both analysis and empirical 
data suggestthat the moditieation is most suitable when training data 
is sparse. 

In the second attempt, we propose a new type of adaptive language 
model. Existing adaptive models use a dynamic eacbe, based on 
the history of the document seen up to that point. But another 

source of information in the history, within-document word sequence 
correlations, has not yet been tapped. We describe a model that 
attempts to capture this information, using a framework where one 
word sequence laJggers another, eansing its estimated probability to 
be raised. We discuss various issues in the design of such a model, 
and describe our first attempt at building one. Our preliminary results 
include a perplexity reduction of between 10% and 32%, depending 
on the test set. 

1. INTRODUCTION 
Linguistic constraints are an important factor in human com- 
prehension of  speech. Their effect on automatic speech recog- 
nition is similar, in that they provide both a pruning method 
and a means o f  ordering likely candidates. As vocabularies 
for speech recognition systems increase in size, more accurate 
modeling o f  linguistic constraints becomes essential. 

Two fundamental issues in language modeling are smooth- 
ing and adaptation. Smoothing allows a model to assign 
reasonable probabilities to events that have never been ob- 
served before. Adaptation takes advantage o f  recently gained 
knowledge - -  the text seen so far - -  to adjust the model's 
expectations. 

In what follows, we discuss two attempts at improving our 
current stochastic language modeling techniques. In the first, 
we try to improve smoothing by correcting a deficiency in 
a successful and well known smoothing method, the backoff 
model. In the second, we propose a novel kind of  adapta- 
tion, one that is based on correlation among word sequences 
occurring in the same document. 

2. CORRECTING OVERESTIMATION 
IN THE BACKOFF MODEL 

2.1. The  P r o b l e m  

The backoff n-gram language model[ l]  estimates the prob- 
n--1 ability of  w,, given the immediate past history w~ = 

(wl . . . .  w~-0 .  It is defined recursively as: 

Pn(w"lw~-t) = / (1 - d)C(w~) / C(~1-1) if C(w~) > 0 
o~(C(w~-l)) • en_l(wnlw~ -1) if C(w~) = 0 

k 
(1) 

where d, the discount ratio, is a function of C(w~), and the 
a ' s  are the backoff  weights, calculated to satisfy the sum-to-1 
probability constraints. 

The backoff language model is a compact yet powerful way of  
modeling the dependence of  the current word on its immediate 
history. An important factor in the backoff model is its be- 
havior on the backed-off cases, namely when a given n-gram 
w~ is found not to have occurred in the training data. In these 
cases, the model assumes that the probability is proportional 
to the estimate provided by the n-1-gram, Pn-l(Wn [W~- 1). 

This last assumption is reasonable most of  the time, since no 
other sources o f  information are available. But for frequent 
n- l -grams,  there may exist sufficient statistical evidence to 
suggest that the backed-off probabilities should in fact be 
much lower. This phenomenon occurs at any value of  n, but 
is easiest to demonstrate for the simple case o f  n = 2, i.e. a 
bigram. Consider the following fictitious but typical example: 

N = 1,000,000 
C("ON") = 10,000 
CCAT') = 10,000 
C("CALL") = I00 
C("ON","AT") = 0 
C("ON","CALL") = 0 

N is the total number o f  words in the training set, and C(wz, w i) 
is the number o f  (wi, wj) bigrams occurring in that set. The 
backoff model computes: 
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P("Kr') = 

P("CALL") = i 10,000 
P("Nr'r'ON") = ~("ON") • P("AT") = a("ON"). ]-~ 

P("CALL"I"ON") = ~("ON") P("CALL") = c~("ON")- 1 
10000 

Thus, according to this model, P("AT"I"ON") >> 
P("CALL"["ON"). But this is clearly incorrect. In the case of 
"CAIJ?',  the expected number of ("ON","CALL") bigrams, 
assuming independence between "ON" and "CALL", is 1, so 
an actual count of 0 does not give much information, and 
may be ignored. However, in the case of "AT", the expected 
chance count of ("ON","AT") is 100, so an actual count of 
0 means that the real probability of P("AT"I"ON") is in fact 
much lower than chance. The backoff model does not cap- 
ture this information, and thus grossly overestimates P("AT"I 
"ON"). 

This deficiency of the backoff model has been pointed out 
before[2, p.457], but, to the best of our knowledge, has never 
been corrected. We suspect the reasons are twofold. First, 
it only occurs during backed-off cases. For a well trained 
bigram or trigram, this happens in only a small fraction of 
the time. Second, overestimation degrades perplexity only 
mildly and indirectly, by affecting a slight underestimation of 
all the other probabilities. 

We therefore did not expect this phenomenon to have a strong 
impact on perplexity. Nevertheless, we wanted to correct the 
problem and to measure its effect. 

