
L E X I C O - S E M A N T I C P A T T E R N M A T C H I N G
AS A C O M P A N I O N T O P A R S I N G IN T E X T U N D E R S T A N D I N G

Paul S. Jacobs, George R. Krupka and Lisa F. Rau

Artificial Intelligence Laboratory
GE Research and Development

Schenectady, NY 12301

A B S T R A C T
Ordinarily, one thinks of the problem of na tura l language un-

derstanding as one of making a single, left-to-right pass through
an input, producing a progressively refined and detailed interpre-
tation. In text interpretat ion, however, the constraints of strict
left-to-right processing are an encumbrance. Multi-pass meth-
ods, especially by interpreting words using corpus da ta and as-
sociating uni ts of text with possible interpretations, can be more
accurate and faster t han single-pass methods of data extraction.
Quality improves because corpus-based da ta and global context
help to control false interpretations; speed improves because pro-
cessing focuses on relevant sections.

The most useful forms of pre-processing for text interpre-
tat ion use fairly superficial analysis tha t complements the style
of ordinary parsing but uses much of the same knowledge base.
Lexico-semantic pa t t e rn matching, with rules tha t combine lex-
local analysis with ordering and semantic categories, is a good
method for this form of analysis. This type of pre-processing is
efficient, takes advantage of corpus data, prevents many garden
paths and fruitless parses, and helps the parser cope with the
complexity and flexibility of real text.

I N T R O D U C T I O N
The interpretat ion of large volumes of text poses many con-

trol problems, including limiting the complexity of analysis and
ensuring the product ion of valid interpretat ions without consid-
ering too many possibifities. These problems are especially severe
in processing news stories, where long sentences, information-rich
news-style constructions, and the complex structure of events
make normal syntax-first analysis especially impractical.

Normal left-to-right syntactic parsing, in virtually all its forms,
is a disaster for interpret ing broad classes of extended texts.
Multiple-path methods are haunted by a t tachment problems tha t
can lead to a combinatoric explosion of paths, while simple deter-
ministic methods bring on parser failures and problems in com-
bining preferences. In previous work aimed at word sense coding
of news stories [1], we have found tha t even heavy pruning of
a mult iple-path chart parsing strategy often leaves hundreds of
parses to consider for a single sentence. Even worse, minor ir-
regularities in linguistic s t ructure or word usage bring on parser
failures and inadequate interpretations.

Better parsing strategies, including control using statistical
data, flexible part ial parsing, and recovery, can certainly help
with some of these problems, bu t some of the easiest improve-
ments in the control of parsing come from the creative use of
pre-processing. Our system incorporates a lexico-semantic pat-
tern mateher, which uses much of the same knowledge base as the
parser and semantic interpreter but performs a global, superficial
analysis of text prior to parsing. The design and implementat ion
of the pa t te rn matcher is simple; instead of concentrating on its
details, this paper focuses on the functionality of pre-processing
and its impact on parser control.

Three aspects of pre-processing have particular promise for
the quality and efficiency of later processing--tagging, template
aciiva~ion (including topic analysis), and segmentation (or brack-
eting). Tagging uses lexical da ta to constrain the par t of speech
and word senses of impor tan t words, template activation deter-
mines a set of possible templates, or frames, and segmentation as-
sociates portions of text with templates or template fillers. These
techniques help the language analyzer to cope with the complex-
ity of real text, bo th by reducing the combinatorics of parsing
and by constraining word senses and a t tachment decisions. The
following is a sample text taken from the development corpus of
the MUC-3 message understanding evaluation 1, with the results
of pre-processing after segmentation:

Original text:
SIX P E O P L E WERE KILLED AND FIVE WOUNDED

TODAY IN A BOMB ATTACK THAT DESTROYED
A PEASANT HOME IN THE TOWN OF QUINCHIA,
ABOUT 300 KM WEST OF BOGOTA, IN THE
COFFEE-GROWING DEPARTMENT OF RISAR-
ALDA, QUINCHIA MAYOR SAUL BOTERO HAS
REPORTED. (41 words)

Segmented text:
[SiX PEOPLE] [h: WERE KILLED] AND FIVE

[A: WOUNDED] [TIME: TODAY] IN [A: A BOMB
ATTACK] THAT [h: DESTROYED] [i PEASANT
HOME] [LOCATION: IN THE TOWN OF QUINCHIA]
[DISTANCE: *COMMA* ABOUT 300 KM WEST
OF BOGOTA] [LOCATION: *COMMA* IN THE

1MUC-3, the third government-sponsored message understanding
evaluation, is in progress. Later in this paper, we will discuss the
task and performance on the task.

