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ABSTRACT 

The Air Traffic Information Service task is currently used by 
DARPA as a common evaluation task for Spoken Language 
Systems. This task is an example of open type tasks. Subjects are 
given a task and allowed to interact spontaneously with the sys- 
tem by voice. There is no fixed lexicon or grammar, and subjects 
are likely to exceed those used by any given system. In order to 
evaluate system performance on such tasks, a common corpus of 
training data has been gathered and annotated. An independent 
test corpus was also created in a similar fashion. This paper 
explains the techniques used in our system and the performance 
results on the standard set of tests used to evaluate systems. 

1. SYSTEM OVERVIEW 

Our Spoken Language System uses a speech recognizer 
which is loosely coupled to a natural language understand- 
ing system. The SPHINX-II speech recognition system 
produces a single best hypothesis for the input. It uses a 
backed-off class bigram language model in decoding the 
input. This type of smoothed stochastic language model 
provides some flexibility when presented with unusual 
grammatical constructions. The single best hypothesis is 
passed to the natural language understanding system which 
uses flexible parsing techniques to cope with novel phras- 
ings and misrecognitions. In addition to the basic speech 
recognition and natural language understanding modules, 
we have developed techniques to enhance the performance 
of each. We have developed an environmental robustness 
module to minimize the effects of changing environments 
on the recognition. We have also developed a system to 
use a knowledge base to asses and correct the parses 
produced by our natural language parser. We present each 
of the modules separately and discuss their evaluation 
results in order to understand how well the techniques per- 
form. The authors on each line in the paper heading reflect 
those people who worked on each module respectively. 

2. FLEXIBLE PARSING 

Our NL understanding system (Phoenix) is flexible at 
several levels. It uses a simple frame mechanism to 
represent task semantics. Frames are associated with the 

various types of actions that can be taken by the system. 
Slots in a frame represent the various pieces of information 
relevant to the action that may be specified by the subject. 
For example, the most frequently used frame is the one 
corresponding to a request to display some type of flight 
information. Slots in the frame specify what information is 
to be displayed (flights, fares, times, airlines, etc), how it is 
to be tabulated (a list, a count, etc) and the constraints that 
are to be used (date ranges, time ranges, price ranges, etc). 

The Phoenix system uses recursive Iransition networks to 
specify word patterns (sequences of words) which cor- 
respond to semantic tokens understood by the system. A 
subset of tokens are considered as top-level tokens, which 
means they can be recognized independently of surround- 
ing context. Nets call other nets to produce a semantic 
parse tree. The top-level tokens appear as slots in frame 
structures. The frames serve to associate a set of semantic 
tokens with a function. Information is often represented 
redundantly in different nets. Some nets represent more 
complex bindings between tokens, while others represent 
simple stand-alone values. In our system, slots (pattern 
specifications) can be at different levels in a hierarchy. 
Higher level slots can contain the information specified in 
several lower level slots. These higher level forms allow 
more specific relations between the lower level slots to be 
specified. For example, from denver arriving in dallas 
after two pm will have two parses, 

[DEPART LOC] from [de part_loc] [city] den- 
ver [ARRIVE_LOC] arnvmg In [arrive loc] 
[ city ] dallas [DEPART_TIME ] 
[depart_time_range] after [start_time] 
[time] twopm 

and 

[DEPART LOC] from [depart loc] [city] den- 
ver [ARRIVE] an/ving in [ar~ve loc] [city] 
dallas [ a r rive_t ime_range ] after~ s t a rt_t ime ] 
[time] twopm 

The existence of the higher level slot [ARRIVE] allows 
this to be resolved. It allows the two lower level nets 
[arrive loc] and [arrive_time_range] to be 
specifically associated. The second parse which has 
[arrive loc] and [arrive time] as subnets of 
the slot [ARRIVE] is the preferred-interpretation. In pick- 
ing which interpretation is correct, higher level slots are 
preferred to lower level ones because the associations be- 
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tween concepts is more tightly bound, thus the second 
(correct) interpretation is picked here. The simple heuris- 
tic to select for the interpretation which has fewer slots 
(with the same number of words accounted for) allows the 
situation to be resolved correctly. 

The parser operates by matching the word patterns for 
tokens against the input text. A set of possible interpreta- 
tions are pursued simultaneously. A subsumption algo- 
rithm is used to find the longest version of a phrase for 
efficiency purposes. As tokens (phrases) are recognized, 
they are added to frames to which they apply. The algo- 
rithm is basically a dynamic programming beam search. 
Many different frames, and several different versions of a 
frame, are pursued simultaneously. The score for each 
frame hypothesis is the number of words that it accounts 
for. At the end of an utterance the parser picks the best 
scoring frame as the result. 

