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ABSTRACT 
Speaker-independent system is desirable in many applications 
where speaker-specific data do not exist. However, if speaker- 
dependent data are available, the system could be adapted to 
the specific speaker such that the error rate could be signifi- 
cantly reduced. In this paper, DARPA Resource Management 
task is used as the domain to investigate the performance 
of speaker-adaptive speech recognition. Since adaptation is 
based on speaker-independent systems with only limited adap- 
tation data, a good adaptation algorithm should be consistent 
with the speaker-independent parameter estimation criterion, 
and adapt those parameters that are less sensitive to the limited 
training data. Two parameter sets, the codebook mean vector 
and the output distribution, are regarded to be most important. 
They are modified in the framework of maximum likelihood 
estimation criterion according to the characteristics of each 
speaker. In order to reliably estimate those parameters, output 
distributions are shared with each other if they exhibit certain 
acoustic similarity. In addition to modify these parameters, 
speaker normalization with neural networks is also studied in 
the hope that acoustic data normalization will not only rapidly 
adapt the system but also enhance the robustness of speaker- 
independent speech recognition. Preliminary results indicate 
that speaker differences can be well minimized. In compar- 
ison with speaker-independent speech recognition, the error 
rate has been reduced from 4.3% to 3.1% by only using pa- 
rameter adaptation techniques, with 40 adaptation sentences 
for each speaker. When the number of speaker adaptation 
sentences is comparable to that of speaker-dependent train- 
ing, speaker-adaptive recognition works better than the best 
speaker-dependent recognition results on the same test set, 
which indicates the robustness of speaker-adaptive speech 
recognition. 

1 INTRODUCTION 
Speaker-independent speech recognition systems could pro- 
vide users with a ready-to-use system [1, 2, 3, 4]. There is no 
need to collect speaker-specific data to train the system, but 
collect data from a variety of speakers to reliably model many 
different speakers. Speaker-independent systems are defi- 
nitely desirable in many applications where speaker-specific 
data do not exist. On the other hand, if speaker-dependent 
data are available, the system could be adapted to a specific 
speaker to further reduce the error rate. The problem of 
speaker-dependent systems is that for large-vocabulary con- 
tinuous speech recognition, half an hour of speech from the 
specific speaker is generally needed to reliably estimate sys- 

tem parameters. The problem of speaker-independent systems 
is that the error rate of speaker-independent speech recogni- 
tion systems is generally two to three times higher than that 
of speaker-dependent speech recognition systems [2, 3]. A 
logical compromise for a practical system is to start with a 
speaker-independent system, and then adapt the system to 
each individual user. 

Since adaptation is based on the speaker-independent sys- 
tem with only limited adaptation data, a good adaptation al- 
gorithm should be consistent with speaker-independent pa- 
rameter estimation criterion, and adapt those parameters that 
are less sensitive to the limited training data. Two parameter 
sets, the codebook mean vector and the output distribution, are 
modified in the framework of maximum likelihood estimation 
criterion according to the characteristics of each speaker. In 
addition to modify those parameters, speaker normalization 
using neural networks is also studied in the hope that acoustic 
data normalization will not only rapidly adapt the system but 
also enhance the robustness of speaker-independent speech 
recognition. 

The codebook mean vector can represent the essential char- 
acteristics of different speakers, and can be rapidly estimated 
with only limited training data [5, 6, 7]. Because of this, it 
is considered to be the most important parameter set. The 
semi-continuous hidden Markov model (SCHMM) [8] is a 
good tool to modify the codebook for each speaker. With ro- 
bust speaker-independent models, the codebook is modified 
according to the SCHMM structure such that the SCHMM 
likelihood can be maximized for the given speaker. This 
estimation procedure considers both phonetic and acoustic 
information. Another important parameter set is the output 
distribution (weighting coefficients) of the SCHMM. Since 
there are too many parameters in the output distributions, 
direct use of the SCHMM would not lead to any improve- 
ment. The speaker-dependent output distributions are thus 
shared (by clustering) with each other if they exhibit cer- 
tain acoustic similarity. Analogous to Bayesian learning [9], 
speaker-independent estimates can then bc interpolated with 
the clustered speaker-dependent output distribution. 

