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A B S T R A C T  

The speech understanding system we propose in this paper is 
based on the stochastic modeling of a sentence as a sequence 
of elemental units that represent its meaning. According to 
this paradigm, the original meaning of a sentence, can be 
decoded using a dynamic programming algorithm, although 
the small amount of training data currently available sug- 
gested the integration of the decoder with a more traditional 
technique. However, the advantage of this method consists 
in the development of a framework in which a closed training 
loop reduces the amount of human supervision in the design 
phase of the understanding component. The results reported 
here for the February 1992 DARPA ATIS test are extremely 
promising, considering the small amount of hand tuning the 
system required. 

1. I N T R O D U C T I O N  

In February 1991 [1] we proposed a novel paradigm that  
represents the conceptual content of a spoken sentence 
in terms of a probabilistic finite state automaton.  The 
motivations for developing this model are summarized 
by the following points. 

• Current natural  language understanding systems 
are generally based on the synthesis of rules oper- 
ated generally by an expert. This procedure makes 
maintenance, updating, and generalization of a sys- 
tem to other tasks a very expensive and difficult op- 
eration. We bel:eve that  an understanding system 
should incorporate a mechanism that  allows, or is 
suitable for, unsupervised learning. Only using this 
mechanism can the system easily take advantage of 
large amounts of training data. 

• Systems that  are based on parsing with formal 
grammars  (finite state, context free, etc) are gener- 
ally very rigid. A system that  has to be integrated 
with a speech recognizer has to be quite insensitive 
to recognition errors (substitution, insertion, dele- 
tion of words) as well as to speech disfluencies, like 
false starts, ungrammat ica l  sentences, non-speech 
phenomena, and so on. 

• The understanding model should define a frame- 
work that  allows an easy and natural  integration 

with the speech recognizer. 

Following these considerations we formalized the speech 
understanding problem in terms of a communicat ion 
channel whose input is the meaning of a sentence and 
whose output  is a sequence of acoustic observations. 
Here we assume that  the meaning of a sentence can 
be expressed by a sequence of basic meaning units 
M = ml,m2,...m~VMM and that  there is a sequential 
correspondence between each mj and a subsequence of 
the acoustic observation A = al,a2...a~v,. This hy- 
pothesis, although very restrictive, was successfully in- 
troduced also in [2]. According to this model of the 
spoken sentence production, one can think of decod- 
ing the original sequence of meaning units directly from 
the acoustic observation. The decoding process can be 
based on the maximizat ion of the a posteriori probabil- 
ity P ( M  [ A). 
The problem now consists in defining a suitable repre- 
sentation of the meaning of a sentence in terms of basic 
units. The representation we chose was inspired by the 
semar~tic network [3, 4] paradigm, where the meaning 
of a sentence can be represented as a relational graph 
whose nodes belong to some category of concepts and 
whose arcs represent relations between concepts or lin- 
guistic cases. In our representation, each unit of meaning 
consists of a pair rnj = (cj, vj), where cj is a conceptual 
relation, (e.g. origin, destination, meal in the ATIS do- 
main), and vj is the value with which cj is instantiated in 
the actual sentence. (e.g. Boston, San Francisco, break- 
fast). Given a certain application domain we can define 
two sets of symbols, C and V, such that  cj E C, and 
vj E Y. For an application like ATIS, the size of the dic- 
t ionary of concept relations C is fairly small (around 50), 
while the dictionary of concept values 13 can be relatively 
large (consider for instance all the possible flight num- 
bers). Moreover, due to the limited amount  of training 
da ta  we may reasonably think of collecting in this task, it 
is advisable to have a relatively small number of param- 
eters to be estimated. This consideration lead us to use 
the model for representing only the sequence of concept 
relations cj. The sequence of concept values is detected 
using more traditional techniques by a subsequent mod- 
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ule called the template generator, that  uses both the de- 
coded concept name and the sequence of words. Hence, 
according to the max imum a posteriori decoding crite- 
rion, given a sequence of acoustic observations A, we 
want to find a sequence of conceptual relations C and 
a sequence of words W = w l , . . . , w N w  that  maximize 
the a posteriori probabili ty P ( W ,  C I A). The underly- 
ing model for computing and maximizing this probabili ty 
was chosen to be a HMM whose states represent concept 
relations and whose observation probabilities are state- 
local language models in the form of word bigrams [1, 5]. 

