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Abstract  
The Lincoln robust HMM recognizer has been con- 

verted from a single Ganssian or Gaussian mixture pdf 
per state to tied mixtures in which a single set of Gaus- 
sians is shared between all states. There were some 
initial difficulties caused by the use of mixture pruning 
[12] but these were cured by using observation pruning. 
Fixed weight smoothing of the mixture weights allowed 
the use of word-boundary-context-dependent triphone 
models for both speaker-dependent (SD) and speaker- 
independent (SI) recognition. A second-differential ob- 
servation stream further improved SI performance but 
not SD performance. The overall recognition perfor- 
mance for both SI and SD training is equivalent to 
the best reported according to the October 89 Resource 
Management test set. A new form of phonetic context 
model, the semiphone, is also introduced. This new 
model significantly reduces the number of states required 
to model a vocabulary. 

Introduct ion 
Tied mixture (TM) HMM systems [3, 6] use a Gaus- 

sian mixture pdf  per state in which a single set of Gaus- 
sians is shared among all states: 

Pi (0) ~- E Ci,j Gj (o) (1) 
1 

ci,j > O, E cij = l 
J 

where i is the arc or state, G i is the jth Gaussian, and o 
is the observation vector. This form of continuous obser- 
vation pdf  shares the generality of discrete observation 
pdfs (histograms) with the absence of quantization error 
found in continuous density pdfs. Unlike the non-TM 
continuous pdfs, TM pdfs are easily smoothed with other 
pdfs by combining the mixture weights. Unlike discrete 
observation HMM systems, the Gaussians (analogous to 
the vector quantizer codebook of a discrete observation 
system) can be optimized simultaneously with the mix- 
ture weights. The training algorithms are identical to 
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the algorithms for training a Gaussian mixture system 
except the Gaussians are tied across all arcs. 

Mixture and Observation Pruning 
Computing the full sum of equation 1 is expensive dur- 

ing training and prohibitively expensive during recogni- 
tion since it must be computed for each active state at 
each time step. (Because the word sequence is unknown, 
recognition has many more active states than does train- 
ing.) Ideally, one would only compute the terms which 
dominate the sum. However, it requires more computa- 
tion to find these terms than it does to simply sum them. 
Two faster approximate methods for reducing the com- 
putation exist: mixture and observation pruning. 

Mixture pruning simply drops terms that  fall below 
a threshold during training. The weights may then be 
stored as a sparse array which also saves space. The 
computational savings are limited during the early it- 
erations of training since only a few terms have been 
dropped. The final SD distributions are quite sharp (i.e. 
have only a few terms), but the final SI distributions are 
quite broad (i.e. have many terms). Thus the savings 
are limited for SI systems. When the distributions are 
smoothed with less specific models, they become quite 
broad again. These difficulties are just computat ional--  
there is an even greater difficulty. During training, the 
parameters of the Gaussians are also optimized which 
causes them to "move" in the observation space. With 
mixture pruning, a "lost" Gaussian cannot be recovered. 
(This was the fundamental difficulty with the earlier ver- 
sion of the system reported in Reference [12].) 

Instead of reducing the mixture order, observation 
pruning reduces the computation by computing the sums 
for all Gaussians whose output  probability is above a 
threshold times the probability of the most probable 
Ganssian. (Some other sites have used the "top-N" 
Ganssians [3, 7]. In our system, it gives inferior recog- 
nition performance compared to the threshold method.) 
All of the Gaussians must now be computed, but this 
is a significant proportion of the computation only in 
training. (Some pruning is possible. Our exploration of 
tree-structured search methods showed them to be in- 
effective because the number of Gaussians is too small 
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and the observation order is too large.) The amount of 
computation is now dependent upon the separations of 
the Gaussian means relative to their covariances and the 
statistics of the observations. The computational savings 
were very significant except for the SI second-differential 
observation stream (discussed later). 

Observation pruning does not save space for several 
reasons. The observation pruned TM systems suffer 
from the same "missing observation" problem as do the 
discrete observation systems and therefore no mixture 
weight can be allowed to become zero. Similarly, re- 
cruitment of "new" Ganssians (due to their movement) 
during training also requires that no mixture weight be 
allowed to become zero. Both can be accomplished by 
using full size weight arrays and lower bounding all en- 
tries by a small value. Smoothing now causes no orga- 
nizational difficulty or increase in computation since all 
mixture weight arrays are full order. 

