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Abstract 
A model-based spectral estimation algorithm is derived 

that improves the robustness of speech recognition 
systems to additive noise. The algorithm is tailored for 
filter-bank-based systems, where the estimation should 
seek to minimize the distortion as measured by the 
recognizer's distance metric. This estimation criterion is 
approximated by minimizing the Euclidean distance 
between spectral log-energy vectors, which is equivalent 
to minimizing the nonweighted, nontruncated cepstral 
distance. Correlations between frequency channels are 
incorporated in the estimation by modeling the spectral 
distribution of speech as a mixture of components, each 
representing a different speech class, and assuming that 
spectral energies at different frequency channels are 
uncorrelated within each class. The algorithm was tested 
with SRI's continuous-speech, speaker-independent, 
hidden Markov model recognition system using the large- 
vocabulary NIST "Resource Management Task." When 
trained on a clean-speech database and tested with 
additive white Gaussian noise, the new algorithm has an 
error rate half of that with MMSE estimation of log 
spectral energies at individual frequency channels, and it 
achieves a level similar to that with the ideal condition of 
training and testing at constant SNR. The algorithm is 
also very efficient with additive environmental noise, 
recorded with a desktop microphone. 

I. Introduction 
Speech-recognition systems are very sensitive to 

differences between the testing and training conditions. 
In particular, systems that are trained on high-quality 
speech degrade drastically in noisy environments. 
Several methods for handling this problem are in 
common use, among them supplementing the acoustic 
front end of the recognizer with a statistical estimator. 
This paper introduces a novel estimation algorithm for a 
filter-bank-based front end and describes recognition 
experiments with noisy speech. 

The problem of designing a statistical estimator for 
speech recognition is that of defining an optimality 
criterion that will match the recognizer, and deriving an 
algorithm to compute the estimator based on this 
criterion. Defining the optimal criterion is easier for 
speech recognition than it is for speech enhancement for 

human listeners, since the signal processing is known in 
the former, but not in the latter. For a recognition system 
that is based on a distance metric, whether for template 
matching or vector quantization, a reasonable criterion 
would be to minimize the average distortion as measured 
by the distance metric. In practice, achieving this 
criterion may turn out not to be feasible, and the question 
is then to what extent the computationally feasible 
methods approximate the desired optirnality criterion. 

A basic difference between the cepstral distance 
criterion and the MMSE of single frequency channels 
(whether DFT coefficients or filter energies) is that the 
former implies a joint estimate of a feature vector, 
whereas the latter implies an independent estimation of 
scalar variables. Because the speech spectral energies at 
different frequencies are correlated, an independent 
estimate of individual channels results in a suboptimal 
estimation. To incorporate part of the correlations in the 
estimator, we modified our single-channel MMSE to be 
conditioned on the total energy in addition to the filter 
energy. This modification indeed improved performance 
significantly. 

We here derive a more rigorous method of 
approximating the cepstral distance criterion. The 
optimality criterion is the minimization of the distortion 
as measured by the Euclidean distance between vectors of 
filter log energies. We name the algorithm minimum- 
mean-log-spectral-distance (MMLSD). The MMLSD is 
equivalent to minimizing the nonweighted, nontruncated 
cepstral distance rather than the weighted, truncated one 
used by the recognizer. The necessity for this 
compromise arises from the difficulty in modeling the 
statistics of additive noise in the transform domain, 
whereas a model can be constructed in the spectral 
domain [for details see Eq. (2): the approximation there 
will not work for the transformed vector]. 

The MMLSD estimator is first computed using a 
stationary model for the speech spectral probability 
distribution (PD). The PD of the filter log-energy vectors 
is assumed to comprise a mixture of classes, within which 
different filter energies are statistically independent. 
Several implementations of this model are considered, 



including vector quanfizafion and a maximum-likelihod 
fit to a mixture of Gaussian distributions. 

II. Minimum-mean log-spectral distance 
estimation 

The MMSE on the vector S of K filter log-energies 
yields the following vector estimator 

S = )  P (S I S') dS , (1) 

where ~' is the observed noisy vector, P(S~)is~he clean 

speech log-spectral vector PD, and P(S'I  S) is the 
conditional probability of the noisy log-spectral vector 
given the clean. This estimator is considerably more 
complex than the independent MMSE of single channels 
because it requires an integration of K-dimensional 
probability distributions. However, its computation can 

proceed using the following models for P (S'I S) and 

P(S). 