2.2. The Solution: 
Confidence Interval Capping 

Let C(~1) = 0. Given a global confidence level Q, to be 
determined empirically, we calculate a confidence interval 
in which the true value of P(w~lw~ -1) should lie, using the 
constraint: 

[1 -- P(wnmw~-l)]c(~ -') > Q (2) 

The confidence interval is therefore [0 . . .  (1 - Q1/C(~-')) ]. 
We then provide another parameter, P (0 < P < 1), and es- 
tablish a ceiling, or a cap, at a point P within the confidence 
interval: 

CAPe,e(C(w~- I)) = P. (1 - Q1/C(~ -~)) (3) 

We now require that the estimated P(wnlw~ -1) satisfy: 

P(wn I w~- 1) _< CAPQ,p (C(w? - 1 )) (4)  

The backoff case of the standard model is therefore modified 
to: 

e(w.lw~ -1) = 
min [ o~(w~- l ) .  P,~_l(w,,Iw~-l), CAPQ,p(C(w~-X)) I5)  

This capping off of the estimates requires renormalization. 
But renormalization would increase the a 's ,  which would in 
turn cause some backed-off probabilities to exceed the cap. 
An iterative reestimation of the cz's is therefore required. The 
process was found to converge rapidly in all cases. 

Note that, although some computation is required to determine 
the new weights, once the model has been computed, it is no 
more complicated neither significantly more time consuming 
than the original one. 

2.3. R e s u l t s  

The bigrarn perplexity reduction for various tasks is shown 
in table 1. BC-48K is the brown corpus with the unabridged 

test set backoff rate PP reduction 
BC-48K 30% 6.3% 
BC-5K 15% 2.5% 
ATIS 5% 1.7% 
WSJ-5K 2% 0.8% 

Table 1: Perplexity reduction by Confidence Interval Capping 

vocabulary of 48,455 words. BC-5K is the same corpus, 
restricted to the most frequent 5,000 words. ATIS is the class- 
based bigram developed at CMU for the ATIS task. WSJ is 
the official CSR 5c.vp task. 

Although the reduction is modest, as expected, it should be 
remembered that it is achieved with hardly any increase in 
the complexity of the model. As can be predicted from the 
statistical analysis, when the vocabulary is larger, the backoff 
rate is greater, and the improvement in perplexity can be 
expected to be greater too. 

3. T R I G G E R - B A S E D  A D A P T A T I O N  

3.1. Motivation and A n a l y s i s  

Several adaptive language models have been proposed re- 
cently [3, 4, 5, 6], which use caching of the partially dictated 
document, and interpolate a dynamic component based on the 
cache with the static component. These models have been 
successful in reducing the perplexity of the text considerably, 
and [5] also reports a positive effect on the word recognition 
rate. 

All of these models make direct use of the words in the his- 
tory of the document. They take advantage of the fact that 
ygords, and combinations of words, once occurred in a given 

e 

document, have a higher likelihood of occurring in it again. 

But there is another source of information in the history that 
has not yet been tapped: within-document correlation between 
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words or word sequences. Consider the sentence: 

"The district attorney's office launched a compre- 
hensive investigation into loans made by several 
well connected banks." 

Based on this sentence alone, a cache-based model will 
not be able to anticipate any of the constituent words. 
But a human reader might use "DISTRICT ATTORNEY" 
and/or "LAUNCHED" to anticipate "INVESTIGATION", 
and "LOANS" to anticipate "BANKS". 

In what follows, we describe a model that attempts to capture 
this type of information in a systematic way, using correlation 
between word sequences derived from a large corpus of text. 
In this model, if a word sequence A is positively and signifi- 
cantly correlated with another word sequence B, then (A ---~ B) 
is considered a "trigger pair", with A being the trigger and B 
the triggered sequence. When A occurs in the document, it 
triggers B, causing its probability estimate to be increased. 

In order for such a model to be effective, the following issues 
have to be addressed: 

1. How to filter all possible trigger pairs. Even if we restrict 
our attention to pairs where A and B are both single 
words, the number of such pairs is too large. Let V be 
the size of the vocabulary. Note that, unlike in a bigram 
model, where the number of different consecutive word 
pairs is much less than V 2, the number of word pairs 
where both words occurred in the same document is a 
significant fraction of V 2. 

2. How to combine evidence from multiple triggers. This is 
a special case of the general problem of combining evi- 
dence from several sources. We discuss several heuris- 
tics, and a plan for a more disciplined approach. 

3. How to combine the triggering model with the static 
model. 

We will discuss all 3 problems and our proposed solutions to 
them. This is ongoing research, and not all of  our ideas have 
been tested yet. A solution to (1) will be discussed in some 
detail. When combined with simple minded solutions to (2) 
and (3), it resulted in a perplexity reduction of between 10% 
and 32%, depending on the test set. We are currently working 
on implementing and testing some of the other solutions. 