The  T M  C S R  D e v e l o p m e n t  
The following development tests were performed using 

the entire (12 speakers x 100 sentences, 10242 words) SD 
development-test portion of the Resource Management- 
1 (RM1) database. Three training conditions were used: 
speaker-dependent with 600 sentences per speaker (SD), 
speaker-independent with 2880 sentences from 72 speak- 
ers (SI-72) and speaker-independent with 3990 sentences 
from 109 speakers (SI-109). All tests were performed 
with the perplexity 60 word-pair grammar (WPG). The 
word error rate was used to evaluate the systems: 

substitutions + insertions + deletions 

correct nr o f  words (2) 

Line 1 of Table 1 gives the best results obtained 
from the non-TM Gaussian (SD) and Gaussian mix- 
ture (SI) systems [10]. The SD system used word- 
boundary-context-dependent (WBCD or cross-word) tri- 
phone models and the SI systems used word-boundary- 
context-free (WBCF) triphone models. 

The TM HMM systems were trained by a modification 
of the unsupervised bootstrapping procedure used in the 
non-TM systems: 

1. Train an initial set of Gaussians using a binary- 
splitting EM to form a Gaussian mixture model for 
all of the speech data. 

2. Train monophone models from a flat start  (all mix- 
ture weights equal). 

3. Initialize the triphone models with the correspond- 
ing monophone models. 

4. Train the triphone models. 

All of the systems described here use centisecond 
mel-cepstral first observation and time-differential mel- 
cepstral second observation streams. The Gaussians use 
a tied (grand) variance (vector) per stream. Each obser- 
vation stream is assumed to be statistically independent 

of the other streams. Each phone model is a three state 
linear HMM. The triphone dictionary also included word 
dependent phones for some common function words. All 
stages of training use the Baum-Welch reestimation algo- 
rithm to optimize all parameters (the transition proba- 
bilities, mixture weights, Gaussian means, and tied vari- 
ances) simultaneously. The lower bound on the mixture 
weights was chosen empirically. 

The initial observation pruned TM system was derived 
from the mixture pruned systems described in [12] and 
gave the performance shown in line 2 of Table 1. It 
used WBCF triphone models because there was insuffi- 
cient training data to adequately train WBCD models. 
Fixed-weight smoothing [15] and deleted interpolation 
[2] of the mixture weights were tested and the fixed- 
weight smoothing was found to be equal to or better 
than the deleted interpolation. (Bugs have been found 
in both implementations and the smoothing algorithms 
will require more investigation.) The fixed smoothing 
weights were computed as a function of the state (left, 
center, or right), the context (triphone, left-diphone, 
right-diphone, or monophone) and the number of in- 
stances of each phone. The TM system with smoothed 
WBCF triphone models showed a performance improve- 
ment for both the SD and SI trained systems. An ad- 
ditional improvement for both SD and SI systems was 
obtained by adding WBCD models (table 1, line 3). Un- 
til the smoothing was added, we had been able to ob- 
tain only slight improvements in the SD systems and no 
improvement in the SI systems by adding the WBCD 
models. 

Finally, a third observation stream was tested. This 
stream is a second-differential mel-cepstrum obtained by 
fitting a parabola to the data  within =t=30 msec. of the 
current frame. It produced no improvement for the SD 
system, but improved all of the SI systems (table 1, line 
4). However, there was a significant computational cost 
to this stream. Unlike the other observation streams, the 
number of Gaussians which pass the observation pruning 
threshold is quite large which slowed the system signif- 
icantly due to the cost of computing the mixture sums. 
Increasing the number of iterations of the EM Gaussian 
initialization algorithm reduced the number of active 
Gaussians and simultaneously improved results slightly. 
The computational cost of this stream is still quite large 
and methods to reduce the cost without damaging per- 
formance are still under investigation. 

The best systems (starred in table 1) were also tested 
on the Resource Management-2 (RM2) database. (This 
database is similar to the SD portion of RM1, except 
that  it contains only four speakers. However, there are 
2400 training sentences available for each speaker. The 
two training conditions are SD-600 (600 sentences) and 
SD-2400 (2400 sentences). The development tests used 
120 sentences per speaker for a total of 4114 words. The 
RM2 tests (Table 2) showed the SD systems to perform 
better when trained on more data. One of the speakers 
(bjw) and possibly a second (lpn) obtained performance 
which, in this author's opinion, is adequate for opera- 
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tional use. This is the first time we have observed this 
level of performance on an RM task. There is still, how- 
ever, wide performance variation across speakers. 

