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1 I n t r o d u c t i o n  
Within the last two years, approaches using both 
stochastic and symbolic techniques have proved ade- 
quate to deduce lexical ambiguity resolution rules with 
less than 3-4% error rate, when trained on moderate  
sized (500K word) corpora of English text  (e.g. Church, 
1988; Hindle, 1989). The success of these techniques 
suggests that  much of the grammatical  structure of lan- 
guage may be derived automatically through distribu- 
tional analysis, an approach a t t empted  and abandoned 
in the 1950s. 

We describe here two experiments to see how far 
purely distributional techniques can be pushed to au- 
tomatically provide both a set of part  of speech tags 
for English, and a grammatical  analysis of free English 
text.  We also discuss the state of a tagged NL corpus to 
aid such research (now amounting to 4 million words of 
hand-corrected part-of-speech tagging). 

In the experiment described in Section 2, we have de- 
veloped a constituent boundary parsing algorithm which 
derives an (unlabelled) bracketing given text annotated 
for part  of speech as input. This method is based on 
the hypothesis that  constituent boundaries can be ex- 
tracted from a given part-of-speech n-gram by analyzing 
the mutual  information values within the n-gram, ex- 
tended to a new generalization of the information the- 
oretic measure of m u t u a l  i n fo rma t ion .  This hypothesis 
is supported by the performance of an implementat ion 
of this parsing algorithm which determines recursively 
nested sentence structure, with an error rate of roughly 
2 misplaced boundaries for test sentences of length 10- 
15 words, and five misplaced boundaries for sentences 
of 15-30 tokens. To combat  a limited set of specific cir- 
cumstances in which the hypothesis fails, we use a small 
(4 rule, 8 symbol) dis t i tuen t  g r a m m a r ,  which indicates 
when two parts of speech cannol  remain in the same 
constituent. 

In another experiment,  described in Section 3, we in- 
vestigate whether a distributional analysis can discover 
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a part  of speech tag set which might prove adequate to 
support  experiments like that  discussed above. We have 
developed a similarity measure which accurately clus- 
ters closed-class lexical items of the same grammatical  
category, excepting words which are ambiguous between 
multiple parts  of speech. 

2 A M u t u a l  I n f o r m a t i o n  Parser  
2.1 Introduction 
In this section, we characterize a constituent boundary 
parsing algorithm, using an information-theoretic mea- 
sure called generalized mutual  information, which serves 
as an alternative to traditional grammar-based parsing 
methods. We view part-of-speech sequences as stochas- 
tic events and apply probabilistic models to these events. 
Our hypothesis is that  constituent boundaries, or "dis- 
ti tuents," can be extracted from a sequence of n cate- 
gories, or an n-gram, by analyzing the mutual  informa- 
tion values of the part-of-speech sequences within that  
n-gram. In particular, we demonstrate  that  the gener- 
alized mutual  information statistic, an extension of the 
bigram (pairwise) mutual  information of two events into 
n-space, acts as a viable measure of continuity in a sen- 
tence. 

This hypothesis assumes that ,  given any constituent 
n-gram, a l a 2 . . . a , ,  the probabili ty of tha t  constituent 
occurring is usually significantly higher than the proba- 
bility of ala2 . .  • a , a , + l  occurring. This is true, in gen- 
eral, because most constituents appear  in a variety of 
contexts. Once a constituent is detected, it is usually 
very difficult to predict what part-of-speech will come 
next. As it turns out, however, there are cases in which 
this assumption is not valid, but only a handful of these 
cases are responsible for a majori ty  of the errors made by 
the parser. To deal with these cases, our algorithm in- 
cludes what we will call a distituent g rammar  - -  a list of 
tag pairs which cannot  be adjacent within a constituent. 
One such pair is n o u n  prep, since English does not allow 
a constituent consisting of a noun followed by a preposi- 
tion. Notice that  the nominal head of a noun phrase may 
be followed by a prepositional phrase; in the context of 
distituent parsing, once a sequence of tags, such as (prep 

noun) ,  is grouped as a constituent, it is considered as 
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a unit. Our current distituent g rammar  consists of four 
rules of two tokens each. 

Our current implementat ion of this parsing algorithm 
determines a recursive unlabeled bracketing of unre- 
stricted English text. The generalized mutual  informa- 
tion statistic and the distituent g rammar  combine to 
parse sentences with, on average, two errors per sen- 
tence for sentences of 15 words or less, and five errors per 
sentence for sentences of 30 words or less (based on sen- 
tences from a reserved test subset of the Tagged Brown 
Corpus, see footnote 2). Many of the errors on longer 
sentences result f rom conjunctions, which are tradition- 
ally troublesome for grammar-based  algorithms as well. 
Further, this parsing technique is reasonably efficient, 
parsing a 35,000 word corpus in under 10 minutes on a 
Sun 4/280. 