The conditioned probability P (S' I S) can be modeled 
simply as the product of the marginal probabilities, 

~ K 
P (S ' I  S ) = I I  P ( S ' k l S k )  

k=l 
(2) 

where P(S'klSk) is given in [1]. This factonzation is a 
reasonable approximation because the noise i s  

uncorrelated in the frequency domain and because, for 
additive noise, the value of a given noisy filter energy, 
S'k, depends only on the clean energy Sk and on the noise 
level in that frequency. This model is obviously only an 
approximation for overlapping filters. 

A similar factorization of P(S) would lead to MMSE of 
individual frequency channels. However, such a 
factodzafion would be very inaccurate because the speech 
signal is highly correlated in the frequency domain. A 
more accurate model that partly incorporates the 
correlations between frequency channels is the following 
mixture model: 

N --, ~ K 
P (S)= ~ CnPn(S) Pn(S)=I'I Pn(SK) (3) 

n=l ' k=l 

the idea being that the acoustic space can be divided into 
classes within which the correlation between different 
frequency channels is significantly smaller than in the 
space as a whole. An easily implemented 
parameterization would be to model the probabilities 
Pn(Sk) as Gaussian with means ktnk and standard 
deviations (Yak. The classes can represent either mutually 

exclusive or overlapping regions of the acoustic space. 
The estimator is now given by 

Sk = ~ Sk I n • P(nl S --r) 
n=l 

(4) 

where the first term is the n th class-conditioned MMSE 
estimator, computed similarly to Eq. (2) with P(Sk) 
replaced by Pn(Sk): 

/" 

 k'n- ! ) 
P (Sk I n) 

P (Sk I n) 

t 

Sk P (Sk I Sk) Pn (Sk) dSk(5a) 

P (S k I Sk) Pn (Sk) dSk (5b) 

and the second term is the a posteriori probability that 
the clean speech vector belonged to the n th class, given 
by 

P(n IS') = C n P(S' In) 
N 

Z - "  
C n P(S' In) 

n=l 

(6a) 

wh~e 

K 
P(S-71n) = H  P ( S 'k  I n) 

k=l 
(6b) 

Thus the estimator is a weighted sum of class- 
conditioned MMSE estimators. 

HI. Speech-recognition experiments 
We evaluated the above algorithms with SRI's 

DECIPHER continuous-speech, speaker-independent, 
I-IMM recognition system [2]. The recognition task was 
the 1,000-word vocabulary of the DARPA-NIST 
"Resource management task" using a word-pair grammar 
with of perplexity 60 [3]. The training was based on 
3,990 sentences of high-quality speech, recorded at Texas 
Instruments in a sound-attenuated room with a close- 
talking microphone (designated by NIST as the February 
1989 large training set). 

The testing material was from the DARPA-NIST 
"Resource Management Task" February 1989 test set [3] 
and consisted of 30 sentences from each of 10 talkers not 
in the training set, with two types of additive noise. The 
first is a computer-generated white Gaussian noise, added 
to the waveform at a global SNR of 10 dB. The SNR in 
individual frequency channels, averaged over all channels 
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and speakers, was 9 dB. The second is environmental 
noise recorded at SRI's speech laboratory with a desktop 
microphone. The environmental noise was quasi 
stationary, predominantly generated by air conditioning, 
and had most of its energy concentrated in the low 
frequencies. The noise was sampled and added digitally 
to the speech waveforms with global SNR of 0 dB; the 
SNR in individual frequency channels, averaged over all 
channels and speakers, was 12 dB. 

The experiments in the environmental noise have been 
conducted both with and without tuning of the estimation 
algorithms to this particular noise. The tuning consisted 
of adjusting the degrees-of-freedom parameter in the chi- 
squared model, for the noise-filter energy, wide-band 
energy and total energy. Without tuning, the parameter 
values were those determined for white noise. A 
significant difference between the degrees of freedom for 
white noise and for environmental noise was found for the 
total-energy model: Because most of the environmental 
noise energy concentrated in the low frequencies, the 
number of degrees of freedom was very small compared 
to that with white noise. Only minor differences were 
found for the wide-band energies, and even smaller 
differences for the filter log energies. 