S e m i p h o n e s  
The above best systems all use WBCD triphones. A 

scan of the 20,000 word Merriam-Webster pocket dictio- 
nary yields the following numbers of phones: 

Word Word Word 
Internal Beginning Ending 

monophones 43 41 38 
diphones 1268 602 645 
triphones 10788 

Cross 
Word 

1558 
49321 

(All stress and syllable markings were removed and all 
possible word combinations were allowed for the cross- 
word numbers.) This suggests that a large vocabulary 
system using WBCD triphone models will require on the 
order of 60K phone models. (Even if the triphones are 
clustered to reduce the final number [8, 13], all triphones 
must trained before the clustering process.) These num- 
bers assume no function word or stress dependencies. (A 
variety of other context factors have also been found to 
affect the acoustic realization of phones [4].) While this 
number is not impossible--the Lincoln SI-109 WBCD 
system has about 10K triphones and CMU used up to 
38K triphones in their vocabulary independent train- 
ing experiments [5]--it is rather unwieldy and would 
require large amounts of data to train the models effec- 
tively. (60K triphones would require about 280M mix- 
ture weights and accumulation variables in the Lincoln 
SI system.) 

One possible method of reducing the number of models 
is the semiphone, a class of phone model which includes 
classic diphones and triphones as special cases. (A classic 
diphone extends from the center of one phone to the 
center of the next phone. In a triphone based system, a 
diphone is a left or right phone-context sensitive phone 
model.) The center phone of a three section semiphone 
model of a word with the phonetic transcription /abe/  
would be: 

ar-bz-bm bt-bm-br bm-b~-cz 

where 1 denotes the left part, m the middle part, and 
r the right part. As shown here, each section is writ- 
ten as a left and right context dependent section (i.e. 
a "tri-section"). Thus the middle part always has the 
same contexts and is therefore only monophone depen- 
dent. The left (and right) sections are dependent upon 
the middle part, which is always the same, and a sec- 
tion of the adjacent phone. Thus the left part is similar 
to the second half of a classic diphone, the center part 
is monophone dependent, and the right part is similar 
to the first half of a classic diphone. (In fact, we im- 
plemented the scheme using the current triphone based 
systems simply by manipulating the dictionary.) If the 

middle part is dropped, this scheme implements a clas- 
sic diphone system and if the left and right parts are 
eliminated it reverts to the standard triphone scheme. 

One of the advantages of this scheme is a great reduc- 
tion in the number of models. For the above dictionary, 
the three section model has 5695 phones. (This num- 
ber was derived from the above table and is therefore 
not quite correct since the single phone words were not 
treated properly. However, the number is sufficiently ac- 
curate to support the following conclusions.) If the semi- 
phone system has one state per phone and the triphone 
system has three states per phone, each word model will 
have the same number of states (for a given left and right 
word context), but the semiphone system will have 5695 
unique states to train and the triphone system will have 
180K unique states to train. 

Semiphones avoid one of the difficult aspects of cross- 
word triphones--the single phone word. A single phone 
word requires a full crossbar of triphones in the recog- 
nition network [11]. The semiphone approach splits the 
single phone into a sequence of two or more semiphones 
and simply joins the apexes of a left fan and a right fan 
for a two semiphone model or places the middle semi- 
phone between the fans for a three semiphone model 
[11]. 

A final advantage of the semiphone approach over the 
classic diphone approach is the organization. The units 
are organized by the phone. This is a more convenient 
organization for smoothing and also makes the word end- 
points explicitly available for word endpointing or any 
word based organization of the recognizer. 

Our current implementation of this scheme has not yet 
addressed smoothing the mixture weights of the semi- 
phones, so the results-to-date can only compare un- 
smoothed semiphone systems with smoothed triphone 
systems. Line 1 of Table 3 repeats the corresponding 
entries for two smoothed triphone systems from Table 
1 for comparison with the semiphone systems. Line 2 is 
an unsmoothed three-section semiphone system with one 
state per semiphone. For both training conditions, the 
number of unique states was reduced by about a factor of 
five. The difference in performance between the systems 
is commensurate with the difference between smoothed 
and unsmoothed triphone systems. Line 3 is equivalent 
to a classic diphone system with two states per semi- 
phone and thus four states per phone rather than three 
states per phone as in the preceding systems. This sys- 
tem has twice as many states as the other semiphone 
system and yields equivalent performance. While the 
semiphone systems do not currently outperform the tri- 
phone systems, they bear further investigation. 

The  October  89 Eva luat ion  Test 
Set 

At the time of the October 89 meeting, the mixture 
pruned systems were not showing improved performance 
over the best non-TM systems and therefore non-TM 
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systems were used in the evaluation tests. The best ob- 
servation pruned systems (starred in Table 1) were tested 
using the October 89 test set in order to compare them 
to the results obtained at the other DARPA sites. The 
results are shown in Table 4. These results are not sta- 
tistically distinguishable from best results reported by 
any site at the October 89 meeting [14]. 

T h e  J u n e  90  E v a l u a t i o n  T e s t s  
The best TM triphone systems (starred in Table 1) 

were used to perform the evaluation tests. Both systems 
used WBCD triphones with fixed weight smoothing. The 
SD systems used two observation streams and the SI-109 
system used three observation streams. The results are 
shown in Table 5. 

