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ABSTRACT of seven types of structural ambiguity. In addition, it ap- 
~ ~ ~ ~ f i ~ ~ t ~  have shown that prosody is used by human ]is- peared that the relative size and location of prosodic phrase 

teners to disambiguate spoken language and, in particular, that boundaries provided the principal prosodic clue for resolv- 
the relative size and location of prosodic phrase boundaries pro- ing ambiguities. Thus, it seems likely that automatically 
vides a cue for resolving syntactic ambiguity. Therefore, auto- detected prosodic phrase breaks could be used by speech 
matically detected prosodic phrase boundaries can provide infor- understanding systems to reduce syntactic ambiguity. 
mation useful in speech understanding for choosing among several 
candidate parses. Here, we propose a scoring algorithm to rank 
candidate parses based on an analysis-by-synthesis method which 
compares the observed prosodic phrase structure with the pre- 
dicted structure for each candidate parse. In experiments with 
a small corpus of ambiguous sentences spoken by FM radio an- 
nouncers, we have achieved disambiguation performance close to 
the performance of human subjects in perceptual experiments. 

INTRODUCTION 
Spoken language processing is a difficult problem, in part 

because of the many ambiguities inherent in natural lan- 
guage. Syntactic ambiguity arises when a given expression 
can be described by more than one syntactic structure, and 
represents an important problem in natural language pro- 
cessing. In particular, attachment ambiguities occur fre- 
quently in language, e.g., 

"Show the fares for [the cheapest flights on the screen]." 
"Show [the fares for the cheapest flights] on the screen." 

Several factors may be involved in resolving such ambigu- 
ities, including semantics, discourse and syntactic bias. In 
spoken language, prosody, or the suprasegmental informa- 
tion in an utterance, is an important additional cue. 

In previous work [lo], a hierarchical set of break indices 
was proposed as a representation of prosodic phrase bound- 
aries and automatically detected break indices were used in 
a parser to provide constraints on rules that would prevent 
prosodically inconsistent parses. Here, we propose a scoring 
algorithm to rank candidate parses based on an analysis-by- 
synthesis method which involves: (1) using an algorithm to 
predict prosodic break locations for each candidate syntac- 
tic structure; (2) automatically detecting prosodic breaks 
in the spoken utterance; and (3) ranking the parses accord- 
ing to a similarity score between predicted and observed 
prosodic structure. Using the database of ambiguous sen- 
tences from [13], this approach achieves performance close 
to that of the human subjects. 

The following section describes the speech corpus and 
prosodic break index representation. We then examine syn- 
thesis algorithms for predicting the phrase structure of a 
sentence and evaluate them in relation to the hand-labeled 
speech corpus. Next, we describe an automatic method 
of labeling the prosodic phrase structure and a measure of 
the similarity between the predicted and detected prosodic 
structures. We then present experimental results, based on 
the ambiguous sentence corpus, demonstrating the utility 
of this approach. In conclusion, we discuss future work sug- 
gested by these results. 

Experimental evidence has shown that listeners can re- 
solve several types of syntactic ambiguities by using prosodic CORPUS AND LABELING 
information [13,8]. In [13], ambiguous sentences were read As mentioned above, the experiments here are based on 
in contexts in which only one interpretation was reason- the corpus of ambiguous sentences described in [13]. An 
able, and the recordings edited to remove the context. Hu- advantage of using this database is in the availability of 
man subjects then listened to the ambiguous sentences, and perceptual experiment results, which provide an interesting 
were asked to select the intended meaning, which they were performance baseline for comparison with results from our 
able to do reliably (86% correct identification) for six out algorithm. The corpus and associated prosodic labeling is 



described briefly here; readers are referred to [13] for further 
details. 