3.2. Filtering the Trigger-Pairs 

Let "history" denote the part of the text already seen by the 
system. Let A, B be any two word sequences. Then the events 
B and Bo are defined as follows: 

B : B occurred in the history. 
Bo : B occurs next in the document. 

Let P(Bo) be the (unconditional) probability of Bo, and let 
P(Bo IA) be the conditional probability assigned to Bo by the 
trigger pair (A ---~ B). A natural measure of the information 
provided by A on Bo is the mutual information between the 
two: 

I(A :Bo)  = log n,n~lA) (6) 
(o) 

Note that, although mutual information is symmetric with 
regard to its arguments, it is generally not true that I(A : Bo) = 
l(g :At).  

Should mutual information be our figure of merit in selecting 
the most promising trigger pairs? I(A : Bo) measures the 
average number of bits we can save by considering A in pre- 
dictingBo. But this savings will materialize onlyifBo is true, 
namely if we indeed encounter the word sequence B next in 
the document. Our best estimate of this, at the time filtering 
is carried out, is P(Bo IA). We therefore define the expected 
utility of the trigger pair (A ~ B): 

U(A ---~ B) d~f I(A : Bo)P(Bo IA) (7) 

and suggest it as a criterion for selecting trigger pairs. 

3.3. Multiply-Triggered Sequences 
The problem of combining evidence from multiple sources is 
a general, largely unsolved problem in modeling. The ideal 
solution is to model explicitly each combination of values 
of the predictor variables, but this leads to an exponential 
growth in the number of parameters, which renders the model 
untrainable. At the other extreme, we can assume linearity 
and simply sum the contribution from the different sources. 
This may be a reasonable approximation in some models, but 
it is clearly inadequate in our case: "LOAN" is not 3 times 
more likely after 3 occurrences of "BANK" than it is after 
only 1 occurrence. 

Multiple triggers have several important functions: 

Increase the reliability of the prediction in the face of 
unreliable history. Since we usually rely on the speech 
recognizer to provide us with the history, each word has 
a nonnegligible chance of being erroneous. 

Disambiguate multiple-sense words. 
Compare: 

P("LOAN"o r'BANK") 
P("LOAN"o I"B ANK","FINANCIAL") 
P("LOAN"o I"BANK","RIVER") 

Intersect several broad semantic domains, and assign a 
higher weight to the intersected region. 
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Compare: 
P("PETE-ROSE"o I"BASEBALL") 
P("PETE-ROSE"o r'GAMBLING") 
P("PETE-ROSE". r'BASEBAI~I:',"GAMBLING") 

We plan to model multiply triggered sequences in a way that 
will capture at least some of the above phenomena. This 
requires statistical analysis of the interaction among the trig- 
gers, especially as it relates to the triggered sequence. We 
have just begun this analysis. One possibility, suggested by 
Kai-Fu Lee, is to consider the mutual information between 
the triggers. Triggers with high mutual information provide 
little additional evidence, and thus should not be added up. 

For the system reported below, we considered several simple 
heuristics: averaging the effect of the different triggers, using 
the most informative trigger only, and a quickly saturating 
sum. In the limited context of our current model we found no 
significant difference between the three. 

3.4. Integration with the Static Model 

A straightforward way to integrate the trigger model with a 
static model is to interpolate them linearly, using independent 
data to determine the weights. A somewhat fancier variant 
could use weights that depend on the length of the history. We 
expect the weight of the adaptive component to increase as the 
history grows. Using linear interpolation, the trigger model 
can be viewed as an adaptive unigram. This is the solution 
we used in the system reported below. 

However, linear interpolation is not without its faults. Ex- 
isting static models, such as N-grams, are excellent at using 
short-range information. For our adaptive component to be 
useful, it should complement the prediction power of the static 
component. But linear interpolation means that the adaptive 
component is blind to short-term constraints, yet the latter 
strongly affect the behavior of the static model. For example, 
in processing the sentence 

"The district attorney's office launched an investi- 
gation into loans made by several well connected 
banks." 

"DISTRICT-ATtORNEY" may trigger "INVESTIGA- 
TION", causing its unigram probability to be raised to 
its level in documents containing the words "DISTRICT- 
ATrORNEY". But when "INVESTIGATION" actually oc- 
curs, it is preceded by "LAUNCHED AN", which causes a 
trigram model to predict it with an even higher probability, 
rendering the adaptive contribution useless. 

Thus a better method of combining the two components is to 
consider the information already provided by the static model. 
This can be done in two different ways: 

• By using a POS-based trigger model, in the spirit of [4]. 

• By dynamically considering the probabilities produced 
by the static component, and modifying only those for 
which the adaptive component provided useful informa- 
tion. We are now experimenting with this method. Since 
it requires dynamic renormalization, it is only suitable 
for recognizers which compute the entire array of prob- 
abilities for every word. 