The parse is flexible at the slot level in that it allows slots 
to be filled independent of order. It is not necessary to 
represent all different orders in which the slot patterns 
could occur. Grammatical restarts and repeats are handled 
by overwriting a slot if the same slot is subsequently 
recognized again. 

The pattern matches are also flexible because of the way 
the grammars are written. The patterns for a semantic 
token consist of mandatory words or tokens which are 
necessary to the meaning of the token and optional ele- 
ments. The patterns are also written to overgenerate in 
ways that do not change the semantics. This overgenera- 
tion not only makes the pattern matches more flexible but 
also serves to make the networks smaller. For example, 
the nets are collapsed at points such that tense, number and 
case restrictions are not enforced. Articles A and AN are 
treated identically. 

The slots in the best scoring frame are then used to build 
objects. In this process, all dates, times, names, etc. are 
mapped into a standard form for the routines that build the 
database query. The objects represent the information that 
was extracted from the utterance. There is also a currently 
active set of objects which represent constraints from pre- 
vious utterances. The new objects created from the frame 
are merged with the current set of objects. At this step 
ellipsis and anaphora are resolved. Resolution of ellipsis 
and anaphora is relatively simple in this system. The slots 
in frames are semantic, thus we know the type of object 
needed for the resolution. For ellipsis, we add the new 
objects. For anaphora, we simply have to check that an 
object of that type already exists. 

Each frame has an associated function. After the infor- 
mation is extracted and objects built, the frame function is 
executed. This function takes the action appropriate for 
the frame. It builds a database query (if appropriate) from 
objects, sends it to SYBASE (the DataBase Management 
System we use) and displays output to the user. This sys- 
tem has been described in previous papers. [1] [2] 

2.1. Natural Language Training Data 

The frame structures and patterns for the Recursive Tran- 
sition Networks were developed by processing transcripts 
of subjects performing scenarios of the ATIS task. The 
data were gathered by several sites using Wizard 
paradigms. This is a paradigm where the subjects are told 
that they are using a speech recognition system in the task, 
but an unseen experimenter is actually controlling the 
responses to the subjects screen. The data were submitted 
to NIST and released by them. There have been three sets 
of training data released by NIST: ATIS0, ATIS1 and 
ATIS2. We used only data from these releases in develop- 
ing our system. A subset of this data (approximately 5000 
utterances) has been annotated with reference answers. 
We have used only a subset of the ATIS2 data, including 
all of the annotated data. The development test sets (for 
ATIS0 and ATIS1) were not included in the training. 

2.2. Natural Language Processing Results 

A set of 980 utterances comprised of 123 sessions from 37 
speakers was set aside as a test set. Transcripts of these 
utterances were processed by the systems to evaluate the 
performance of the Natural Language Understanding 
modules. This will provide an upper bound on the perfor- 
mance of the Spoken Language Systems, i .e. this 
represents the performance given perfect recognition. The 
utterances for sessions provided dialog interaction with a 
system, not just the processing of isolated utterances. All 
of the utterances were processed by the systems as dialogs. 
For result reporting purposes, the utterances were divided 
into three classes: 

• Class A - utterances requiring no context for 
interpretation 

• Class D - utterances that can be interpreted 
only in the context of previous utterances 

• Class X - utterances that for one reason or 
another were not considered answerable. 

Our results for processing the test set transcripts are shown 
in Table 1. There were 402 utterances in Class A and 285 
utterances in Class D for a combined total of 687 ut- 
terances. The remainder of the 980 utterances were Class 
X and thus were not scored. The database output of the 
system is scored. The percent correct figure is the percent 
of the utterances for which the system returned the (ex- 
actly) correct output from the database. The percent wrong 
is the percent of the utterances for which the system 
returned an answer from the database, but the answer was 
not correct. The percent NO_ANS is the percentage of the 
utterances that the system did not attempt to answer. The 
Weighted Error measure is computed as (2 * %Wrong) + 
%NO_ANSWER. These NL results (both percent correct 
and weighted error) were the best of any site reporting. 
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Class 

A + D  
A 
D 

% Correct % Wrong % N O A N S  ! Weighted Error 

84.7 14.8 0.4 30.1 
88.6 11.4 0.0 22.9 
79.3 19.6 1.1 40.4 

Table 1: NL results from processing test set transcripts. 