2. SYSTEM ARCHITECTURE 

The task of the conceptual decoder (see Fig. I) 
is that  of providing a conceptual segmentation 
S = [Cj, (WIt , WI3+N J )], j = 1 , . . . ,  N M ,  where 
(w G , wIj+Nj) = w G, wI3+1 . . .wG+N ~ is the subsequence 
of words that  express the concept relation cj within the 
given sentence 
In the current version of the CHRONUS understand- 
ing system the speech recognizer is used in a decoupled 
mode. The best string of words produced by the recog- 
nizer is used by the decoder for generating the conceptual 
segmentation. Because in this particular task there are 
numbers, acronyms and compound words, the string is 
pre-processed by a module called lezical parser that  gen- 
erates a lattice with all the possible interpretations of the 
string (e.g. the substring "B SEVEN FOUR SEVEN" 
could be interpreted as "B 747" or "B7 47" or "B74 7", 
etc. The conceptual decoder is then realized as a gener- 
alization of the Viterbi algorithm that  works on a lattice 
rather than on a string of words. 
The template generator [6] consists of a simple pat tern 
matching procedure that,  given the conceptual segmen- 
tation, produces for each concept relation cj the corre- 
sponding concept value vj. Finally the SQL translator 
translates the meaning representation M into an SQL 
query. 

3. THE NL C O M P O N E N T  

3.1.  Training the conceptual  m o d e l  

The conceptual model, as explained in the introduction 
of this paper, consists of concept transition probabili- 
ties P(cg~ I cg,_l) and concept conditional bigram lan- 
guage models P(wi [ w~-l, cg~), where cg~ is the con- 
cept expressed by the phrase in which word wi is in- 
cluded. These probabilities were initially trained using 
a set of 532 sentences whose conceptual segmentation 
was provided by hand. This initial model was used in 
the experiments described in [1, 5] and gave satisfac- 
tory performance as far as the conceptual segmentation 
of test sentences was concerned. Hand labeling train- 

CONCEPTUAL SEGMENTATION 
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Figure i: Block diagram of the proposed understanding 
system 
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ing sentences is of course a rather expensive procedure 
whose consistence is rather doubtful. As of today, most 
of the training sentences available are annotated with 
a reference file that  includes the right answer. How- 
ever, for taking advantage of the annota ted  sentences we 
must use the whole understanding system in the train- 
ing phase, generate the answer, and compare the an- 
swer with the reference file (see Fig. 1). Therefore the 
comparator [7] provides the training procedure with a 
feedback signal that  can be used to partially automatize  
the training procedure. As a first a t t empt  to develop a 
completely automat ic  training procedure, we designed a 
training loop based on the following steps: 

1. Start with a reasonable model. 

2. Generate an answer for each sentence in the training 
set. 

3. Compare  each answer with the corresponding refer- 
ence answer. 

4. Use the conceptual segmentation of the sentences 
that  were given a correct answer to reestimate the 
model parameters.  

5. Update  the model and go to step 2 

A certain number  of sentences will still produce a wrong 
answer after several iterations of the training loop. The 
conceptual segmentation of these sentences may be then 
corrected by hand and included in the training set for 
a final reest imation of the model parameters .  Table 1 
shows the sets of da ta  used for testing the effectiveness 
of the training loop. All sentences are class A (context 
independent) sentences and belong to the MADCOW 
database.  The conceptual segmentat ion of the sentences 
in set A was done by hand, set B and C were annotated 



Set  

A 
B 
C 

N u m b e r  o f  D e s c r i p t i o n  
S e n t e n c e s  

532 handlabled 
446 annotated 
195 annotated 

(oct-91) 

Table 1: Description of the da ta  sets used in the training 
experiment 

with reference files (set C corresponds to the official Oc- 
tober 91 test set). The comparison with reference files 
was done using only the minimal answer. The results 
of this experiment are reported in Table 2. The first 
line in the table shows the results (as the percentage of 
correctly answered sentences) both on set B and on the 
October 91 test set when the initial model, trained on the 
532 hand labeled sentences, was used. The second line 
shows the results on October 91 when the initial model 
is smoothed using the supervised smoothing described 
in [5]. The third line.reports the accuracy (on both set 
B and October 91) when the sentences that  were cor- 
rectly answered out of set B were added to the training 
set (this set is called T(B)) and their conceptual labeling 
was used along with set A for reestimating the model. 
It is interesting to notice that  the performance on the 
October 91 test set is higher than that obtained with 
supervised smoothing. The last line of Table 2 shows 
that supervised smoothing increases the performance by 
a very small percentage. The results of this experiment 
show that  the use of automatical ly  produced conceptual 
segmentation along with the feedback introduced by the 
comparator  improves the performance of the system of 
an amount that  is comparable with that  obtained by a 
supervised procedure, like the supervised smoothing. 