While many stochastic approaches to natural  language 
processing tha t  utilize frequencies to estimate probabili- 
ties suffer from sparse data,  sparse data is not a concern 
in the domain of our algorithm. Sparse da ta  usually 
results from the infrequency of word sequences in a cor- 
pus. The statistics extracted from our training corpus 
are based on tag n-grams for a set of 64 tags, not word n- 
grams. 2 The corpus size is sufficiently large that  enough 
tag n-grams occur with sufficient frequency to permit  
accurate est imates of their probabilities. Therefore, the 
kinds of estimation methods of (n + 1)-gram probabili- 
ties using n-gram probabilities discussed in Katz (1987) 
and Church & Gale (1989) are not needed. 

This line of research was motivated by a series of 
successful applications of mutual  information statistics 
to other problems in natural  language processing. In 
the last decade, research in speech recognition (Je- 
linek 1985), noun classification (Hindle 1988), predicate 
argument  relations (Church & Hanks 1989), and other 
areas have shown that  mutual  information statistics pro- 
vide a wealth of information for solving these problems. 

2 . 2  M u t u a l  I n f o r m a t i o n  S t a t i s t i c s  
The mutual  information statistic (Fano 1961) is a mea- 
sure of the interdependence of two signals in a message. 
It  is a function of the probabilities of the two events: 

Mz( , u) = log u) 
 x(z)Pv(y)" 

In this paper,  the events x and y will be part-of-speech 
n-grams (instead of single parts-of-speech, as in some 
earlier work). 

Experiments  tha t  we will not report  here show that  
simple mutual  information statistics computed on n- 
gram sequences are not sufficient for the task at hand. 
Instead, we have moved to a statistic which we will call 
"generalized mutual  information," because it is a gen- 
eralization of the mutual  information of part-of-speech 

2 T h e  corpus  we use  to t r a in  ou r  pa r se r  is the  T agged  Brown  
Corpus  (Francis  a n d  Ku~era ,  1982). Nine ty  pe rcen t  of  the  corpus  
is u sed  for t r a in ing  the  parser ,  a n d  t he  other  t en  percent  is u sed  
for tes t ing .  T h e  t ag  set  u sed  is a subse t  of  t he  Brown  Corpus  t ag  
set .  

bigrams into n-space. Generalized mutual  information 
uses the context on both sides of adjacent parts-of-speech 
to determine a measure of its distituency in a given sen- 
tence. 

While our distituent parsing technique relies on gen- 
eralized mutual  information of n-grams,  the foundations 
of the technique will be illustrated with the base case of 
simple mutual  information over the space of bigrams for 
expository convenience. 

2.2.1 G e n e r a l i z e d  M u t u a l  I n f o r m a t i o n  
In applying the concept of mutual  information to the 
analysis of sentences, the interdependence of part-of- 
speech n-grams (sequences of n parts-of-speech) must 
be considered. Thus,  we consider an n-gram as a bigram 
of an nx-gram and an n2-gram, where nl  + n2 = n. The 
mutual  information of this bigram is 

.£427(n i-gram, n2-gram) P [n-gram] 
= log 79[nl_gram]:P[nz_gram]. 

Notice tha t  there are ( n - 1 )  ways of parti t ioning an n- 
gram. Thus,  for each n-gram, there is an ( n -  1) vector of 
mutual  information values. For a given n-gram za . . .  Zn, 
we can define the mutual  information values of z by: 

= 

= log 7 ~ ( X l . . . z , )  

where l < k < n .  
Notice that ,  in the above equation, for each 2vt27~(z), 

the numerator ,  7~(xl . . .  x , ) ,  remains the same while the 
denominator,  P ( Z l . . .  Z k ) ~ ( X k + l  . . .  Xn ) ,  depends on k. 
Thus,  the mutual  information value achieves its mini- 
m u m  at the point where the denominator  is maximized. 
The  empirical claim to be tested in this paper  is that  
the minimum is achieved when the two components of 
this n-gram are in two different constituents, i.e. when 
zkzk+l  is a distituent. Our experiments show that  this 
claim is largely true with a few interesting exceptions. 

A straightforward approach would assign each poten- 
tial distituent a single real number  corresponding to the 
extent to which its context suggests it is a distituent. 
But the simple extension of bigram mutual  information 
assigns each potential  distituent a number  for each n- 
g ram of which it is a part .  The question remains how 
to combine these numbers in order to achieve a valid 
measure of distituency. 

Our investigations revealed tha t  a useful way to com- 
bine mutual  information values is, for each possible dis- 
t i tuent  zy, to take a weighted sum of the mutual  infor- 
mation values of all possible pairings of n-grams ending 
with z and n-grams beginning with y, within a fixed 
size window. So, for a window of size w = 4, given the 
context z l  z2zaz4, the generalized mutual  information of 

X 2 X 3  : 

 M274(xlz2, z3z4), 

= /e13,~27(z2, z3) + k23AZ(z2, z~z4) + 
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which is equivalent to 

log (k \ / 

In general, the generalized mutual information of any 
given bigram xy  in the context x l . . . X i - l x y y l . . . Y  j -1  
is equivalent to 

/ 1Yi  x 'Exl ) 
X c r o s s e s  z y  

X X d o e s  n o t  c r o s s  z y  

This formula behaves in a manner consistent with 
one's expectation of a generalized mutual information 
statistic. It incorporates all of the mutual information 
data within the given window in a symmetric manner. 
Since it is the sum of bigram mutual information values, 
its behavior parallels that  of bigram mutual information. 