In addition to modify codebook and output distribution pa- 
rameters, speaker normalization techniques are also studied 
in the hope that speaker normalization can not only adapt the 
system rapidly but also enhance the robustness of speaker- 
independent speech recognition [10]. Normalization of cep- 
strum has also achieved many successful results in environ- 
ment adaptation [11]. The normalization techniques proposed 
here involve cepstrum transformation of any target speaker to 
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the reference speaker. For each cepstrum vector A2, the nor- 
realization function Jr(,12) is defined such that the SCHMM 
probability Pr(Jr(A;)[.Ad) can be maximized, where .A4 can 
be either speaker-independent, or speaker-dependent models; 
and .T'(A2) can be either a simple function like.,4,12 +/3, or any 
complicated nonlinear function. Thus, a speaker-dependent 
function Jr(A2) can be used to normalize the voice of any 
target speaker to a chosen reference speaker, or a speaker- 
independent function Jr(h2) can be built to reduce speaker 
differences before speaker-independent training is involved 
such that the speaker-independent models are more accurate. 

In this paper, DARPA Resource Management task is used as 
the domain to investigate the performance of speaker-adaptive 
speech recognition. An improved speaker-independent 
speech recognition system, SPHINX [12], is used as the base- 
line system here. The error rate for the RM2 test set, consisting 
of two male (JLS and LPN) and two female (BJW and JRM) 
speakers with 120 sentences for each, is 4.3%. This result 
is based on June 1990 system [13]. Recent results using the 
shared SCHMM is not included, which led to additional 15 % 
error reduction [12]. 

Proposed techniques have been evaluated with the RM2 
test set. With 40 adaptation sentences (randomly extracted 
from training set with triphone coverage around 20%) for 
each speaker, the parameter adaptation algorithms reduced 
the error rate to 3.1%. In comparison with the best speaker- 
independent result on the same test set, the error rate is reduced 
by more than 25% As the proposed algorithm can be used 
to incrementally adapt the speaker-independent system, the 
adaptation sentences is incrementally increased to 300-600. 
With only 300 adaptation sentences, the error rate is lower 
than that of the best speaker-dependent system on the same 
test set (trained with 600 sentences). For speaker normaliza- 
tion, two experiments were carried out. In the first experiment, 
two transformation matrix .,4 and/3 are defined such that the 
speaker-independent SCHMM probability Pr(.Ah2 +/31.Ad) 
is maximized. The error rate for the same test set with speaker- 
independent models is 3.9%. This indicates that the linear 
transformation is insufficient to bridge the difference among 
speakers. Because of this, the multi-layer perceptron (MLP) 
with the back-propagation algorithm [14, 15] is employed for 
cepstrum transformation. When the speaker-dependent model 
is used, the recognition error rate for other speakers is 41.9%, 
which indicates vast differences of different speakers. How- 
ever, when 40 speaker-dependent training sentences are used 
to build the MLP, the error rate is reduced to 6.8%, which 
demonstrated the ability of MLP-based speaker normaliza- 
tion. 

The paper is organized as follows. In Section 2, the base- 
line system for this study is described. Section 3 describes 
the techniques used for speaker-adaptive speech recognition, 
which consists of codebook adaptation, output distribution 
adaptation, and cepstrum normalization. 

2 B A S E L I N E  S Y S T E M  

Large-vocabulary speaker-independent continuous speech 
recognition has made significant progress during the past 
years [1, 2, 3, 4]. Sphinx, a state-of-the-art speaker- 
independent speech recognition system developed at CMU 