2.3. Comparison to February 1991 system 

The purpose of evaluations is not only to measure current 
performance, but also to measure progress over time. A 
similar evaluation was conducted in February 1991. 

For Class A data, our percent correct performance in- 
creased from 80.7 to 88.6. This means that the percentage 
of errors decreased from 19.3 to 11.4, representing a 
decrease in errors of  41 percent. The weighted error 
decreased from 36.0 to 22.9. 

For Class D data, our percent correct increased from 60.5 
to 79.3. The represents a decrease in errors of 48 
percent. The weighted error was reduced from 115.8 to 
40.4. 

The basic algorithms used are the same as for previous 
versions of the system. The increase in performance came 
primarily from 

• Bug fixes (primarily to the SQL generation 
code) 

• Extension of the semantics, grammar and lex- 
icon from processing part of the ATIS2 train- 
ing data. 

• Improved context mechanism 

2.4. Partial Understanding 

In our system, we use the NO_ANSWER response dif- 
ferently than other sites. If our results are compared to 
others, we output far fewer NO_ANSWER responses. This 
is because we use a different criteria for choosing not to 
answer. In order to optimize the weighted error measure, 
one would want to choose not to answer an utterance if the 
system believed that the input was not completely under- 
stood correctly, i .e. if it thought that the answer would not 
be completely correct. However, if the system chooses not 
to answer, it should ignore all information in the utterance. 
Since our goal is to build interactive spoken language un- 
derstanding systems, we prefer a strategy that shows the 
user what is understood and engages in a clarification 
dialog with the user to get missing information or correct 
misunderstandings. For this procedure we need to retain 
the information that was understood from the utterance for 
dialog purposes. The user must also be clearly shown what 
was understood. Therefore, we only output a 

NO_ANSWER response when the system did not arrive at 
even a partial understanding of the utterance. 

3. SPEECH PROCESSING 

For our recognizer, we use the SPHINX-II speech recog- 
nition system. In comparison with the SPHINX system, the 
SPHINX-II system incorporates multiple dynamic features 
(extended from three codebooks to four), a speaker- 
normalized front-end, sex-dependent semi-continuous hid- 
den Markov models (which replace discrete models), and 
the shared-distribution representation (which replaces 
generalized between-word triphones). [3] [4] For the Feb. 
1992 ATIS evaluation, we used SPmNX-II (without the 
speaker normalization component) to construct 
vocabulary-independent models and adapted vocabulary- 
independent models with ATIS training data. The system 
used a backoff class bigram language model and a Viterbi 
beam search. 

3.1. Acoustic Training 

In order to efficiently share parameters across word 
models, the SPHINX-II system uses shared-distribution 
models. [5] The states in the phonetic HMMs are treated 
as the basic unit for modeling and are referred to as 
senones. [4] There were 6500 senones in the systems. 
Vocabulary-independent acoustic models were trained on 
approximately 12,000 general English utterances. These 
models were used to initialize vocabulary specific models 
(the vocabulary-independent mapping table was used) 
which were then trained on the task-specific data. Ap- 
proximately 10,000 utterances from the ATIS0, ATIS 1 and 
ATIS2 training sets were used in the adaptation training. 
The original vocabulary-independent models were then in- 
terpolated with the vocabulary-dependent models to give 
the adapted models used in the recognition. 

3.2. Lexicon and Language Model 

A backoff class bigram grammar was trained on a total of 
approximately 12,000 utterances from the same three NIST 
ATIS distributions. The grammar used a lexicon of 1389 
words with 914 word classes defined. The system used 
seven models for non-speech events. 
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Class 

A+D+X 88.2 
A+D 91.9 
A 92.8 
D 90.3 
X 78.9 

Correct Sub Deletions Insertions Error 

9.7 
6.5 
5.7 
8.2 
17.6 

2.1 
1.6 
1.6 
1.5 
3A 

4.4 
3.7 
3.2 
4.8 
6.1 

16.2 
11.8 
10.4 
14.5 
27.2 

Table 2: SPHINX-II Speech Recognition results. 

Class 

A + D  
A 
D 

% Correct % Wrong % NOANS Weighted Error 

66.7 32.9 0.4 66.2 
74.1 25.9 0.0 51.7 
56.1 42.8 1.1 86.7 

Table 3: SLS results from processing test set speech input. 