Four professional FM radio announcers were asked to 
read 35 pairs of sentences, where members of a pair were 
phonetically similar but  associated with different syntactic 
structures and therefore different meanings. The sentences 
included five examples of each of seven types of structural  
ambiguity: (1) parenthetical  clauses vs. non-parenthetical 
subordinate clauses, (2) appositions vs. at tached noun (or 
prepositional) phrases, (3) main clauses linked by coordi- 
nating conjunctions vs. a main clause and a subordinate 
clause, (4) tag questions vs. at tached noun phrases, (5) far 
vs. near a t tachment  of final phrase, (6) left vs. right at tach- 
ment of middle phrase, and (7) particles vs. prepositions. 
In presentation, the target  sentence was preceded by a dis- 
ambiguating context of one or two sentences. The target 
sentence was edited out of context for analysis and for the 
perceptual  experiments.  

The utterances were phonetically labeled and segmented 
using the SRI Decipher system [15], given the sentence tran- 
scription, and the associated phoneme durations are used 
here for automatical ly detecting prosodic phrase breaks. 
In addition, the utterances have been hand-labeled with 
prosodic phrase break indices at each word boundary, where 
a break index corresponds to the amount of prosodic de- 
coupling between words. We use a hierarchy of breaks, from 
0 for word boundaries within clitic groups through 6 for sen- 
tence boundaries. 

S Y N T H E S I S  
Our goal in this work is to quantitatively measure the 

similarity between predicted and observed prosodic struc- 
tures. Therefore, the prosodic phrase synthesis algorithm 
must not only predict the locations of prosodic phrase breaks, 
but  also associate a numerical value to indicate hierarchical 
structure, as the perceptual labeling does. Below we de- 
scribe algorithms that  are appropriate  for this application, 
together with some of our own modifications. 

Prev ious  W o r k  

Gee and Grosjean [6] proposed the Phi algorithm to 
build a prosodic tree from syntactic structure. (Their goal 
was to predict psycholinguistic "performance structures;" 
however, we will only be interested in the prosodic tree.) 
The algorithm consists of a sequence of rules that  progres- 
sively groups words and phrases based on syntactic struc- 
ture and consti tuent length constraints. The rules are con- 
strained to operate within, but  not across, basic sentence 
clauses. First ,  function words and simple modifiers are 
grouped into ¢-phrases using a right-branching structure. 
These ~b-phrases are then grouped into I-phrases accord- 
ing to syntactic constituency, again using a right-branching 

structure.  The exception is verb phrases which are grouped 
with either the subject  or the verb's  subcategorized comple- 
ments, depending upon the size of these units, N(-),  mea- 
sured in number of branches (words): 

o If N(X) + N(V) >_ N(Y) --~ X[VY] 

o otherwise ~ [XV]Y 

These constituents are then further bundled using a left- 
branching rule until  all elements in the clause are included, 
and then clauses are bundled in a left branching structure.  
The degree of separat ion between two words, which we will 
refer to as a ~b-break, is given by the number of nodes in the 
tree dominated by and including the node at this boundary. 

A second performance structure algorithm, the Psy Al- 
gorithm, is proposed by van Wijk [14] as being more di- 
rectly tied to linguistic notions of prosodic structure. The 
Psy algorithm requires knowledge of the location of intona- 
tional phrase boundaries and is based on a flatter prosodic 
structure.  Unfortunately, prediction of intonational phrase 
boundary location is a difficult problem, so this approach 
was not investigated here. However, recent work in this area 
shows much promise [17,16], and the Psy algorithm might 
be interesting to pursue in the future. 

Modifications to the Phi algorithm have been proposed 
by Bachenko and Fitzpatr ick for speech synthesis applica- 
tions [1]. The main difference lies in Bachenko and Fitz- 
patr ick 's  claim that  prosodic phrase boundaries can extend 
across syntactic boundaries, including clause boundaries,. 
provided that  balancing constituent length requires it. Specif- 
ically, they have modified Gee and Grosjean's  verb balanc- 
ing rule to include a wider range of syntactic constituents 
available for grouping in the verb phrase. In addition, con- 
st i tuent  length is determined by the number of phonological 
words, rather than the number of words. (A phonologi- 
cal word is defined as a single content word or a content 
word combined with one or more function words that  are 
orthographically distinct  but  are not separated by prosodic 
boundaries). In this paper, we will use "Bachenko/Fitzpatr ick 
algorithm" to refer to the C-break prediction algorithm which 
incorporates their modifications, noting that  their work was 
not aimed at predicting numerical break indices. 