Table 1 lists for reference the error rates with and 
without additive white Gaussian noise at 10-dB SNR, 
without any processing and with MMSE estimation. 
Table 2 lists error rates with white Gaussian noise, 
comparing the single-frame MMLSD algorithm with four 
mixture models, as a function of the number of classes N. 
With N=I, all the mixture models are identical to the 
MMSE estimator whose performance is given in Table 1. 
MMLSD-VQ and GM achieve the lowest error rates, with 
an insignificant edge to MMLSD-GM. The performance 
of both algorithms improves slowly but significantly 
when the number of classes N increases from 4 to 128. 
MMLSD-TE achieves error rates comparable to 
MMLSD-WB, and both algorithms reach a plateau in 
their performance level with N=4. MMLSD-TEP, with 
the total energy computed on the preemphasized 
waveform, does not perform as well as MMLSD-TE. 

Summarizing the results, when training on clean speech 
and testing with white noise, the best MMLSD algorithm 
achieves the same error rate as training and testing in 
noise. In comparison, the error rate with MMSE is twice 
as high. Replacing the static mixture model by a dynamic 
Markov one makes no significant improvement. The 
error rates with environmental noise for the various 
algorithms are very similar to those with white noise, 
indicating that the algorithms are effective to a similar 
degree with the two types of noise. 

IV. Discussion 

A. Validity of the mixture model 
The MMLSD estimator computed using the mixture 

model is much superior to the single-channel MMSE, 
indicating that the mixture model is successful in 
incorporating correlations between different frequency 
channels into the estimation. An interesting question, 
however, is to what extent the underlying assumption of 
the mixture model is correct: that is, is the statistical 
dependence between different frequency channels indeed 
small within a single mixture component. Measunng 
correlations between frequency channels with overlapping 
filters, we found that this assumption is incorrect. For 
example, with the vector quantization method (MMLSD- 
VQ) and a code book of size 32, the correlation between 
any pair of adjacent channels is of the order of 0.8, 
dropping to 0.4 for channels that are 3 filters apart and to 
0.1 for channels that are 8 filters apart. The Gaussian 
mixtures model (MMLSD-GM) did not reduce the 
correlations: the maximum likelihood search converged 
on parameters that were very similar to the initial 
conditions derived from the vector quantization. The 
recognition accuracy obtained with MMLSD-GM is 
indeed identical to MMLSD-VQ. 

Examining the MMLSD estimator in Eq. (4), we find 
that it is the a posteriori  class probability that is 
erroneously estimated because of the invalid channel- 
independence asumption, Eq. (6b). The error in 
estimating this probability is magnified by the high 
number of channels: Small errors accumulate in the 
product Eq. (6b) of the assumedly independent marginal 
probabilities. In contrast to Eq. (6b), the output PD for 
the nonoverlapping wide bands is more accurate. With 
3 bands and 32 classes the correlation between energies of 
different bands is approximately 0.15. Thus, although the 
overall MMLSD-WB estimator is not more accurate than 
MMLSD-VQ, the a posteriori class probability is more 
accurately estimated in MMLSD-WB than in MMLSD- 
VQ. 

B. Total energy 
The classification according to total energy, computed 

without preemphasis (MMLSD-TE), achieved excellent 
results with white noise but did not do as well as the other 
algorithms with the environmental noise. This result can 
be explained by the different SNRs in the two cases: 
whereas the total energy was 10 dB with the SNR white 
noise, it was 0 dB with the environmental noise. Because 
the degree to which the a posteriori class probability P(n I 
E') peaks around the true class depends on the SNR in the 
total energy, it not surprising that MMLSD-TE was 
efficient for white but not for environmental noise. 

A similar argument explains the advantage of MMLSD- 
TEP (where the total energy is defined on the 
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preemphasized waveform) over MMLSD-TE for the 
environmental noise, and the reverse for white noise: The 
average SNR on the preemphasized waveforms was 
12 dB for the environmental noise and 3 dB for white 
noise. However, it seems that in no case is MMLSD-TEP 
as efficient as MMLSD-TE is with white noise. 