[1], has achieved high word recognition accuracy with the 
introduction and usage of the following techniques: (1) mul- 
tiple VQ codebooks. In order to incorporate the multiple 
knowledge sources and minimize VQ errors, multiple vector 
quantized codebooks incorporating LPC cepstrum, differen- 
tial cepstrum, second order differential cepstrum, and log- 
power parameters were used [13]; (2) generalized triphone 
models. Triphones have been successfully used by [16, 17]. 
However, many contexts are quite similar, and can be com- 
bined. Clustering contexts leads to fewer, and thus more 
trainable, models [18]; (3) function-word-dependent phone 
models. These models were used to model phones in function 
words, which are typically short, poorly-articulated words 
such as the, a, in, and; (4) between-word coarticulation mod- 
eling. The concept of triphone modeling was extended to 
the word boundary, which leads to between-word triphone 
models [19]; (5) semi-continuous models. SCHMMs mutu- 
ally optimize the VQ codebook and HMM parameters under a 
unified probabilistic framework [20], which greatly enhances 
the robustness in comparison with the discrete HMM [12]; 
(6) speaker-clustered models. Another advantage to use the 
SCHMM is that it requires less training data in comparison 
with the discrete HMM. Therefore, speaker-clustered models 
(male/female in this study) were employed to improve the 
recognition accuracy [ 12]. 

The above system was evaluated on the June 90 (RM2) test 
set, which consists of 480 sentences spoken by four speak- 
ers. The evaluation results are shown in Table 1. This will 
be referred as the baseline system in comparison with both 
speaker-dependent and speaker-adaptive systems. Recent re- 
suits using the shared distribution modeling have not yet in- 
cluded, which led to additional 15% error reduction [12]. 

Speaker 3990 Training Sent 
Word-Pair Grammar Error Rate 

BJW 3.1% 
JLS 4.8% 
JRM 5.8% 
LPN 3.6% 

4.3% Average 

Table 1: Speaker-independent results with RM2 test set. 

The same technology was extended for speaker-dependent 
speech recognition with 600/2400 training sentences for each 
speaker [21]. The SCHMM parameters and VQ code- 
book were estimated jointly starting with speaker-independent 
models. Results are listed in Table 2. The error rate of the 
speaker-dependent system can be reduced by three times in 
comparison with the speaker-independent system, albeit this 
comparison is not fair since the speaker-independent system is 
trained with 3990 sentences from about 100 speakers. How- 
ever, these results clearly indicate the importance of speaker- 
dependent training data, and effects of speaker variability in 
the speaker-independent system. If speaker-dependent data 
or speaker-normalization techniques are available, the error 
rate may be significantly reduced. 
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Speaker 600 Training Sent 2400 Training sent 
Error Rate Error Rate 

BJW 1.6% 1.0% 
JLS 4.4% 2.7% 
JRM 2.3% 1.5% 
LPN 2.1% 0.4% 

Average 2.6 % 1.4% 

Table 2: Speaker-dependent results with RM2 test set. 

from each speaker are listed in Table 3. Detailed results for 
40 adaptive sentences are listed in Table 4. 

Systems Word Pair Grammar Error 
Without adapt 4.3 % 
5 adapt-sent 3.8% 

40 adapt-sent 3.6% 
i 50 adapt-sent 3.5 % 

Table 3: Adaptation results with the SCHMM. 

3 S P E A K E R - A D A P T I V E  S Y S T E M  

Last section clearly demonstrated the importance of speaker- 
dependent data, and requirements of speaker normalization 
mechanism for speaker-independent system design. This sec- 
tion will describe several techniques to adapt the speaker- 
independent system so that an initially speaker-independent 
system can be rapidly improved as a speaker uses the system. 
Speaker normalization techniques that may have a significant 
impact on both speaker-adaptive and speaker-independent 
speech recognition are also examined. 

3.1 Codebook adaptation 

The SCHMM has been proposed to extend the discrete HMM 
by replacing discrete output probability distributions with a 
combination of the original discrete output probability dis- 
tributions and continuous pdf of a codebook [8, 20], In com- 
parison with the conventional codebook adaptation techniques 
[5,6, 7], the SCHMM can jointly reestimate both the codebook 
and HMM parameters in order to achieve an optimal code- 
book/model combination according to the maximum likeli- 
hood criterion. The SCHMM can thus be readily applied 
to speaker-adaptive speech recognition by reestimating the 
codebook. 