Limitat ions  and Modif icat ions  
An analysis of the ¢-breaks predicted by the Phi algo- 

ri thm and the Bachenko/Fi tzpatr ick algorithm for the am- 
biguous sentence corpus identified some weaknesses in the 
algorithms which we discuss below. In addition, we describe 
modifications to the Bachenko/Fi tzpatr ick algorithm, which 
we found to more often reflect observed prosodic structure. 

The verb balancing rule, using either method of count- 
ing constituent length, did not always yield breaks that  were 
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consistent with our data. We often observed the verb group- 
ing with the subject when i t  was predicted by both algo- 
rithms to group with the following &group. For example, 
consider the labeling of the sentence 

Marge would never dea l  i n  any guise.  
5 0  1  3 1  0  

The largest break, after "Marge", was not perceived in any 
of the four spoken renditions. A more appropriate labeling 
would be 

Marge vould never dea l  i n  any guise.  
3  0  1 5 1  0  

Based on this and other examples, we proposed the follow- 
ing revised verb balancing rule: 

0 If N ( X )  + N ( V )  2 N ( V )  + N ( Y )  
-+ X[VYl 

o otherwise -+ [ X V Y  

Using this algorithm with a constituent counting function 
based on words rather than on phonological words seemed 
to be somewhat more consistent with our data, but this 
aspect should be confirmed through further study. 

A second area where problems occured was in allowing 
prosodic units to contain clause boundaries. Although it 
is in general a positive feature of the Bachenko/Fitzpatrick 
algorithm, the predicted phrase breaks are not always con- 
sistent with the observed data, as in 

. . . , only I knew my Dad would be angry. 
8 1 0  4 0  6 1 0  

The larger break was perceived after "knew" rather than af- 
ter "Dad" in our data. (Even though the predicted phrasing 
might be acceptable, for our purposes it is important that 
it be typical.) This particular problem could be handled by 
adding the rule: 

If Y  is NULL, X K S K Y  -+ X K [ S & ]  

where S is the subject corresponding to %. The resulting 
&break labels are then: 

. . . , only I knew my Dad would be angry. 
8 1 0  6 0  4 1 0  

Again, this rule needs further investigation because it may 
require an associated constituent length constraint. 

A further limitation with both previous algorithms is the 
treatment of parenthetical phrases. 

Algorithm Correlation 
Gee & Grosjean 
Bachenko/Fitzpatrick 
B-F + new verb rules 

Table 1: Correlation of predicted +-breaks with hand-labeled 
perceived breaks for different synthesis algorithms. 

They know, you r e a l i z e ,  your goals.  
0  3  0  5 0  

In our observations, parenthetical phrases are bracketed by 
nearly equal breaks. We therefore added a rule to increase 
the smaller &break at  a parenthetical boundary to the size 
of the break at  the other side of the parenthetical phrase, 
as in 

They know, you r e a l i z e ,  your goals.  
0  5 0  5 0  

Evaluation 
The different synthesis algorithms were evaluated by 

computing the correlation between the predicted &breaks 
and the hand-labeled break indices. A potential problem 
is that the hand-labeled indices are constrained to range 
from 0 to 6, while the &breaks are theoretically unbounded. 
However, there seemed to be a roughly linear association 
between the two labeling schemes in principle, apart from 
the specific rules for predicting groupings, and therefore it 
was felt that correlation would be a meaningful measure. 
The correlations given in Table 1 represent the average over 
seventy sentences from each of four speakers. 