3.3. Speech Processing Results 4. K N O W L E D G E  B A S E D  C O R R E C T I O N  

The Speech recognition results for the test set are shown in 
Table 2. The Error column is the sum of Substitutions, 
Insertions and Deletions. The output from the recognizer 
was then sent to the NL system to get the complete Spoken 
Language System results. These are shown in Table 3. 

3.4. Comparison to February 1991 system 

For Class A data, our word error percentage was reduced 
from 28.7 to 10.4 representing a decrease in errors of 64 
percent. The overall SLS error is a function of both the 
speech recognition and natural language errors. Our per- 
centage of errors in SLS output decreased from 39 to 26 
representing a decrease in errors of 33 percent. The 
weighted error decreased from 65.5 to 51.7. 

For Class D data, our word error percentage was reduced 
from 26.9 to 14.5 representing a decrease in errors of 46 
percent. Our percentage of errors in SLS output decreased 
from 61 to 44 representing a decrease in errors of 28 
percent. The weighted error decreased from 116 to 87. 

The increase in speech recognition performance came from 
using the SPHINX-II system where we used SPHINX in 
1991. The primary differences are: 

• Semi-continuous shared-distribution HMMs 
replaced discrete HMM generalized triphones 

• Sex-dependent models were added 

• Added second order difference cepstrum 
codebook 

The MINDS-II SLS system is a back-end module which 
applies constraints derived from syntax, semantics, prag- 
matics, and applicable discourse context and discourse 
structure to detect and correct erroneous parses, skipped or 
overlooked information and out of domain requests. 
MINDS-II transcript processor is composed of a dialog 
module, an utterance analyzer and a domain constraints 
model. Input to the CMU MINDS-II NL system is the 
transcribed string, the parse produced by the PHOENIX 
caseframe parser and the parse matrix. The system first 
looks for out of domain requests by looking for otherwise 
reasonable domain objects and relations among objects not 
included in this application database. Second, it tries to 
detect and correct all misparses by searching for alternate 
interpretations of both strings and relations among iden- 
tified domain concepts. Further unanswerable queries are 
detected in this phase, although the system cannot deter- 
mine whether the queries are unanswerable because the 
speaker mis-spoke or intentionally requested extra-domain 
information. Third, the system evaluates all word strings 
not contained in the parsed representation to assess their 
potential importance and attempt to account for the infor- 
mation. Unaccounted for information detected includes 
interjections, regions with inadequate grammatical 
coverage and regions where the parser does not have the 
knowledge to include the information in the overall ut- 
terance interpretation. All regions containing interjections 
or on-line edits and corrections are deemed unimportant 
and passed over. When the system finds utterances with 
important unaccounted for information, it searches through 
the parse matrix to find all matches performed in the 
region. It then applies abductive reasoning and constraint 
satisfaction techniques to form a new interpretation of the 
utterance. Semantic and pragmatic knowledge is 
represented with multi-layered hierarchies of frames. Each 
knowledge layer contains multiple hierarchies and rela- 
tions to other layers. Semantic information of similar 
granularity is represented in a single layer. The knowledge 
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System Class % Correct % Wrong % NO_ANS Weighted Error 

Phoenix A + D 66.7 32.9 0.4 66.2 
MINDS-II A + D 64.3 25.3 10.3 61.0 

Table 4: UNOFFICIAL Comparison on MINDS-II and Phoenix results from processing test set speech input. 

base contains knowledge of objects, attributes, values, ac- 
tions, events, complex events, plans and goals. Syntactic 
knowledge is represented as a set of rules. The discourse 
model makes use of current focus stack, inferred speaker 
goals and plans, and dialog principles which constrain 
"what can come next" in a variety of contexts. Goal and 
plan inference and tracking are performed. Constraints are 
derived by first applying syntactic constraints, constraining 
theses by utterance level semantic and pragmatic con- 
straints followed by discourse level constraints when ap- 
plicable. The system outputs either semantically inter° 
preted utterances represented as variables and bindings for 
the database interface or error codes for "No_Anwser" 
items. 

The system was trained using 115 dialogs, approximately 
1000 of the utterances from the MADCOW ATIS-2 train- 
ing. Previously, the system had been trained on the 
ATIS-0 training set. This system incorporates the SOUL 
utterance analysis system as well as a dialog module for 
the Feb92 benchmark tests. 