With robust speaker-independent models, the codebook is 
modified according to the SCHMM structure such that the 
SCHMM likelihood can be maximized for a given speaker. 
Here, both phonetic and acoustic information are considered 
in the codebook mapping procedure since Pr(XI.A4), the 
probability of acoustic observations ?d given the model .A/l, 
is directly maximized. To elaborate, the posterior probabil- 
ity Ai (t) is first computed based on the speaker-independent 
model [20]. Ai (t) measures the similarity that acoustic vector 
at time t will be quantized with codeword i. The ith mean 
vector #i of the codebook can then be computed with 

In this study, the SCHMM is used to reestimate the mean 
vector only. Three iterations are carried out for each speaker. 
The error rates with 5 to 40 adaptive sentences from each 
speaker are 3.8% and 3.6%, respectively. In comparison with 
the speaker-independent model, the error rate of adaptive sys- 
tems is reduced by about 15% with only 40 sentences from 
each speaker. Further increase in the number of adaptive sen- 
tences did not lead to any significant improvement. Speaker- 
adaptive recognition results with 5 to 150 adaptive sentences 

Speakers Word Pair Grammar Error 
BJW 2.4% 
JLS 5.0% 
JRM 4.5% 
LPN 2.4% 

Average 3.6% 

Table 4: Detailed results using the SCHMM for each speaker. 

In fact, both the mean and variance vector can be adapted 
iteratively. However, the variances cannot be reliably esti- 
mated with limited adaptive data. Because of this, estimates 
are interpolated with speaker-independent estimates analo- 
gous to Bayesian adaptation [9, 22]. However, in compari- 
son with iterative SCHMM codebook reestimation, there is 
no significant error reduction by combining interpolation into 
the codebook mapping procedure. It is sufficient by just using 
very few samples to reestimate the mean vector. 

3.2 Output distribution adaptation 

Several output-distribution adaptation techniques, including 
cooccurence mapping [23, 24], deleted interpolation [25, 20], 
and state-level-distribution clustering, are examined. All 
these studies are based on SCHMM-adapted codebook as dis- 
cussed above. 

In cooccurence mapping, the cooccurence matrix, the prob- 
ability of codewords of the target speaker given the codeword 
of speaker-independent models, is first computed [24]. The 
output distribution of the speaker-independent models is then 
projected according to the cooccurence matrix, there is no 
improvement with cooccurence mapping. This is probably 
because that cooccurence smoothing only plays the role of 
smoothing, which is not directly relatect to maximum likeli- 
hood estimation. 

A better adaptation technique should be consistent with 
the criterion used in the speech recognition system. As the 
total number of distribution parameters is much larger than 
the codebook parameters, direct reestimation based on the 
SCHMM will not lead to any improvement. To alleviate the 
parameter problem, the similarity between output distribu- 
tions of different phonetic models is measured. If two dis- 
tributions are similar, they are grouped into the same cluster 
in a similar manner as the generalized triphone [23]. Since 
clustering is carried out at the state-level, it is more flexible 
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and more reliable in comparison with model-level clustering. 
Given two distributions, bi(Oh) and bj (Oh), the similarity 
between hi(Ok) and bj (Ok) is measured by 

d(bi, bj) = ([Ik bi(Ok)C'(Ok))(H~ b.i(Ok) cA°")) (2) 
(lq~ b~+j ( O~ )C,+~( o~) ) 

where Ci(Ok) is the count of codeword k in distribution 
i, bi+j (Ok) is the merged distribution by adding bi(Ok) and 
bj (O k ). Equation 2 measures the ratio between the probability 
that the individual distributions generated the training data 
and the probability that the merged distribution generated the 
training data in the similar manner as the generalized triphone. 

Number ofClusters Word-PairE~or Rate 
300 3.2% 
500 3.1% 
900 3.3% 

3.3% 1500 
2100 3.4% 

Table 5: Adaptation results with different clusters. 

Speakers Word Pair Error Rate 
BJW 2.1% 

...... JLS 4.6% 
JRM 3.5% 
LPN 2.4% 

Average 3.1% 

Table 6: Detailed results using 500 clusters for each speaker. 