The original Phi algorithm actually had the highest per- 
formance, although average performance was similar for all 
four algorithms. The Phi algorithm predictions are more 
highly correlated to observed data in most syntactic cat- 
egories in our database. Relative to the Phi algorithm, 
the Bachenko/Fitzpatrick algorithm offered slight improve- 
ments for parentheticals, main-main structures, and far at- 
tachments. Our modified algorithm was similar to the Phi 
algorithm, but having better performance for parentheticals 
and non-tags and somewhat worse performance for non- 
parentheticals and left attachments. Our algorithm was  
generally better than the Bachenko/Fitzpatrick algoritl~m, 
except for a significant performance degradation for left at- 
tachments. 

Overall, results indicate that, while relaxation of clause 
boundary constraints is useful, a more conservative set of 



rules may more accurately reflect observations. The verb as- 
sociation rule introduced here addresses one problem, that  
of verb a t tachment  across a clause boundary. In addition, 
the length constraints that  influence prosodic grouping be- 
come more impor tant  with more flexible syntactic constraints, 
which explains the improvement associated with the revised 
verb balancing rule. 

A N A L Y S I S  
After the synthesis component predicts the prosodic breaks 

of candidate parses, the analysis component uses a similar- 
i ty measure to compare the match between the predicted 
and observed prosodic breaks for different possible inter- 
pretations.  Clearly, in a speech understanding system, the 
observed prosodic breaks must  be automatical ly detected 
and the algorithm used is described below. Given sequences 
of predicted and automatical ly detected breaks, many dif- 
ferent similarity measures are possible. The results of [13], 
which suggest the importance of relative break size, moti- 
vate the correlation measure investigated here. 

Automatic Labeling 
Other work has reported an algorithm for automatical ly 

detecting prosodic break indices using a seven-state hidden 
Markov model [10], where each s tate  represented a different 
break index. The feature used in that  system was normal- 
ized durat ion in word-final syllable rhyme; a measure of 
the durat ion lengthening many researchers have observed 
at phrasal  boundaries (e.g., [7,5]). Though pre-boundaxy 
lengthening is a part icularly impor tant  cue, several other 
acoustic cues are also used to mark prosodic phrase bound- 
aries, including breaths, pauses, boundary tones, and rhythm 
changes. In order to make use of these more diverse cues 
and increase the accuracy of our break detection algorithm, 
we have recently modified the algorithm to use a discrete 
HMM with a binary tree quantizer that  can incorporate 
multiple non-homogeneous features. The algorithm is de- 
scribed briefly here; further details can be found in [18]. 

As in previous work, the first step of processing is to 
determine phoneme durations.  These can be obtained from 
the output  of the speech recognizer. Since inherent phone 
duration is the main contributor to variance in durat ion 
[7], segment durat ions axe normalized according to phone- 
dependent means and variances. The means and variances 
are themselves adapted according to an est imate of the long- 
term speaking rate, using an algorithm motivated by the 
speaking rate differences given in the da ta  in [5]. (This is 
somewhat different from the tracking Mgorithm reported in 
[18].) 

The current system can combine several different fea- 
tures; we have thus far investigated the following: 

• absolute durat ion of following pause; 

• average normalized durat ion of the phonemes in the 
word-final syllable rhyme (pre-boundary lengthening); 

• difference between average normalized durat ion of syl- 
lable rhyme and offset (to distinguish boundaries from 
phrasal prominence [4]); 

• difference between the averages of normalized dura- 
tion before and after the boundary ( rhythm changes); 
and 

• a flag indicating whether or not  the word contains any 
stressed syllables (which was not  included in [18]). 

The use of a classification tree [3] provides a means of 
classifying feature vectors with non-homogeneous elements 
and, in fact, the quantizer can be designed jointly with the 
HMM [11]. Once the feature vectors for each word boundary 
are available, we uncover the sequence of break indices most 
likely to have produced them by using Viterbi  decoding to 
recover the s ta te  sequence. 