337

COFFEE *HYPHEN* GROWING DEPARTMENT
OF RISARALDA] [SOURCE: *COMMA* QUINCHIA
MAYOR SAUL BOTERO HAS REPORTED] *PE-
RIOD*

The label A in some segments indicates that those segments are
template activators for a single event (single events are generally
the default for multiple references within a sentence, unless there
is a specific contextual cue such as a shift of time or location).
The other labels are names of possible roles in templates. As is
typical in news stories, roles can be shared (like time or location)
or can apply to a single sub-event (like the number killed and
wounded).

By grouping and labeling portions of text early, the program
greatly reduces the amount of real parsing that must be done,
eliminates many failed parses, and provides template-filllng in-
formation that helps with later processing. For example, the
phrase IN THE TOWN OF QUINCHIA is at least five ways
ambiguous--i t could modify A PEASANT HOME, DESTROYED,
A BOMB ATTACK, WOUNDED, or WERE KILLED AND FIVE
[WERE] WOUNDED. However, all five of these possibilities have
the same effect on the final templates produced, so the program
can defer any decisions about how to parse these phrases un-
til after it has determined that the killing, wounding, attacking,
and destruction are all part of the same event. Since these choices
combine with the ambiguity of other phrases, the parsing process
would otherwise be needlessly combinatoric. In fact, parsing con-
tributes nothing after A PEASANT HOME, so this sentence can
be processed as a 16-word example with some extra modifiers.

In addition to reducing the combinatorics of modifier attach-
ment, pre-processing helps in resolving false ambiguities that are
a mat ter of style in this sort of text. In this example, the el-
lipsis in FIVE [WERE] WOUNDED would be difficult, except
that WOUNDED, llke many transitive verbs, is never used as an
active verb without a direct object. The ellipsis is thus detected
prior to parsing, to be resolved during parsing rather than as paxt
of recovering or detecting a syntactic gap. The early bracketing
of the text allows the parser to resolve these complexities and
ambiguities without much extra baggage, and without having to
wait for a complete verb phrase.

Pre-processing not only speeds up parsing by avoiding com-
binatorics; it also improves the accuracy of interpretation, both
by avoiding failures and by recognizing phrases and constructions
that have specialized meaning or syntactic properties. The next
section describes the design of a lexicon-driven pat tern matcher
that performs this sort of analysis prior to parsing, and the rest
of the paper will present several types of examples where pre-
processing serves to improve parsing.

L E X I C O - S E M A N T I C P A T T E R N
M A T C H I N G

The P a t t e r n Language
Because the pat tern matcher is designed as an efficient "trig-

ger" mechanism and an aid in parsing, the patterns are mostly
simple combinations of lexical categories. The patterns largely

adopt the language of regular expressions, including the following
terms and operators:

• Lexical features that can be tested in a pattern:
- token "name" (e.g. "AK-4T')
- lexical category (e.g. "adj")
- root (e.g. "shoot")
- conceptual category (e.g. "human")

• Logical combination of lexical feature tests
- OR, AND , and NOT

• Wild cards
$ - 0 or 1 tokens
* - 0 or more tokens
+ - 1 or more tokens

• Variable assignment from pat tern components
?X =

• Grouping operators:
<> for grouping
0 for disjunctive grouping

• Repetition
* - 0 o r m o r e + - 1 or more

• Range
* N - 0 t o N + N - 1 t o N

• Optional Constituents
{} - optional

The Rule Base
For the MUC-3 corpus, the knowledge base of pat terns thus

far contains about 150 rules, where each rule contains a pat tern
with an action (such as tagging, bracketing, deleting, adding, or
otherwise enhancing the "tokenized" input to help the parser).
The rules range from mundane combinations of words to intricate
stylistic expressions. Below, we will go through some examples
of some of these rules, and the next section will characterize their
capabilities in more general terms. This is work in progress, so we
will discuss both the current implementation and the directions
for further work.