3.2. The  dialog m a n a g e r  

For dealing with class D sentences we developed a mod- 
ule, within the template  generator, called the dialog 
manager. The function of this module is to keep the 
history of the dialog. In this version of the dialog man- 

T r a i n i n g  % c o r r e c t  on  % c o r r e c t  on  
set  se t  B set  C 
A 48.2 63.5 

A+smooth  72.3 
A+T(B)  50.9 72.8 

A + T ( B ) + s m o o t h  73.3 

Table 2: Results using the training loop described in the 
text. T(B) is the subset of B that  was correctly answered 
by the system. 

Class  # T F N A  W .  E r r .  
A 402 256 96 50 60.2 
D 285 122 113 50 96.8 

A+D 687 378 209 100 75.4 

Table 3: Official NIST score for the NL ATIS February 
92 test 

ager the history is kept by saving the template from the 
previous sentence in the same session and merging it 
with the newly formed template,  according to a set of 
application specific rules. 

3.3. NL resu l t s  on F e b r u a r y  1992 tes t  

The February 1992 test set includes 402 class A sentences 
and 285 class D sentences. This set of 687 sentences, 
used for scoring the NL performance, is part  of a larger 
set that originally included 283 class X (unanswerable) 
sentences. The test was carried out for the overall set of 
970 sentence, without knowing which class they belong 
to. The official score given from NIST is summarized 
in Table 3. After the test we found an inaccuracy in 
the module of the SQL translator that is responsible for 
the CAS formatting.  We fixed the bug and rescored the 
whole set of sentences, obtaining the results reported in 
Table 4. In Table 5 we report a detailed analysis of the 
results. In this analysis we included only the sentences 
that  generated a false response. Conceptual decoding 
and template generator errors are generally due to the 
lack of training data.  SQL translator and dialog man- 
ager errors are generally due to the limited power of the 
representation we are currently using. Finally for the er- 
rors at tr ibuted to the CAS format  or labeled as ambiguos 
we generated a correct internal meaning representation 
but the format  of the answer did not comply with the 
principles of interpretation, or our interpretation did not 
agree with the one given by the annotators.  

4. T H E  S P E E C H  R E C O G N I Z E R  

In this section we give a description of the speech recog- 
nition system that  was used in conjunction with the nat- 
ural language understanding system for the February 92 
ATIS test. Other details can be found in [8, 9] 

Class  # T F N A  W .  E r r  
A 402 299 54 49 39.0 
D 285 167 67 51 64.9 

A + D  687 466 121 100 49.8 

Table 4: Score for the NL ATIS February 92 after the 
format  bug was removed 
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E r r o r  t y p e  N u m b e r  o f  
S e n t e n c e s  

Conceptual decoding 30 
Template generation 19 

SQL translator 24 
CAS format 16 

Dialog manager 20 
Ambiguous 12 

Table 5: Analysis of the errors for the NL ATIS February 
92 test 

The Speech signal was first filtered from 100 Hz to 3.8 
KHz and down-sampled to an 8 kHz sampling rate. 10th 
order LPC analysis was then performed every 10 msec 
on consecutive 30 msec windows with a 20 msec frame 
overlap. Based on the short-time LPC features, 12 LPC- 
derived cepstral coefficients and their first and second 
derivatives, plus normalized log energy and its first and 
second derivatives were computed and concatenated to 
form a single 39-dimension feature vector. 
6259 spontaneous utterances from the MADCOW data 
were used for training the acoustic models. Context- 
dependent phone-like units [10], including double- 
context phones, left-context phones, right-context 
phones, context-independent phones, word-juncture con- 
text dependent phones and position dependent phones, 
were modeled using continuous density hidden Markov 
models (HMM) with mixture Gaussian state observa- 
tion densities. The inventory of acoustic units was de- 
termined through an occurrency selection rule. Only 
units that appear in the training database more than 20 
times were selected, resulting in a set of 2330 context- 
dependent phones. A maximum of 16 mixture compo- 
nents was used for each acoustic HMM state. The HMM 
parameters were estimated by means of the segmental k- 
means training procedure [11]. 
The recognition lexicon consisted of 1153 lexical entries 
including 1060 words appearing in the Feb91 benchmark 
evaluation and 93 compound words which were mostly 
concatenation of letters to form acronyms. Each en- 
try had a single pronunciation. In addition, two non- 
phonetic units, one for modeling weak extraneous (out 
of vocabulary) speech events and the other for model- 
ing strong extraneous speech events, were included, like 
in [12]. 
Word bigrams were used in the test. They were esti- 
mated using the same set of 6259 annotated sentences, 
and smoothed with backoff probabilities. The perplex- 
ity of the language defined by the bigram probabilities, 
computed on the training set, was found to be 17. 