C o n c l u s i o n  
The change from mixture pruning to observation 

pruning has eliminated the Gaussian recruitment prob- 
lem. The change increased the data space requirements, 
but provided a better environment for mixture weight 
smoothing and reduced the computational requirements 
for both training and recognition. Including fixed- 
smoothing-weight mixture-weight smoothing improved 
performance on both SD and SI trained systems and 
allowed the use of WBCD (cross-word) triphone models. 

Testing on the RM2 database showed that our systems 
developed on the RM1 database transferred without dif- 
ficulty to another database of the same form. It also 
showed that our SD systems will provide better perfor- 
mance when given more training data (2400 sentences) 
than is available in the RM1 database (600 sentences). 
Operational performance levels were obtained on one or 
two of the (four) speakers. 

We found a simpler context-sensitive model--the 
semiphone--to produce similar recognition performance 
to the (by now) traditional triphone systems. These 
models, which include the classical diphone as a special 
case, significantly reduce the number of states (or ob- 
servation pdfs) which must be trained. The semiphone 
model will require further development and verification 
but it may be one way of simplifying our systems. Since 
the number of semiphones required to cover a 20,000 
word dictionary is significantly less than the number of 
triphones required to cover the same dictionary, they 
may be a more practical route to vocabulary indepen- 
dent phone modeling than one based upon triphones. 
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Table 1. RM1 Development Test Results using triphone models. The standard deviations are computed for the best 
result in each column. 

% Word Error Rates with WPG 

System 
1. Non-TM 
2. TM-2 
3. TM-2 
4. TM-3 

Ganssians Smoothing 
many 
2x257 
2x257 
3x257 

Binomial standard deviations 

n 

n 

Y 
Y 

SD 
WBCF WBCD 

5.2 ~ 3.0 
4.3 
3.3 1.7" 

- 1.8 
( . 1 8 )  ( . 1 3 )  

*--evaluation test (best) systems 

SI-72 
WBCF WBCD 

12.9 - 
14.0 - 
11.3 9.0 
9.5 7.2 

(.29) [ (.26) L 

SI-I09 
WBCF WBCD 

10.1 

10.4 7.8 
8.5 5.6* 

( .27) : (.23) 

Table 2. RM2 Development test results using the best (starred) systems of Table 1. 

% Error Rates with WPG 
SD-2400 SD-600 

Speaker word (sd) sentence word (sd) 
bjw .2 1.7 1.4 
jls .7 5.0 3.8 
jrm 2.8 16.7 4.3 

3.3 lpn 
avg 

.4 
1.0 (.16) 6.7 

2.5 
3.O (.27) 

System: TM2, Gaussians: 2x257, Smoothed 

sentence 
10.0 
21.7 
26.7 
15.0 
18.3 

Triphone models 

Table 3. Semiphone development tests using the RM1 database. The standard deviations are computed for the best 
result in each column. Line 1 is the best (starred) results from Table 1. 

% Word Error Rates with WPG 

System Gaussians Smoothing 
Sections 

per Phone 
States per 

Section 
1. TM-2,triphone 2x257 y 1 3 
2. TM-2,semiphone 2x257 n 3 1 
3. TM-2,semiphone 2x257 n 2 2 
Binomial standard deviations 

SD SI-109 
States Errors States Errors 
17979 1.7 24201 7.8 
3793 2.2 4372 9.5 
7286 2.3 

(.13) (.27) 

Table 4. Results for the best (starred) systems of Table 1 using the October 89 evaluation test (RM1) data. 

% Word Error Rates (std dev) with WPG 
System Gaussians Smoothing SD SI-109 
TM-2 2x257 y 2.6 (.31) 
TM-3 3x257 y - 5.9 (.45) 
Best from any site 2.5 [1] 6.0 [9] 

Table 5. The June 1990 Evaluation test results using triphone based systems on the RM2 database. The systems 
are the best (starred) systems of Table 1. 

% Word Error Rates (std dev) 
Word-pair Grammar (p=60) No Grammar (p=991)* 

Training sub ins idel word(sd) sent sub ins del word(sd) sent 
TM-2 SD-2400 .9 .2 .4 1.51 (.19) 11.0 3.3 .8 .9 4.89 (.34) 28.8 
TM-2 SD-600 1.7 .5 .9 3.09 (.27) 20.0 8.3 2.2 2.2 12.66 (.52) 58.3 
TM-3 SI-109 l 3.8 .7 ] 1.3 5.86(.37) 31.9 16.5 2.1 4.4 22.92(.66) 74.6 

* Homonyms equivalent 

3 3 6  




