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A B S T R A C T  
Ordinarily, one thinks of the problem of na tura l  language un- 

derstanding as one of making a single, left-to-right pass through 
an input,  producing a progressively refined and  detailed interpre- 
tation. In text interpretat ion,  however, the constraints of strict 
left-to-right processing are an  encumbrance. Multi-pass meth- 
ods, especially by interpreting words using corpus da ta  and as- 
sociating uni ts  of text with possible interpretations,  can be more 
accurate and faster t han  single-pass methods of data  extraction. 
Quality improves because corpus-based da ta  and global context 
help to control false interpretations; speed improves because pro- 
cessing focuses on relevant sections. 

The most useful forms of pre-processing for text interpre- 
tat ion use fairly superficial analysis tha t  complements the style 
of ordinary parsing but  uses much of the same knowledge base. 
Lexico-semantic pa t t e rn  matching,  with rules tha t  combine lex- 
local analysis with ordering and  semantic categories, is a good 
method for this form of analysis. This type of pre-processing is 
efficient, takes advantage of corpus data,  prevents many garden 
paths and fruitless parses, and helps the parser cope with the 
complexity and flexibility of real text.  

I N T R O D U C T I O N  
The interpretat ion of large volumes of text poses many con- 

trol problems, including limiting the complexity of analysis and 
ensuring the product ion of valid interpretat ions without consid- 
ering too many possibifities. These problems are especially severe 
in processing news stories, where long sentences, information-rich 
news-style constructions, and the complex structure of events 
make normal  syntax-first analysis especially impractical. 

Normal left-to-right syntactic parsing, in virtually all its forms, 
is a disaster for interpret ing broad classes of extended texts. 
Multiple-path methods are haunted  by a t tachment  problems tha t  
can lead to a combinatoric explosion of paths,  while simple deter- 
ministic methods bring on parser failures and problems in com- 
bining preferences. In previous work aimed at word sense coding 
of news stories [1], we have found tha t  even heavy pruning of 
a mult iple-path chart  parsing strategy often leaves hundreds of 
parses to consider for a single sentence. Even worse, minor ir- 
regularities in linguistic s t ructure  or word usage bring on parser 
failures and inadequate interpretations.  

Better  parsing strategies, including control using statistical 
data,  flexible part ial  parsing, and recovery, can certainly help 
with some of these problems, bu t  some of the easiest improve- 
ments in the control of parsing come from the creative use of 
pre-processing. Our system incorporates a lexico-semantic pat- 
tern mateher,  which uses much of the same knowledge base as the 
parser and semantic interpreter  but  performs a global, superficial 
analysis of text prior to parsing. The design and implementat ion 
of the pa t te rn  matcher  is simple; instead of concentrating on its 
details, this paper  focuses on the functionality of pre-processing 
and its impact on parser control. 

Three aspects of pre-processing have particular promise for 
the quality and efficiency of later  processing--tagging, template 
aciiva~ion (including topic analysis), and segmentation (or brack- 
eting). Tagging uses lexical da ta  to constrain the par t  of speech 
and word senses of impor tan t  words, template  activation deter- 
mines a set of possible templates, or frames, and segmentation as- 
sociates portions of text with templates or template fillers. These 
techniques help the language analyzer to cope with the complex- 
ity of real text,  bo th  by reducing the combinatorics of parsing 
and by constraining word senses and a t tachment  decisions. The 
following is a sample text  taken from the development corpus of 
the MUC-3 message understanding evaluation 1, with the results 
of pre-processing after segmentation: 

Original text: 
SIX P E O P L E  WERE KILLED AND FIVE WOUNDED 

TODAY IN A BOMB ATTACK THAT DESTROYED 
A PEASANT HOME IN THE TOWN OF QUINCHIA, 
ABOUT 300 KM WEST OF BOGOTA, IN THE 
COFFEE-GROWING DEPARTMENT OF RISAR- 
ALDA, QUINCHIA MAYOR SAUL BOTERO HAS 
REPORTED.  (41 words) 

Segmented text: 
[SiX PEOPLE] [h: WERE KILLED] AND FIVE 

[A: WOUNDED] [TIME: TODAY] IN [A: A BOMB 
ATTACK] THAT [h: DESTROYED] [ i  PEASANT 
HOME] [LOCATION: IN THE TOWN OF QUINCHIA] 
[DISTANCE: *COMMA* ABOUT 300 KM WEST 
OF BOGOTA] [LOCATION: *COMMA* IN THE 