Based on the similarity measure given in Equation 2, the 
Baum-Welch reestimation can be directly used to estimate 
the clustered distribution, which is consistent with the crite- 
rion used in our speaker-independent system. With speaker- 
dependent clustered distributions, the original speaker- 
independent models are interpolated. The interpolation 
weights can be either estimated using deleted interpolation or 
by mixing speaker-independent and speaker-dependent counts 
according to a pre-determined ratio that depends on the num- 
ber of speaker-dependent data. Due to limited amount of 
adaptive data, the latter approach is more suitable to the for- 
mer. It is also found that this procedure is more effective 
when the interpolation is performed directly on the raw data 
(counts), rather than on estimates of probability distributions 
derived from the counts. Let Cg -dep and C~ -indep represent 
speaker-dependent and speaker-independent counts for distri- 
bution i, Afi denote the number of speaker-dependent data for 
distribution i. Final interpolated counts are computed with 

Ci,~t~rpot~te~ -- (7.~--indep + log( 1 +Afi) * C~-dep (3) 

from which interpolated counts are interpolated with 
context-independent models and uniform distributions with 

deleted interpolation. Varying the number of clustered dis- 
tributions from 300 to 2100, speaker-adaptive recognition re- 
suits are shown in Table 5. Just as in generalized triphone 
[23], the number of clustered distributions depends on the 
available adaptive data. From Table 5, it can be seen that 
when 40 sentences are used, the optimal number of clustered 
distributions is 500. The error rate is reduced from 3.6% 
(without distribution adaptation) to 3.1%. Detailed results for 
each speaker is shown in Table 6. In comparison with the 
speaker-independent system, the error reduction is more than 
25%. 

The proposed algorithm can also be employed to incre- 
mentally adapt the voice of each speaker. Results are shown 
in Table 7. When 300 to 600 adaptive sentences are used, 
the error rate becomes lower than that of the best speaker- 
dependent systems. Here, clustered distributions are not used 
because of available adaptation data. With 300-600 adaptive 
sentences, the error rate is reduced to 2.5-2.4%, which is bet- 
ter than the best speaker-dependent system trained with 600 
sentences. This indicates speaker-adaptive speech recogni- 
tion is quite robust since information provided by speaker- 
independent models is available. 

Incremental Sent Word-Pair Error Rate 
1 4.iCYo 

40 3.6% 
200 3.0% 
300 2.5% 
600 2.4% 

Table 7: Incremental adaptation results. 

3.3 Speaker normalization 
Speaker normalization may have a significant impact on both 
speaker-adaptive and speaker-independent speech recogni- 
tion. Normalization techniques proposed here involve eep- 
strum transformation of a target speaker to the reference 
speaker. For each cepstrum vector ,¥, the transformation 
function F(?( )  is defined such that the SCHMM probabil- 
ity P r ( T ( ? ( ) ] M )  can be maximized, where .h4 can be ei- 
ther speaker-independent or speaker-dependent models; and 
f (Af)  can be either a simple function as A~Y + B or any com- 
plicated nonlinear function. Thus, a speaker-dependent func- 
tion ~( ,¥ )  can be used to normalize the voice of any target 
speaker to a chosen reference speaker for speaker-adaptive 
speech recognition. Furthermore, a speaker-independent 
function .T0-V ) can also be built to reduce the difference of 
speakers before speaker-independent HMM training is applied 
such that the resulting speaker-independent models have sharp 
distributions. 

In the first experiment, two transformation matrix A and/3 
are defined such that the speaker-independent SCHMM proba- 
bility Pr(.AX + Bl.?vl ) is maximized. The mapping structure 
used here can be regarded as a one-layer perceptron, where the 
SCHMM probability is used as the objective function. Based 
on the speaker-independent model, the error rate for the same 
test set is reduced from 4.3% to 3.9%. This indicates that the 
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linear transformation used here may be insufficient to bridge 
the difference between speakers. 

As multi-layer perceptrons (MLP) can be used to approx- 
imate any nonlinear function, the fully-connected MLP as 
shown in Figure 1 is employed for speaker normalization. 
Such a network can be well trained with the back-propagation 
algorithm. The input of the nonlinear mapping network con- 
sists of three frames (3x13) from the target speaker. The 
output of the network is a normalized cepstrum frame, which 
is made to approximate the frame of the desired reference 
speaker. The objective function for network learning is to 
minimize the distortion (mean squared error) between the 
network output and the desired reference speaker frame. The 
network has two hidden layers, each of which has 20 hidden 
units. Each hidden unit is associated with a sigmoid function. 
For simplicity, the objective function used here has not been 
unified with the SCHMM. However, the extension should be 
straightforward. 