Scoring 
In order to evaluate aJternative interpretat ions of an ut- 

terance, we need to be able to compare the synthesised 
prosodic breaks with the automatical ly labeled break in- 
dices in some quanti tat ive way. One measure might be a 
Hamming distance between binary sequences where a "1" 
indicates the location of a major prosodic phrase break. The 
difficulty with this approach is that  i t  has been shown that  
major phrase breaks alone are often insufficient to disam- 
biguate an ut terance [13]. Thus we need to assign a score 
based on the agreement between the synthesisized break hi- 
erarchy and the automatic  labels for an utterance.  

The simplest method, and the one used here, is to com- 
pute the correlation between the two sets of labels. For 
example, consider the sentence They may wear down the 
word. The word down may be either a particle or a prepo- 
sition in this sentence. The Gee and Grosjean $-breaks for 
these two interpretat ions are (1, 1,0, 3, 0) and (1, 0, 4, 1, 0), 
respectively. The break indices assigned to one reading of 
this sentence are (1, 1, 4, 1, 0), and the correlations with the 
particle and preposition interpretat ions are -0.27 and 0.96, 
respectively. Thus, we select the parse in which down func- 
tions as a preposition as representing the speaker 's  intended 
meaning. 

This scoring method is effectively a matched filter detec- 
tion system, with the exception that  we are not normalizing 
for "signal energy". Using this interpretat ion,  it  might be 
possible to incorporate the greater salience of intonational 
phrase boundaries (4,5) [13] through a weighted (as opposed 
to Euclidean) distance measure. 

Maximum correlation can be used as a criterion for choos- 
ing among candidate parses. Occasionally, the correlations 
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for two candidates  will be almost identical. In this case, 
we can either allow the algorithm to equivocate (assuming 
some other level of processing can resolve the ambiguity), 
or we can arbi t rar i ly  choose one parse as we do in the ex- 
periments described here. Another  alternative would be to 
use the correlations to rank parses or sentence hypotheses. 
The rank or score might be used in combination with other 
knowledge sources, as in [9], to choose the correct sentence 
interpretat ion.  

E X P E R I M E N T S  
We have tested our analysis-by-synthesis approach by 

using i t  to perform the same task that  the human sub- 
jects  in [13] were asked to perform. Specifically, we a t tempt  
to select which of two interpretat ions was intended by the 
speaker. For each test utterance,  we use the automatic  la- 
beling algori thm to label the break indices in the ut terance 
and the synthesis algorithm to generate the prosodic breaks 
for the two candidate  parses. We then compute the correla- 
tion between the labeled break indices and the synthesized 
prosodic breaks for each candidate parse and select the parse 
with the largest correlation. In the event of a tie, the first 
sentence in the pair is chosen. 

The models used for the automatic  labeling algorithm 
were speaker-independent models trained using da ta  from 
three speakers. Rotation (train on 3 speakers, test on 1) 
was used to obtain results averaged over all four. The tree 
quantizer had a codebook size of 70. 

To gain insight into the effect of break index labeling 
errors on the performance of our disambiguation scheme, we 
also conducted the experiment using the hand labeled break 
indices in the corpus. The results of these experiments are 
summarized in Table 2 for each of the 14 types (7 pairs) of 
syntact ic  ambiguity. For comparison, Table 2 also contains 
the results Price et. al [13] report  for the human subjects. 

The results based on the hand-labeled break indices again 
show tha t  there is very l i t t le difference between the synthe- 
sis algorithms. As indicated by the correlation with hand 
labels (see Table 1), the Gee and Grosjean algorithm gave 
the best performance. The identification accuracy is compa- 
rable to humans in all but  two cases: the non-parenthetical 
and non-apposit ion categories. This could be a weakness of 
either the synthesis algorithm, the similarity measure, or an 
art ifact  of the t ie-breaking rule. 