1MUC-3, the third government-sponsored message understanding 
evaluation, is in progress. Later in this paper, we will discuss the 
task and performance on the task. 
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COFFEE *HYPHEN* GROWING DEPARTMENT 
OF RISARALDA] [SOURCE: *COMMA* QUINCHIA 
MAYOR SAUL BOTERO HAS REPORTED] *PE- 
RIOD* 

The label A in some segments indicates that  those segments are 
template activators for a single event (single events are generally 
the default for multiple references within a sentence, unless there 
is a specific contextual cue such as a shift of time or location). 
The other labels are names of possible roles in templates. As is 
typical in news stories, roles can be shared (like time or location) 
or can apply to a single sub-event (like the number killed and 
wounded). 

By grouping and labeling portions of text early, the program 
greatly reduces the amount of real parsing that  must be done, 
eliminates many failed parses, and provides template-filllng in- 
formation that  helps with later processing. For example, the 
phrase IN THE TOWN OF QUINCHIA is at least five ways 
ambiguous--i t  could modify A PEASANT HOME, DESTROYED, 
A BOMB ATTACK, WOUNDED, or WERE KILLED AND FIVE 
[WERE] WOUNDED. However, all five of these possibilities have 
the same effect on the final templates produced, so the program 
can defer any decisions about how to parse these phrases un- 
til after it has determined that  the killing, wounding, attacking, 
and destruction are all part  of the same event. Since these choices 
combine with the ambiguity of other phrases, the parsing process 
would otherwise be needlessly combinatoric. In fact, parsing con- 
tributes nothing after A PEASANT HOME, so this sentence can 
be processed as a 16-word example with some extra modifiers. 

In addition to reducing the combinatorics of modifier attach- 
ment, pre-processing helps in resolving false ambiguities that  are 
a mat ter  of style in this sort of text. In this example, the el- 
lipsis in FIVE [WERE] WOUNDED would be difficult, except 
that  WOUNDED, llke many transitive verbs, is never used as an 
active verb without a direct object. The ellipsis is thus detected 
prior to parsing, to be resolved during parsing rather than as paxt 
of recovering or detecting a syntactic gap. The early bracketing 
of the text allows the parser to resolve these complexities and 
ambiguities without much extra baggage, and without having to 
wait for a complete verb phrase. 

Pre-processing not only speeds up parsing by avoiding com- 
binatorics; it also improves the accuracy of interpretation, both  
by avoiding failures and by recognizing phrases and constructions 
that  have specialized meaning or syntactic properties. The next 
section describes the design of a lexicon-driven pat tern matcher 
that  performs this sort of analysis prior to parsing, and the rest 
of the paper will present several types of examples where pre- 
processing serves to improve parsing. 

L E X I C O - S E M A N T I C  P A T T E R N  
M A T C H I N G  

The P a t t e r n  Language  
Because the pat tern matcher is designed as an efficient "trig- 

ger" mechanism and an aid in parsing, the patterns are mostly 
simple combinations of lexical categories. The patterns largely 

adopt the language of regular expressions, including the following 
terms and operators: 

• Lexical features that  can be tested in a pattern: 
- token "name" (e.g. "AK-4T') 
- lexical category (e.g. "adj") 
- root (e.g. "shoot") 
- conceptual category (e.g. "human") 

• Logical combination of lexical feature tests 
- OR, AND , and NOT 

• Wild cards 
$ - 0 or 1 tokens 
* - 0 or more tokens 
+ - 1 or more tokens 

• Variable assignment from pat tern  components 
?X = 

• Grouping operators: 
<>  for grouping 
0 for disjunctive grouping 

• Repetition 
* -  0 o r m o r e  + -  1 or more 

• Range 
* N - 0 t o N  + N -  1 t o N  

• Optional Constituents 
{} - optional 

The Rule  Base 
For the MUC-3 corpus, the knowledge base of pat terns thus 

far contains about 150 rules, where each rule contains a pat tern 
with an action (such as tagging, bracketing, deleting, adding, or 
otherwise enhancing the "tokenized" input to help the parser). 
The rules range from mundane combinations of words to intricate 
stylistic expressions. Below, we will go through some examples 
of some of these rules, and the next section will characterize their 
capabilities in more general terms. This is work in progress, so we 
will discuss both the current implementation and the directions 
for further work. 