To provide learning examples for the network, a DTW 
algorithm [26] is used to warp the target data to the refer- 
ence data. Optimal alignment pairs are used to supervise 
network learning. For the given input frames, the desired 
output frame for network learning is the one paired by the 
middle input frame in DTW alignment. Since the goal here 
is to transform the target speaker to the reference speaker, the 
sigmoid function is not used for the output layer. Multiple 
input frames feeded to the network not only alleviate possible 
inaccuracy of DTW alignment but also incorporate dynamic 
information in the learning procedure. As nonlinear network 
may be less well trained, full connections between input units 
and output units are added. This has an effect of interpola- 
tion between the nonlinear network output and the original 
speech frames. This interpolation helps generalization ca- 
pability of the nonlinear network significantly. To minimize 
the objective function, both nonlinear connection weights and 
direct linear connection weights are simultaneously adjusted 
with the back-propagation algorithm. Experimental experi- 
ence indicates that 200 to 250 epochs are required to achieve 
acceptable distortion. 

speaker normalization. Speaker-dependent models (2400 
training sentences) are used instead of speaker-independent 
models. When the reference speaker is randomly selected as 
LPN, the average recognition error rate for the other three 
speakers is 41.9% as shown in Table 8. When 40 text- 

Speakers Word-Pair Error Word-Pair Error 
Without Normalization With Nomaalization 

JLS 8.5% 6.8% 
BJW 62.1% 4.2% 
JRM 55.3% 9,5% 

Average 6.8% age 41.9% 

Table 8: Speaker normalization error rates. 

dependent training sentences are used to build the speaker 
normalization network, the average error rate is reduced to 
6.8%. Note that neither codebook nor output distribution has 
been adapted yet in this experiment. The error rate has al- 
ready been reduced by 80%. It is also interesting to note that 
for female speakers QRM and BJW), speaker normalization 
dramatically reduces the error rate. Although the error rate 
of 6.8% is worse than that of the speaker-independent system 
(4.5%) for the same test set, this nevertheless demonstrated 
the ability of MLP-based speaker normalization. 

4 D I S C U S S I O N  A N D  C O N C L U S I O N S  

By using parameter adaptation techniques only, the error 
rate can be reduced from 4.3% to 3.1% with 40 adap- 
tation sentences for each speaker. While the number of 
speaker adaptation sentences is comparable to that of speaker- 
dependent training, speaker-adaptive recognition works better 
than speaker-dependent recognition, which indicates the ro- 
bustness of the proposed speaker-adaptive speech recognition. 

For speaker normalization, the error rate is reduced from 
41.9% to 6.8% for cross speaker recognition with a speaker- 
dependent model. Here again, 40 training sentences are used 

. ~ . . q  

13 output units 

E 

E 

39 input units 

1 

Figure 1: Speaker Net; 39 input units corresponding to 3 
input frames, 13 output units corresponding to the normalized 
output frame 

Since the study here is to investigate the capability of 

[ Signal Processing (Cepstrum) 

Speaker Normalization Net 

1 
H M M  Training/Recognit ior  inition 

Figure 2: Speaker-independent speech recognition with 
speaker normalization network 
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to build the MLP-based nonlinear transformation function. 
The 80% error reduction demonstrated the ability of MLP- 
based speaker normalization. Due to the success of speaker 
normalization networks, a speaker-independent MLP-based 
network is being used as part of the front-end of the speaker- 
independent speech recognition system as shown in Figure 2. 
The network is built to reduce the difference of speakers be- 
fore speaker-independent HMM training is involved such that 
speaker-independent models will have sharper distributions 
(better discrimination capability) in comparison with the con- 
ventional training procedure. Use of such normalization net- 
works for speaker-independent speech recognition as well as 
unification of the SCHMM and MLP speaker normalization 
is currently in progress. 
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