C. Relation to adaptive prototypes 
If one augments the MMLSD estimator with a detailed 

word-, or phoneme-based, continuous-density HMM, that 
model itself can be used for the speech recognition task. 
Instead of preprocessing the speech, optimal recognition 
would be achieved by simply replacing the clean speech 
output PDs by the PDs of the noisy speech, Eq. (6b). 
Another, computationally easier alternative is to adapt 
only the acoustic labeling in a semicontinuous HMM. 
Nadas et al. [4] used such an approach: their HMM was 
defined with semicontinuous output PDs, modeled in the 
spectral domain by fled mixtures of diagonal covariance 
Gaussians. The acoustic labeling was performed by 
choosing the most probable prototype given the signal. 
The same procedure was used in noise, modifying the 
output PDs to account for the noise. A similar procedure 
can be used with the model presented here: all that is 
required for aco~tic labeling in noise is choosing n that 
maximizes P(n IS'), where the latter is given by Eq. (6). 
The difference between our model and that of Nadas et al. 
will then be only that they use the approximate MIXMAX 
model for P(S'k I n), whereas we will use the more 
accurate model in Eq. (5b). 

The above approach would have an advantage over 
preprocessing by estimation if the HMM can indeed be 
designed with output PDs in the spectral domain and with 
diagonal covariance matrices. Unfortunately, it is 
currently believed that for speech recognition defining the 
PDs in the spectral domain is much inferior to the 
transform domain. It is for HMMs in the transform 
domain that the MMLSD preprocessing should be used. 

V. Conclusions 
We presented an estimation algorithm for noise robust 

speech recognition, MMLSD. The estimation is matched 
to the recognizer by seeking to minimize the average 
distortion as measured by a Euclidean distance between 
filter-bank log-energy vectors, approximating the 
weighted-cepstral distance used by the recognizer. The 
estimation is computed using a clean speech spectral 
probability distribution, estimated from a database, and a 
stationary, ARMA model for the noise. 

The MMLSD is computed by modeling the speech- 
spectrum PD as a mixture of classes, within which 

different frequency channels are statistically independent. 
Although the model is only partially successful in 
describing speech data, the MMLSD algorithm proves to 
be much superior to the MMSE estimation of individual 
channels, even with a small number of classes. A highly 
efficient implementation of the mixture model is to 
represent the speech spectrum by a small number of 
energies in wide frequency bands (three in our 
implementation), quantizing this space of wide-band 
spectrum and identifying classes with code words. This 
method achieves performance that is almost comparable 
to that of a Gaussian-mixture model, at a much smaller 
computational load. 

When trained on clean speech and tested with additive 
white noise at 10-dB SNR, the recognition acuracy with 
the MMLSD algorithm is comparable to that achieved 
with training the recognizer at the same constant 10-dB 
SNR. Since training and testing in constant SNR is an 
ideal situation, unlikely ever to be realized, this is a 
remarkable result. The algorithm is also highly efficient 
with a quasi-stationary environmntal noise, recorded with 
a desktop microphone, and requires almost no tuning to 
differences between this noise and the computer- 
generated white noise. 
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Percent 
Algorithm and Noise Conditions Error 

Train clean, test clean 

Train clean, test in noise: 

No processing 92 

MMSE 38 

Train and test in noise r no processing 21 

Table 1. Word error rate with and without MMSE 
estimation, for several noise conditions. 

Model 

MMLSD-VQ 

MMLSD-GM 

MMLSD-WB (3 bands) 

MMLSD-TE 

MMLSD-TEP 

4 

25.0 

24.7 

26.3 

25.1 

Number of Classes 

12 

25.3 

34.3 

32 

22.7 

21.9 

25.2 

128 

21.0 

Table 2. Word error rote with digital white noise at 10 dB SNR using a 
single-frame MMLSD estimation, as a function of the number of classes 
(mixture components) for the different mixture models. 

Algodthm 

No processing 

MMSE 

MMLSD-VQ (N=32) 

MMLSD-WB (N=32) 

MMLSD-TE (N=12) 

Error Rate 

Untuned 

84.6 

32.2 

18.5 

20.4 

32.4 

Tuned 

32.2 

18.5 

19.7 

27.5 

Table 3. Word error rate with added noise recorded by a desktop 
microphone at 0 dB SNR; tuning refers to adjusting the 
noise-model parameters (number of degrees of freedom) from 
their values in white noise to their best values in the 
environmental noise. 
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