The strategy for pre-processing, as with parsing, is to pro- 
cess the text in stages, starting with coarse topic analysis and 
filtering, then moving on to tagging, segmentation, and template 
activation. Among the useful side benefits of the pat tern matcher 
is that it discards portions of text that  do not activate (or sup- 
port) any templates. In MUC-3, this process eliminates about 
75% of the input. On the first test set, the program did not skip 
any texts that  contained relevant templates. 

Because of this multi-stage design, the first stage of pat- 
tern matching contains the simplest patterns,  and these include 
mostly expanded morphological forms, to avoid even the mor- 
phological analysis of large portions of irrelevant text. Below are 
three examples of these activator rules: 
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;;; rule 11 
?PIVOT=(or found left shot) ?OBJ=* ?EFFECT=dead 

=> ( m a r k - a c t i v a t o r  murder d -vp)  ; 

; ; ;  ru le  40 
?0BJf$bombs 7hD3=* ?PIV0Tffi(or shook e x p l o d e d  d e s t r o y e d  

d e s t r o y i n g  damaged damaging) 
=> (mark-activator bombing b-s) ; 

In addition to providing a rough screen of the input, these coarse 
template activation patterns "mark up" the text. Variable as- 
signments effectively tag portions of text to help the parser. For 
example, the PIVOT tag tells the parser to favor a particular lex- 
ical term for the head of linguistic attachments,  and the 0BJ tag 
tells the semantic interpreter to try to fill a conceptual object role 
for a constituent. Since these patterns perform only the crudest 
form of linguistic analysis, their purpose is not to replace parsing 
but to allow the parser to focus its processing and not "prune 
off" paths that  are likely to be critical. 

Rule 11 above handles inputs such as The attack left 9 peo- 
ple dead. Rule 40 handles, for example, The dynamite charge 
partially destroyed the bank facilities. 

The macros on the right hand sides of rules, such as mark- 
activator, generally use the results of the pattern match, includ- 
ing variable assignments, along with some other constants, such 
as murder and d-vp, to tag and segment the text. Template ac- 
tivation tags, like murder, allow the semantic interpreter to frill 
slots and apply constraints from the appropriate template dur- 
ing parsing. Grammatical tags, like d-vp (the double-object verb 
phrase, including adjectival complements) give a preferred parse, 
so the parser can try to favor a parse consistent with the lexlco- 
semantic pattern.  

The second set of rules, after the initial filtering and trig- 
gering, performs the cleanup of the input text, including many 
names, dates, punctuation, and marking of locative and tempo- 
ral phrases. These rules can be somewhat more involved, as in 
the following examples: 

; ; ;  rule 97 
?N-~uJ.l.name 
*¢om~t* 
?APP=<(not after fullname rpnoun aux 

past_part_verb pres_part_verb) 

(not fullname was were *coma* 
*semicolon*)* > 

(or *semicolon* *comma*) 
=> mark-appositive ; 

; ; ;  r u l e  113 
{*coma*} ?PREP={(and prep (not between of))} 
{det} $ 7TYPEffi$1oc+2 [of <known as>] {det} 
[<?IAME=place-neme ?TYPEffi{$1oc}> ?|AME=$1oc] 

{*coma*} 
?POSSf{<*apostrophe-s* capital>} 

=> mark-location ; 

Rule 97 helps to distinguish appositive phrases from fists, relative 
clauses, and other constructions with internal punctuation. The 

parser handles many punctuated forms using grammar rules or 
meta-rules, but these can qnicldy get out of control. A simple 
example is He is in charge of the investigations of the deaths of 
Guillermo Cano, director of the newspaper El Espectador, and 
Jaime Pardo Leal, the president of the Patriotic Union. 

Rule 113 catches many locative expressions. 