The strategy for pre-processing, as with parsing, is to pro-
cess the text in stages, starting with coarse topic analysis and
filtering, then moving on to tagging, segmentation, and template
activation. Among the useful side benefits of the pat tern matcher
is that it discards portions of text that do not activate (or sup-
port) any templates. In MUC-3, this process eliminates about
75% of the input. On the first test set, the program did not skip
any texts that contained relevant templates.

Because of this multi-stage design, the first stage of pat-
tern matching contains the simplest patterns, and these include
mostly expanded morphological forms, to avoid even the mor-
phological analysis of large portions of irrelevant text. Below are
three examples of these activator rules:

338

;;; rule 11
?PIVOT=(or found left shot) ?OBJ=* ?EFFECT=dead

=> (m a r k - a c t i v a t o r murder d -vp) ;

; ; ; ru le 40
?0BJf$bombs 7hD3=* ?PIV0Tffi(or shook e x p l o d e d d e s t r o y e d

d e s t r o y i n g damaged damaging)
=> (mark-activator bombing b-s) ;

In addition to providing a rough screen of the input, these coarse
template activation patterns "mark up" the text. Variable as-
signments effectively tag portions of text to help the parser. For
example, the PIVOT tag tells the parser to favor a particular lex-
ical term for the head of linguistic attachments, and the 0BJ tag
tells the semantic interpreter to try to fill a conceptual object role
for a constituent. Since these patterns perform only the crudest
form of linguistic analysis, their purpose is not to replace parsing
but to allow the parser to focus its processing and not "prune
off" paths that are likely to be critical.

Rule 11 above handles inputs such as The attack left 9 peo-
ple dead. Rule 40 handles, for example, The dynamite charge
partially destroyed the bank facilities.

The macros on the right hand sides of rules, such as mark-
activator, generally use the results of the pattern match, includ-
ing variable assignments, along with some other constants, such
as murder and d-vp, to tag and segment the text. Template ac-
tivation tags, like murder, allow the semantic interpreter to frill
slots and apply constraints from the appropriate template dur-
ing parsing. Grammatical tags, like d-vp (the double-object verb
phrase, including adjectival complements) give a preferred parse,
so the parser can try to favor a parse consistent with the lexlco-
semantic pattern.

The second set of rules, after the initial filtering and trig-
gering, performs the cleanup of the input text, including many
names, dates, punctuation, and marking of locative and tempo-
ral phrases. These rules can be somewhat more involved, as in
the following examples:

; ; ; rule 97
?N-~uJ.l.name
¢om~t
?APP=<(not after fullname rpnoun aux

past_part_verb pres_part_verb)

(not fullname was were *coma*
semicolon)* >

(or *semicolon* *comma*)
=> mark-appositive ;

; ; ; r u l e 113
{*coma*} ?PREP={(and prep (not between of))}
{det} $ 7TYPEffi$1oc+2 [of <known as>] {det}
[<?IAME=place-neme ?TYPEffi{$1oc}> ?|AME=$1oc]

{*coma*}
?POSSf{<*apostrophe-s* capital>}

=> mark-location ;

Rule 97 helps to distinguish appositive phrases from fists, relative
clauses, and other constructions with internal punctuation. The

parser handles many punctuated forms using grammar rules or
meta-rules, but these can qnicldy get out of control. A simple
example is He is in charge of the investigations of the deaths of
Guillermo Cano, director of the newspaper El Espectador, and
Jaime Pardo Leal, the president of the Patriotic Union.

Rule 113 catches many locative expressions.