3.5. The Experiment 

We used most of the WSJ LM training corpus, 42M words in 
all, to train a conventional backoff trigram model[l] for the 
DARPA 20,000 closed-vocabulary task. We used the same 
data to derive the triggering list, as described below. 

The conditional probability provided by the trigger pair (A 
B) was estimated as: 

P(B,  IA) = 
Count of B in documents containing A 

number of words in documents containing A 
(8) 

For the unconditional probability P(Bo) we used the static 
unigram probability of B. We have since switched to using 
the average probability with which occurrences of B in the 
training data are predicted by the trigram model, but the results 
reported here do not reflect this change. 

We first created an index of all but the 100 most frequent 
words, keeping for each word a detailed description of its 
occurrences. We included paragraph, sentence, and word 
location information, to allow consideration of different dis- 
tance measures and different context levels. Excluding the 
top 100 words reduced the storage requirements by more than 
50%. We assumed that frequently used words provide little 
contextual information. Using the index, we systematically 
searched for ordered word pairs whose expected utility, as 
given by Eq. 7, exceeded a given threshold. Of the 400 mil- 
lion possible pairs, we selected some 620,000. 

For combining multiple triggering of the same word, we used 
MAX or AVERAGE or SUM saturating at 2*MAX, as de- 
scribed in section 3.3. We found no significant difference 
between these methods. 

We combined the trigger model with the static trigram using 
linear interpolation. The automatically derived weights varied 
from task to task, but were usually in the range of 0.02 to 0.06 
for the trigger component. We also tried to use weights that 
depend on the length of the history, but were surprised to find 
no improvement. 
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3.6. Results and Discussion 

We tested our combined model on a large collection of test 
sets, using perplexity reduction as our measure. A selection 
is given in table 2. Set WSJ-dev is the CSR development 
test set (70K words). Set BC-3 is the entire Brown Corpus, 
where the history was flushed arbitrarily every 3 sentences. 
Set BC-20 is the same as BC-3, but with history-flushing 
every 20 sentences. Set RM is the 39K words used in training 
the Resource Management system, with no history flushing. 
The last result in table 2 was derived by training the trigram 
on only 1.2M words of WSJ data, and testing on the WSJ 
development set. This was done to facilitate a more equitable 
comparison with the results reported in [5]. 

test set static PP dynamic PP improvement 
WSJ-dev 170 153 10% 
BC-3 430 311 28% 
BC-20 430 293 32% 
RM 987 : 116 88% 

WSJ/1.2M-dev 350 : 295 16% 

Table 2: Perplexity reduction by the trigger-based adaptive 
model for several test sets 

Our biggest surprise was that "self triggering" (trigger pairs of 
the form (A ~ A)) was found to play a larger role than would 
be indicated by our utility measure. Correlations of this type 
are an important special case, and are already captured by 
the conventional cache based models. We decided to adapt 
our model in the face of reality, and maintained a separate 
self-triggering model that was added as a third interpolation 
component (the results in table 2 already reflect this change). 
This independent component, although consisting of far fewer 
trigger pairs, was responsible for as much as half of the overall 
perplexity reduction. On tasks with a vastly different unigram 
behavior, such as the Resource Management data set, the self- 
triggering component accounted for most of the improvement. 

Why do self-triggering pairs have a higher impact than an- 
ticipated? One reason could be an inadequacy in our utility 
measure. Another could spring from the difference between 
training and testing. If the test set were statistically identical 
to the training set, the utility of every trigger pair would be 
exactly as predicted by our expected utility measure. Since in 
reality the training and testing sets differ, the actual utility is 
lower than predicted. All trigger pairs suffer a degradation, 
except for the self-triggering ones. The latter hold their own 
because self correlations are robust and are better maintained 
across different corpora. This explains why the self-triggering 
component is most dominant when the statistical difference 
between the training and testing data is greatest. 

4. SUMMARY AND CONCLUSIONS 
We presented two attempts to improve our stochastic lan- 
guage modeling. In the first, we identified a deficiency in 
the conventional backoff language model, and used statistical 
reasoning to correct it. Our modified model is about as simple 
as the original one, but gives a slightly lower perplexity on 
various tasks. Our analysis suggests that the modification is 
most suitable when training data is sparse. 

In our second attempt, we extended the notion of adaptation 
to incorporate within-document word sequence correlation, 
using the framework of a trigger pair. We discussed the issues 
involvedin constructing such a model, and reported promising 
improvements in perplexity. We have only begun to explore 
the potential of trigger-based adaptive models. The results 
reported here are preliminary. We believe we can improve our 
performance by implementing many of the ideas suggested in 
sections 3.2, 3.3 and 3.4 above. Work is already under way. 
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