The most complex patterns perform tagging and segmenta- 
tion of grammatical constructions. While these are probably the 
most interesting and promising for the general control of pars- 
ing, we have only begun to encode them. The following are two 
examples: 

; ; ;  r u l e  127 
(or  1-number numword) ?0B3=.4  k i l l e d  
(or  eoordconj  c o n j )  
*2 (or 1-number numeord) 
?SPOTffi(or injured wounded) 

=> mark-ellipsis ; 

; ; ;  ru le  128 
{aux}  ?V=verb_ leave  (or  1-number numword) 
?FOBJ=*4 ?Elffi(or injured dead wounded) 
{<?Cffi(or coordconj conj)  

*2 (or 1-number numsord) 
?SOBJffi*4 ?E2f(or injured sounded)>} 

ffi> mark-left-dead ; 

Rule 127 recognizes many cases of ellipsis involving death and 
injury, as in Six people were killed and five wounded, and rule 127 
segments examples where the verb leave is used to express death 
and injury, as in left 6 people dead. These rules often overlap, as 
rule 128 overlaps with rule 11. The motivation for this is that  
rule 11 simply spots certain cases where left is used to express 
death (a very smaU percentage of occurrences of left), while the 
more powerful rule, 128, tries to segment the objects and effects. 

The Algo r i t hm 
When the system loads the pattern-activation rules, it in- 

dexes each pat tern  by the lexical features (i.e. the words, lexical 
categories, roots and concepts) of each of its constituents, distin- 
guishing those that  require lexical analysis from the word-only 
rules. At rim-time, the pat tern matcher performs the following 
four operations: 

1. It examines each input token (only) once for any features 
that  index pat tern tests. 

2. Each satisfied pat tern test "triggers" its enveloping rule. 
The satisfied pat tern tests are cached so subsequent occur- 
rences of the same input token avoid the feature examina- 
tion. 

3. After all input tokens have been examined, the program 
matches all triggered rules (those that  have all of their non- 
optional tests satisfied) against the input. The matching 
uses a best-first search algorithm, where the "best" match 
is one that  uses the most pat tern  constituents and the most 
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input  tokens. This matching process is implemented as a OQOELI, 45 . . . .  
table traversal. 

4. The system executes the actions of all matched rules. 

We now turn  to how this simple form of pre-processing helps 
parsing and how it is likely to influence future advances in text 
interpretat ion.  

F E A T U R E S  OF P R E - P R O C E S S I N G  
This section gives some examples from news stories of the 

places where pa t te rn  matching eliminates or assists with work 
typically left for parsing. Pushing these tasks into this pre- 
processing phase with a less computation-intensive mechanism 
speeds up language analysis, reduces the complexity of the in- 
pu t  texts, allows for modulari ty between topic analysis and da ta  
extraction, and  increases the accuracy of the resulting analysis. 

Pa t te rn  matching performs the following tasks: 

1. N a m e  r e c o g n i t i o n  a n d  r e d u c t i o n :  Person names may 
contain long and complex titles and appositives, as in the follow- 
ing examples: 

FORMER PERUVIAW DEFEISE MINISTER 

GENERAL EBRIqUE LOPEZ ALBUJAR 

FARIO SOLORZhIIO NARTIIEZ, LEADER OF 

GUATEMALA'S DEMOCRATIC SOCIALIST 

PARTY,... 

We recognize these constructs with the pa t te rn  matcher,  using 
pat terns  tha t  contain variables for first names and variables for 
titles. 

2. S p a t i a l  p h r a s e  r e c o g n i t i o n  a n d  r e d u c t i o n :  Pre-processing 
can easily identify and compress many locatives, using pat terns  
tha t  look for combinations of spatial  prepositions with known 
locations, as in the following: 

II THE TOWI OF QUIICHIA, ABOUT 300 KM 

WEST OF BOGOTA, II TIIE COFFEE-GROWlIiG 

DEPARTNEIJT OF RISARALDA ... 

3. T e m p o r a l  p h r a s e  r e c o g n i t i o n  a n d  r e d u c t i o n :  The pat- 
tern matcher  picks out many temporal  adverbial phrases, such 
as: 

II THE PAST FEW HOURS 

MORE TilhB 3 MOBTIIS AGO. 

4. " C l e a n u p "  o f  n e w s  s t y l e  t e x t :  Pa t te rns  capture and help 
interpret  style-specific constructions, as in the following exam- 
ples: 

WITH LICEBSE PLATE UF-2171 

5. T a g g i n g  a n d  s e g m e n t a t i o n :  Some complex constructs,  es- 
pecially ellipsis and conjunction, are easier to identify and  parse 
with identification at pre-processing, for example, the construct 
< event>... < verb-leave>... Y < heal~h-atate> and...Z <health_state> 
in the following sentence: 

THE UPRISING, WHICH BEGAN AT 1100 (1700 GMT) 
ON 26 MARCH AND WHICH INCLUDES DEMANDS FOR 
B E T T E R  JAIL CONDITIONS, HAS LEFT AT LEAST 12 DEAD 
AND SOME 20 INJURED, ACCORDING TO POLICE SPOKES- 
MEN. 