The most complex patterns perform tagging and segmenta-
tion of grammatical constructions. While these are probably the
most interesting and promising for the general control of pars-
ing, we have only begun to encode them. The following are two
examples:

; ; ; r u l e 127
(or 1-number numword) ?0B3=.4 k i l l e d
(or eoordconj c o n j)
*2 (or 1-number numeord)
?SPOTffi(or injured wounded)

=> mark-ellipsis ;

; ; ; ru le 128
{aux} ?V=verb_ leave (or 1-number numword)
?FOBJ=*4 ?Elffi(or injured dead wounded)
{<?Cffi(or coordconj conj)

*2 (or 1-number numsord)
?SOBJffi*4 ?E2f(or injured sounded)>}

ffi> mark-left-dead ;

Rule 127 recognizes many cases of ellipsis involving death and
injury, as in Six people were killed and five wounded, and rule 127
segments examples where the verb leave is used to express death
and injury, as in left 6 people dead. These rules often overlap, as
rule 128 overlaps with rule 11. The motivation for this is that
rule 11 simply spots certain cases where left is used to express
death (a very smaU percentage of occurrences of left), while the
more powerful rule, 128, tries to segment the objects and effects.

The Algo r i t hm
When the system loads the pattern-activation rules, it in-

dexes each pat tern by the lexical features (i.e. the words, lexical
categories, roots and concepts) of each of its constituents, distin-
guishing those that require lexical analysis from the word-only
rules. At rim-time, the pat tern matcher performs the following
four operations:

1. It examines each input token (only) once for any features
that index pat tern tests.

2. Each satisfied pat tern test "triggers" its enveloping rule.
The satisfied pat tern tests are cached so subsequent occur-
rences of the same input token avoid the feature examina-
tion.

3. After all input tokens have been examined, the program
matches all triggered rules (those that have all of their non-
optional tests satisfied) against the input. The matching
uses a best-first search algorithm, where the "best" match
is one that uses the most pat tern constituents and the most

339

input tokens. This matching process is implemented as a OQOELI, 45
table traversal.

4. The system executes the actions of all matched rules.

We now turn to how this simple form of pre-processing helps
parsing and how it is likely to influence future advances in text
interpretat ion.

F E A T U R E S OF P R E - P R O C E S S I N G
This section gives some examples from news stories of the

places where pa t te rn matching eliminates or assists with work
typically left for parsing. Pushing these tasks into this pre-
processing phase with a less computation-intensive mechanism
speeds up language analysis, reduces the complexity of the in-
pu t texts, allows for modulari ty between topic analysis and da ta
extraction, and increases the accuracy of the resulting analysis.

Pa t te rn matching performs the following tasks:

1. N a m e r e c o g n i t i o n a n d r e d u c t i o n : Person names may
contain long and complex titles and appositives, as in the follow-
ing examples:

FORMER PERUVIAW DEFEISE MINISTER

GENERAL EBRIqUE LOPEZ ALBUJAR

FARIO SOLORZhIIO NARTIIEZ, LEADER OF

GUATEMALA'S DEMOCRATIC SOCIALIST

PARTY,...

We recognize these constructs with the pa t te rn matcher, using
pat terns tha t contain variables for first names and variables for
titles.

2. S p a t i a l p h r a s e r e c o g n i t i o n a n d r e d u c t i o n : Pre-processing
can easily identify and compress many locatives, using pat terns
tha t look for combinations of spatial prepositions with known
locations, as in the following:

II THE TOWI OF QUIICHIA, ABOUT 300 KM

WEST OF BOGOTA, II TIIE COFFEE-GROWlIiG

DEPARTNEIJT OF RISARALDA ...

3. T e m p o r a l p h r a s e r e c o g n i t i o n a n d r e d u c t i o n : The pat-
tern matcher picks out many temporal adverbial phrases, such
as:

II THE PAST FEW HOURS

MORE TilhB 3 MOBTIIS AGO.