When we use automatical ly labeled break indices, there 
is a loss in performance. Even so, the algorithm correctly 
disambiguates 74% of the sentences, and this represents 88% 
of the human performance and 89% of the performance ob- 
tained with hand labels. Moreover, if we exclude the paren- 
theticals and appositions, the automatic  algorithm achieves 
79% disambiguation as compared to human performance of 
81% for the same categories. 

D I S C U S S I O N  
In summary, we have demonstrated that  automatical ly 

detected prosodic break indices contain enough information 
to achieve disambiguation close to the level of human perfor- 
mance. We have considered different synthesis algorithms 
which appear  to be quite useful for this task. Little dif- 
ference was observed between the synthesis algorithms, but  
evaluation on a larger task domain would probably yield 
more insight into this issue. 

While these results demonstra te  feasibility of the analysis- 
by-synthesis approach to disambiguation,  the work needs 
to be extended in several ways. First ,  the current synthe- 
sis algorithm is not implemented automatical ly  because we 
did not have access to machine parses for these sentences. 
Automat ic  implementat ion of the synthesis algorithm and 
integration with a parser is an impor tant  next step. As 
mentioned earlier, addit ional  modifications to the synthesis 
algorithm or investigation of a variation based on the Psy 
algorithm might also be useful. 

Second, the automat ic  break index labeling algorithm 
needs to be extended to achieve closer agreement with the 
hand labels. Although the correlation between the two is 
already 0.86, there is a loss of disambiguation performance. 
The principal reason for this loss can been seen by not- 
ing that  the machine label differs from the hand label by no 
more than one 93% of the t ime for all the boundaries except 
those with hand labels of 3 and 4. These boundaries cor- 
respond to intermediate and intonational  phrases [12] and 
in these cases, the current algorithm produces labels within 
1 of the hand labels only 57% of the time. This is hardly 
surprising since intermediate  and intonational  phrases are 
marked by intonation [2] and our labeling algorithm cur- 
rently has no pitch features. Thus a principal extension 
which needs to be investigated, is the inclusion of intona- 
tion features such as boundary tones. Since these are the 
principal cue for the larger breaks, we expect that  their in- 
clusion will improve performance considerably. 

In addition, it  might be useful to investigate other simi- 
lari ty measures. In particular,  a measure which more highly 
weighted the larger break indices might be useful. Finally; it  
will be important  to consider spontaneous speech domains, 
which may require an entirely different synthesis algorithm 
for predicting phrase breaks. 
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Ambigui ty  

+ Parenthetical 
- Parenthetical 
+ Apposition 
- Apposition 
Main-Main 
Main-Subordinate 
+ Tag 
- Tag 
Far Attach 
Near Attach 
Leg Attach 
Right Attach 
Particle 
Preposition 

Average  ] 

Hand L a b d s  
e-G l B-F M-I I M-II 

50 80 80 75 
90 40 35 45 
90 90 90 100 
55 70 70 65 
65 100 85 85 
85 45 55 55 
90 100 100 100 
100 80 95 95 
100 60 65 65 
4O 60 5O 5O 

100 10'0 100 100 
100 100 100 100 
100 100 1~0 100 
95 95 95 95 

8 3 1 8 ~  8o I 81 

Machine Human  
& G-G Percept ion  

50' 77 
65 96 
90 92 
35 91 
85 88 
95 54 
90 95 
100 81 
80 78 
45 63 
90 94 
70 95 
65 82 
70 81 

[ 74 84 

T a b l e  2: Percent correct disambiguation as a function of different syntactic ambiguities for: different synthesis algorithms comparing 
to hand-labeled breaks (G-G: Gee/Grosjean, B-F: Bachenko/Fitzpatrick, M-I: B-F with verb rule modifications, M-II: B-F with all 
modifications); the best-case synthesis algorithm comparing to automatically labeled breaks; and human perceptual results. 
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