6. Top ic  a n a l y s i s  a n d  f i l t e r i ng :  Pa t te rns  for topical keywords 
and phrases help to perform topic analysis and filtering of stories. 
For example, stories containing pa t te rns  like < a t t a c k >  . . .<civilian> 
are likely to be about  terrorist  attacks. This type of relevance 
determinat ion is useful at  the paragraph  and sentence level as 
well. Eliminating irrelevant sentences saves the language analy- 
sis programs from having to parse them, and  often avoids "false 
positives" by eliminating background information from interpre- 
tation, as in the following paragraph:  

ALL OF THESE CHARACTERISTICS MAKE HONDURAS 
A DEMOCRACY, AND EVERY SECTOR OF HONDURAN 
SOCIETY SHOULD STRIVE TO STRENGTHEN THEM BY 
AVOIDING VIOLENCE AT ALL COSTS, OBEYING THE LAW, 
AND CONDEMNING AND ATTACKING E X T R E M E  TER- 
RORIST GROUPS REGARDLESS OF THEIR AFFILIATION, 
THUS ENABLING US TO CONSOLIDATE OUR DEMOC- 
RACY AND REACH THE LEVEL OF POLITICAL DEVEL- 
OPMENT ATTAINED BY O T H E R  DEMOCRATIC COUN- 
TRIES. 

These six examples i l lustrate some of the places where fairly 
well-understood techniques from Artificial Intelligence, combined 
with a large lexical and  conceptual hierarchy, are very useful in 
analyzing texts for na tura l  language da ta  extraction. In some 
cases, such as topic analysis, the pa t t e rn  matcher  operates as a 
separable component  from the  rest  of the text  processing sys- 
tem; in others, Hke syntactic segmentat ion and spa t ia l / tempora l  
reduction, it is more closely coupled with the parser. This ap- 
proach has many of the advantages of phrasal  parsing, such as ro- 
bust  coverage of a range of grammaticM constructions, the elim- 
inat ion of grammatical  complexity, and the easy adapta t ion  of 
the system to handle sublanguage constructs.  But  it retains the 
advantages of parsing for handl ing agreement, a t tachment ,  and 
semantic interpretat ion of the  text .  

The next section compares this style of processing with earlier 
work in phrasal  parsing. 

P R E - P R O C E S S I N G  A N D  P H R A S A L  
P A R S I N G  

We have pointed out some of the problems with tradit ional 
left-to-right single pass parsing methods,  including the lack of in- 
fluence of global context on local interpretat ion,  the complexity 
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of long sentences, stylized constructs, and garden paths. These 
well-known symptoms of syntactic parsing point to two gen- 
eral means of improving control---sublanguage analysis [2] and 
domain-driven or conceptual analysis [3]. Roughly speaking, this 
means that  the system must constrain the input through either 
linguistic or semantic methods wherever possible. Pat tern  match- 
ing is an effective vehicle to enforce such constraints. 

In some ways, the use of pat tern matching for pre-processing 
is reminiscent of phrasal styles of language analysis [4, 5, 6], which 
in turn derive in part from semantic grammars [7]. These con- 
trolled styles of parsing were especially useful for engineering ap- 
plications in limited domains, where it is much easier to cover the 
range of meaningful expressions and their interpretations than to 
control left-to-right parsing and subsequent semantic interpreta- 
tion. However, phrasal analysis, like syntax-first parsing, tried to 
treat most of language interpretation within a single-pass, single- 
strategy process. This confined the approach to fairly simple 
applications and made it difficult to port  from one domain to 
another. 

In addition to this brittleness and limited scope of phrasal 
parsing, the phrasal approach suffered from a more fundamental 
problem: treating phrases or constructions as a replacement for 
grammatical rules seemed to miss the point of grammar entirely, 
leaving no place to account for most of the regularities of lan- 
guage. Even most of the rigid constructions and "idioms" of a 
language (like riddled with bullets) are grammatical. Thus the 
encoding of most of the knowledge about these expressions was 
really redundant,  forcing the phrasal analyzer to apply interpre- 
tation rules and enforce constraints that  easily could have been 
expressed in more general terms. This causes problems both in 
developing broad coverage and in applying automated methods 
of acquiring phrasal knowledge. 