4. " C l e a n u p " o f n e w s s t y l e t e x t : Pa t te rns capture and help
interpret style-specific constructions, as in the following exam-
ples:

WITH LICEBSE PLATE UF-2171

5. T a g g i n g a n d s e g m e n t a t i o n : Some complex constructs, es-
pecially ellipsis and conjunction, are easier to identify and parse
with identification at pre-processing, for example, the construct
< event>... < verb-leave>... Y < heal~h-atate> and...Z <health_state>
in the following sentence:

THE UPRISING, WHICH BEGAN AT 1100 (1700 GMT)
ON 26 MARCH AND WHICH INCLUDES DEMANDS FOR
B E T T E R JAIL CONDITIONS, HAS LEFT AT LEAST 12 DEAD
AND SOME 20 INJURED, ACCORDING TO POLICE SPOKES-
MEN.

6. Top ic a n a l y s i s a n d f i l t e r i ng : Pa t te rns for topical keywords
and phrases help to perform topic analysis and filtering of stories.
For example, stories containing pa t te rns like < a t t a c k > . . .<civilian>
are likely to be about terrorist attacks. This type of relevance
determinat ion is useful at the paragraph and sentence level as
well. Eliminating irrelevant sentences saves the language analy-
sis programs from having to parse them, and often avoids "false
positives" by eliminating background information from interpre-
tation, as in the following paragraph:

ALL OF THESE CHARACTERISTICS MAKE HONDURAS
A DEMOCRACY, AND EVERY SECTOR OF HONDURAN
SOCIETY SHOULD STRIVE TO STRENGTHEN THEM BY
AVOIDING VIOLENCE AT ALL COSTS, OBEYING THE LAW,
AND CONDEMNING AND ATTACKING E X T R E M E TER-
RORIST GROUPS REGARDLESS OF THEIR AFFILIATION,
THUS ENABLING US TO CONSOLIDATE OUR DEMOC-
RACY AND REACH THE LEVEL OF POLITICAL DEVEL-
OPMENT ATTAINED BY O T H E R DEMOCRATIC COUN-
TRIES.

These six examples i l lustrate some of the places where fairly
well-understood techniques from Artificial Intelligence, combined
with a large lexical and conceptual hierarchy, are very useful in
analyzing texts for na tura l language da ta extraction. In some
cases, such as topic analysis, the pa t t e rn matcher operates as a
separable component from the rest of the text processing sys-
tem; in others, Hke syntactic segmentat ion and spa t ia l / tempora l
reduction, it is more closely coupled with the parser. This ap-
proach has many of the advantages of phrasal parsing, such as ro-
bust coverage of a range of grammaticM constructions, the elim-
inat ion of grammatical complexity, and the easy adapta t ion of
the system to handle sublanguage constructs. But it retains the
advantages of parsing for handl ing agreement, a t tachment , and
semantic interpretat ion of the text .

The next section compares this style of processing with earlier
work in phrasal parsing.

P R E - P R O C E S S I N G A N D P H R A S A L
P A R S I N G

We have pointed out some of the problems with tradit ional
left-to-right single pass parsing methods, including the lack of in-
fluence of global context on local interpretat ion, the complexity

340

of long sentences, stylized constructs, and garden paths. These
well-known symptoms of syntactic parsing point to two gen-
eral means of improving control---sublanguage analysis [2] and
domain-driven or conceptual analysis [3]. Roughly speaking, this
means that the system must constrain the input through either
linguistic or semantic methods wherever possible. Pat tern match-
ing is an effective vehicle to enforce such constraints.

In some ways, the use of pat tern matching for pre-processing
is reminiscent of phrasal styles of language analysis [4, 5, 6], which
in turn derive in part from semantic grammars [7]. These con-
trolled styles of parsing were especially useful for engineering ap-
plications in limited domains, where it is much easier to cover the
range of meaningful expressions and their interpretations than to
control left-to-right parsing and subsequent semantic interpreta-
tion. However, phrasal analysis, like syntax-first parsing, tried to
treat most of language interpretation within a single-pass, single-
strategy process. This confined the approach to fairly simple
applications and made it difficult to port from one domain to
another.