D a t a  ~ o f  
o r ig in  u t t e r a n c e s  

MIT 193 
BBN 194 
CMU 193 
SRI 193 
ATT 197 

OVERALL 970 

w o r d  s t r i n g  
e r r o r  e r r o r  

9.7 47.2 
13.1 58.8 
17.8 75.1 
21.5 68.4 
28.3 76.1 
17.5 64.6 

Table 6: Score for the SPREC ATIS February 92 test 

4 . 1 .  S P R E C  r e s u l t s  o n  F e b r u a r y  1 9 9 2  

t e s t  

The speech recognition results are summaried in Table 6 
Overall we observed 17.5% word error and 64.6% string 
error. 

In the current system configuration, only 6259 utterances 
(about 12 hours of speech) were used to create the acous- 
tic HMM models. Out of the 218 speakers, 15 of them 
were from the ATT training set and 17 of them were 
from the CMU training set, which amounts to about 90 
minutes of training data from each of them. We can see 
from Table 6 that there is a problem due to an insuffi- 
cient training for ATT and CMU test data. On the other 
hand, since most of the training data we used were col- 
lected at BBN and MIT, the performance is better for 
BBN and MIT test speakers. 
94 out of the 427 deleted words were A and THE. Short 
function words amounted to over 90% of the deletion er- 
rors. As for the 328 insertion errors, 46 of them were 
insertion of words A and THE. Again, short function 
words contributed to over 90% of the insertion errors. 
Since function words, in most cases, did not affect the 
meaning of a recognized sentence, we expect that such 
errors did not degrade the performance of the NL mod- 
ule. 
Substitution errors had a greater impact on the SLS 
system performance than insertion and deletion errors. 
Most of the substitution errors can be categorized into 
three types: 

1. Out-of-vocabulary words; 

2. Morphological inflections of words, which are dif- 
ficult to discriminate acoustically for band-limited 
data; 

3. short function words. 

Out of the 1153 substitution error, 66 were caused by 
out-of-vocabulary words, and 127 were caused by mor- 
phological inflections. For the remaining 85% of the er- 
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Class  # T F N A  W .  E r r .  
A 402 208 118 76 77.6 
D 285 92 115 78 108.1 

A+D 687 300 233 154 90.2 

cies found in the answer formatter ,  that  we don' t  believe 
affects the real performance of the CHRONUS system. 
Nevertheless, this suggests the importance of investigat- 
ing a more meaningful and more rubust scoring criterion. 

Table 7: Official NIST score for the SLS ATIS February 
92 test 

rors, about  half involved short function words. 

5. SLS R E S U L T S  O N  F E B R U A R Y  
1992 T E S T  

The integrated SLS system for the February 1992 test 
was implemented by using the best first recognized string 
from our speech recognizer as input to the NL system. 
Table 7 reports the official results from NIST and Table 8 
reports our results after the format  bug was fixed. 

6. C O N C L U S I O N S  

In this paper we give a global outline of the CHRONUS 
speech understanding system. The system is built 
around the conceptual decoder, a Viterbi decoder that  
uses a stochastic model for extracting the conceptual 
content of an input sentence. Although the problem is 
formalized in such a way that  the decoder could also ex- 
tract  the actual value of the conceptual relations (not 
only their category), the limited amount  of training sen- 
tences currently available suggested the use of a more 
traditional pat tern matcher (the template  generator) 
along with the conceptual decoder. However, the ad- 
vantage of the stochastic formalization is the trainabil- 
ity of the model over a database of suitably annotated 
examples. The annotation given with the MADCOW 
sentences and the comparator  developed by NIST pro- 
vide a useful feedback signal that  allows to automatize  
the training procedure. In a preliminary experiment de- 
signed to test this procedure we show that  a significant 
improvement  of the accuracy of the system can be ob- 
tained without human supervision. 
The results on the February 92 ATIS test are then re- 
ported in the paper. The big discrepancy between the 
official NIST score and the score obtained in a succes- 
sive assessment of the system is explained by inaccura- 

C las s  ~ T 
A 402 237 
D 285 117 

A + D  687 354 

F N A  
89 76 
90 78 
179 154 

W ,  Er r ,  
63.2 
90.5 
74.5 
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