Lexico-semantic pre-processing, by introducing domain con- 
straints and linguistic constrncts prior to processing, controls 
parsing through two vehicles: (1) Triggering grammatical con- 
strncts prior to parsing allows the parser to apply the same gram- 
matical knowledge to many different types of input without being 
constantly led to garden paths or false interpretations, and (2} 
Using filtering and template activation to capture some domain 
knowledge prior to parsing allows the parser to direct attach- 
ment and pruning toward the production of relations that  affect 
the domain result. This sort of multi-stage analysis seems to 
be the right style for accomplishing the directed processing of 
the phrasal and sublanguage approaches while allowing for the 
breadth and portability that  current text processing applications 
require. 

C U R R E N T  STATUS A N D  F U T U R E  
E N H A N C E M E N T S  

Our system, known as the GE NLToolset [8], is one of the 
more complete and mature text interpretation programs, having 
developed from a substantial research thrust into several applica- 
tions outside of the research laboratory. Like other researchers in 
text interpretation, we have come to evaluate this sort of work in 
part  through the system's performance on government-sponsored 
benchmark evaluations. 

The second message understanding evaluation conference, in 
1989, known as MUCK-II [9], used a corpus of slightly over 100 
naval operations reports, with a final test on 5 such messages. 
The current MUC-3 development corpus contains 1300 open- 
source foreign news stories, with a final test on 100 such stories. 
The total corpus for MUC-3 is about 400,000 words, compared 
with about 3200 for MUCK-II. The MUC-3 task also requires 
both  broader and deeper analysis of the texts, with an uncon- 
strained range of responses. For example, the example sentence 
about the bombing in Risaralda would produce the template il- 
lustrated in Figure I. 

The MUC-3 evaluation scores each system on its ability to 
match a "correct" set of over 100 filled templates on 100 news 
stories. 

The scale-up over the two years from MUCK-II to MUG-3 has 
strained parsing systems in throughput,  coverage, and accuracy, 
and pre-processing has been essential to all three. Our system 
throughput is now an order of magnitude greater in words per 
minute (about 1000/minnte) than in MUCK-II, the coverage is 
orders of magnitude greater, and the accuracy is about the same 
as at this point in MUCK-II, in spite of a harsher scoring system. 
Improvements in the grammar, lexicon, preference module, and 
recovery strategies have helped in this advance. However, large 
improvements in parsing are hard to come by, hence the incre- 
mental contribution of pre-processing is disproportionate, given 
the simplicity of the algorithm and rules. 

Two major challenges remain in integrating the pat tern matcher 
more effectively with the parser, and both  should be accom- 
plished, at least in part,  before the end of MUC-3. We view 
the apparent success of simple pat tern  matching methods not 
as a replacement for real parsing, but rather  as an example of 
how much work is involved in controlling parsing of texts. The 
current coupling of the parser with the pat tern  matcher is not 
sufficiently fluid to take advantage of much of the information 
that  the pat tern matcher can produce, leaving room for further 
integration. 

The first apparent challenge is to tie the linguistic patterns, 
where appropriate, to "top-down" domain knowledge. In many 
cases, the common expressions, forms, and preferences derive 
from conceptual relationships in the domain; for example, the 
leave dead expressions are part  of a general class of descriptions 
that  follow events with the effects of events. For efficiency, the 
pattern matcher must recognize these descriptions at the lexical 
level, but there is no reason why domain knowledge cannot help 
to collect and create such lexical patterns.  

The second challenge is to use the results of pat tern matching 
more for parser preferences, using a strategy we call relation- 
driven control. This strategy looks for attachments of phrases 
to pivots which appear at the head of template activators. We 
have already implemented relation-driven control as a means of 
recovering from failed parses, but much of the task of nsing pivots 
and brackets to guide preferences remains. 

In addition to these two challenges, another task, which is 
more difficult than it would seem, is to combine pat tern match- 
ing with other, more syntactic methods of pre-processing, such 
as stochastic analysis or finite-state recognition of constituents. 
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