4.1. Knowledge Based Processing Results 

Due to mechanical problems, the results from this test were 
submitted to NIST after the deadline for official submis- 
sions. Therefore, they were not scored by NIST and are not 
official benchmark results. However, the results were 
generated observing all procedures for benchmark tests. 
They were run on the official test set, without looking at 
the data first. One version control bug was fixed when the 
system crashed while running the test. No code was 
changed, we realized that the wrong version (an obsolete 
one) of one function was used, and we substituted the cor- 
rect one. The results were scored using the most recent 
comparator software released by NIST and the official 
answers (after adjudication). 

5. E N V I R O N M E N T A L  R O B U S T N E S S  

This year we incorporated the Code-Word Dependent 
Cepstral Normalization (CDCN) procedure developed by 
Acero into the ATIS system. For the official ATIS evalua- 
tions we used the original version of this algorithm, as 
described in [6]. (Recent progress on this and similar al- 
gorithms for acoustical pre-processing of speech signals 
are described in elsewhere in these proceedings [7].) 

The recognition system used for the robust speech evalua- 
tion was identical to that with which the baseline results 
were obtained except that the CDCN algorithm was used 
to transform the cepstral coefficients in the test data so that 

System Microphone % Error 

SPHINX-II HMD-414 13.9 
SPI-IINX-II+CDCN HMD-414 16.6 
SPI-IINX-II+CDCN PCC- 160 21.7 

Table 5: Comparison of speech recognition performance 
of SPHINX-II with and without the CDCN algorithm on the 
447 A+D+X sentences in the test set which were recorded 
using the PCC-160 microphone as well as the Sennheiser 
HMD-414. 

they would most closely approximate the statistics of the 
ensemble of cepstra observed in the training environment. 
All incoming speech was processed with the CDCN algo- 
rithm, regardless of whether the testing environment was 
actually the standard Sennheiser close-talking microphone 
or the desktop Crown PCC-160 microphone, and the algo- 
rithm does not have explicit knowledge of the identity of 
the environment within which it is operating. 

Because of time constraints, we did not train the system 
used for the official robust-speech evaluations as 
thoroughly as the baseline system was trained. Specifi- 
cally, the robust-speech system was trained on only 10,000 
sentences from the ATIS domain, while the baseline sys- 
tem was trained on an additional 12,000 general English 
utterances as well. The acoustic models for the robust- 
speech system using CDCN were created by initializing 
the HMM training process with the models used in the 
baseline SPmNX-II system. The official evaluations were 
performed after only a single iteration through training 
data that was processed with the CDCN algorithm. 

The official speech recognition scores using the CDCN 
algorithm and the Sennheiser HMD-414 and Crown 
PCC-160 microphones are summarized in Table 4. We 
summarize the word error scores for all 447 utterances that 
were recorded using both the Sennheiser HMD-414 and 
Crown PCC-160 microphones. For comparison purposes, 
we include figures for the baseline system on this subset of 
utterances, as well as figures for the system using the 
CDCN algorithm for the same sentences. We believe that 
the degradation in performance from 13.9% to 16.6% for 
these sentences using the close-talking Sennheiser 
HMD-414 microphone is at least in part a consequence of 
the more limited training of the system with the CDCN 
algorithm. We note that the change from the HMD-414 to 
the PCC-160 produces only a 30% degradation in error 
rate. Only two sites submitted data for the present robust 
speech evaluation, and CMU's percentage degradation in 
error rate in changing to the new testing environment, as 

82 



System l Microphone % Correct % Wrong % NO_ANS Weighted Error 
l 

SPHINX-II+CDCN HMD-414 69.0 31.0 0.0 62.0 
SPHINX-II+CDCN PCC- 160 56.6 43.1 0.3 86.4 

Table 6: Comparison of SLS performance of SPHINX-II with the CDCN algorithm on the 332 A+D sentences in the test set 
which were recorded using the PCC-160 microphone as well as the Sennheiser HMD-414. 

well as the absolute error rate in that environment, were 
the better of the results from these two sites. 

2. 

Summary results for the corresponding SLS scores for the 
332 Class A+D utterances that were recorded using the 3. 
Crown PCC-160 microphone are provided in Table 6. 
Switching the testing environment from the Sennheiser 
HMD-414 to the Crown PCC-160 degraded the number of 

4. correct SQL queries by only 21.8%, which corresponds to 
a degradation of 39.3% for the weighted error score. CMU 
was the only site to submit SLS data using the PCC-160 5. 
microphone for the official evaluation. 
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