In addition to this brittleness and limited scope of phrasal
parsing, the phrasal approach suffered from a more fundamental
problem: treating phrases or constructions as a replacement for
grammatical rules seemed to miss the point of grammar entirely,
leaving no place to account for most of the regularities of lan-
guage. Even most of the rigid constructions and "idioms" of a
language (like riddled with bullets) are grammatical. Thus the
encoding of most of the knowledge about these expressions was
really redundant, forcing the phrasal analyzer to apply interpre-
tation rules and enforce constraints that easily could have been
expressed in more general terms. This causes problems both in
developing broad coverage and in applying automated methods
of acquiring phrasal knowledge.

Lexico-semantic pre-processing, by introducing domain con-
straints and linguistic constrncts prior to processing, controls
parsing through two vehicles: (1) Triggering grammatical con-
strncts prior to parsing allows the parser to apply the same gram-
matical knowledge to many different types of input without being
constantly led to garden paths or false interpretations, and (2}
Using filtering and template activation to capture some domain
knowledge prior to parsing allows the parser to direct attach-
ment and pruning toward the production of relations that affect
the domain result. This sort of multi-stage analysis seems to
be the right style for accomplishing the directed processing of
the phrasal and sublanguage approaches while allowing for the
breadth and portability that current text processing applications
require.

C U R R E N T STATUS A N D F U T U R E
E N H A N C E M E N T S

Our system, known as the GE NLToolset [8], is one of the
more complete and mature text interpretation programs, having
developed from a substantial research thrust into several applica-
tions outside of the research laboratory. Like other researchers in
text interpretation, we have come to evaluate this sort of work in
part through the system's performance on government-sponsored
benchmark evaluations.

The second message understanding evaluation conference, in
1989, known as MUCK-II [9], used a corpus of slightly over 100
naval operations reports, with a final test on 5 such messages.
The current MUC-3 development corpus contains 1300 open-
source foreign news stories, with a final test on 100 such stories.
The total corpus for MUC-3 is about 400,000 words, compared
with about 3200 for MUCK-II. The MUC-3 task also requires
both broader and deeper analysis of the texts, with an uncon-
strained range of responses. For example, the example sentence
about the bombing in Risaralda would produce the template il-
lustrated in Figure I.

The MUC-3 evaluation scores each system on its ability to
match a "correct" set of over 100 filled templates on 100 news
stories.

The scale-up over the two years from MUCK-II to MUG-3 has
strained parsing systems in throughput, coverage, and accuracy,
and pre-processing has been essential to all three. Our system
throughput is now an order of magnitude greater in words per
minute (about 1000/minnte) than in MUCK-II, the coverage is
orders of magnitude greater, and the accuracy is about the same
as at this point in MUCK-II, in spite of a harsher scoring system.
Improvements in the grammar, lexicon, preference module, and
recovery strategies have helped in this advance. However, large
improvements in parsing are hard to come by, hence the incre-
mental contribution of pre-processing is disproportionate, given
the simplicity of the algorithm and rules.

Two major challenges remain in integrating the pat tern matcher
more effectively with the parser, and both should be accom-
plished, at least in part, before the end of MUC-3. We view
the apparent success of simple pat tern matching methods not
as a replacement for real parsing, but rather as an example of
how much work is involved in controlling parsing of texts. The
current coupling of the parser with the pat tern matcher is not
sufficiently fluid to take advantage of much of the information
that the pat tern matcher can produce, leaving room for further
integration.

The first apparent challenge is to tie the linguistic patterns,
where appropriate, to "top-down" domain knowledge. In many
cases, the common expressions, forms, and preferences derive
from conceptual relationships in the domain; for example, the
leave dead expressions are part of a general class of descriptions
that follow events with the effects of events. For efficiency, the
pattern matcher must recognize these descriptions at the lexical
level, but there is no reason why domain knowledge cannot help
to collect and create such lexical patterns.

The second challenge is to use the results of pat tern matching
more for parser preferences, using a strategy we call relation-
driven control. This strategy looks for attachments of phrases
to pivots which appear at the head of template activators. We
have already implemented relation-driven control as a means of
recovering from failed parses, but much of the task of nsing pivots
and brackets to guide preferences remains.

In addition to these two challenges, another task, which is
more difficult than it would seem, is to combine pat tern match-
ing with other, more syntactic methods of pre-processing, such
as stochastic analysis or finite-state recognition of constituents.

341