The standard deviation of the values of the bigram 
mutual information vector of an n-gram is a valid mea- 
sure of the confidence of these values. Since distituency 
is indicated by mutual information minima, we use the 
reciprocal of the standard deviation as a weighting func- 
tion. 

2 . 3  T h e  P a r s i n g  A l g o r i t h m  
The generalized mutual information statistic is the most 
theoretically significant aspect of the mutual information 
parser. However, if it were used in a completely straight- 
forward way, it would perform rather poorly on sentences 
which exceed the size of the maximum word window. 
Generalized mutual information is a local measure which 
can only be compared in a meaningful way with other 
values which are less than a word window away. In fact, 
the further apart  two potential distituents are, the less 
meaningful the comparison between their corresponding 
G.A4Z values. Thus, it is necessary to compensate for the 
local nature of this measure algorithmically. 

He directed the cortege of autos to the dunes 

near Santa Monica. 

Figure 1: Sample sentence from the Brown Corpus 

given by that  n-gram. These values are calculated once 
for each sentence and referenced frequently in the parse 
process. 

Distituent Pass 1 DG Pass 2 Pass 3 
pro verb 3.28 3.28 i 3.P8 3.28 
verb det 3.13 3.13 I 3.13 3.13 
det noun 11.18 11.18 
noun prep 11.14 - c o  8.18 
prep noun 1.20 1.20 
noun prep 7.41 - c o  3.91 2.45 
prep det 16.89 16.89 10.83 
det noun 16.43 16.43 
noun prep 12.73 - c o  7.64 4.13 
prep noun 7.36 7.36 

Figure 2: Parse node table for sample sentence 

Next, a parse node is allocated for each tag in the sen- 
tence. A generalized mutual information value is com- 
puted for each possible distituent, i.e. each pair of parse 
nodes, using the previously calculated bigram mutual in- 
formation values. The resulting parse node table for the 
sample sentence is indicated by Pass 1 in the parse node 
table (Figure 2). 

At this point, the algorithm deviates from what one 
might expect. As a preprocessing step, the distituent 
grammar is invoked to flag any known distituents by 
replacing their G.A427 value with - c o .  The results of this 
phase are indicated in the DG column in the parse node 
table. 

The first w tags in the sentence are processed using 
an n-ary-branching recursive function which branches 
at the minimum G.A4I value of the given window, with 
marginal differences between Q.A4Z values ignored. The 
local minima at which branching occurs in each pass of 
the parse are indicated by italics in the parse node table. 

Instead of using this tree in its entirety, only the 
nodes in the leftmost and rightmost constituent leaves 
are pruned. The rest of the nodes in the window are 
thrown back into the pool of nodes. The algorithm is 
applied again to the leftmost and rightmost w remain- 
ing tags until no more tags remain. The first pass of the 
parser is complete, and the sentence has been partitioned 
into constituents (Figure 3). 

In Magerman and Marcus (1990) we describe the pars- 
ing algorithm in detail, and trace the parsing of a sam- 
ple sentence (Figure 1) selected from the section of the 
Tagged Brown Corpus which was not used for training 
the parser. The sample sentence is viewed by the parser 
as a tag sequence, since the words in the sentence are 
not accounted for in the parser's statistical model. 

A bigram mutual information value vector and its 
standard deviation are calculated for each n-gram in the 
sentence, where 2 _< n _< 10. If the frequency of an 
n-gram is below a certain threshold (< 10, determined 
experimentally), then the mutual information values are 
all assumed to be 1, indicating that  no information is 

(He) (directed) (the cortege) (of autos) 
(to) (the dunes) (near Santa Monica) 

Figure 3: Constituent structure after Pass 1 

The algorithm terminates when no new structure has 
been ascertained on a pass, or when the lengths of two 
adjacent constituents sum to greater than w. After two 
more passes of the algorithm, the sample sentence is par- 
titioned into two adjacent constituents, and thus the al- 
gorithm terminates, with the result in figure 4. In this 
example, the prepositional phrase "near Santa Monica" 
is not attached to the noun phrase "the dunes" as it 
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should be; therefore, the parser output  for the sample 
sentence has one error. 

(He ( d i r e c t e d  ( ( t h e  c o r t e g e )  (o f  a u t o s ) ) )  
( ( t o  ( t he  dunes ) )  
( nea r  San t a  Monica) ) )  

Figure 4: Resulting constituent structure after Pass 3 

cover the feature set and word classes of a language. 3 I t  
is based upon the following idea, a variant of the dis- 
tributional analysis methods from Structural  Linguistics 
(Harris 51,Harris 68): features license the distributional 
behavior of lexical items. At the two extremes, a word 
with no features would not be licensed to appear  in any 
context at all, whereas a word marked with all features 
of the language would be licensed to appear  in every 
possible context. 

2 . 4  R e s u l t s  
A careful evaluation of this parser, like any other, re- 
quires some "gold s tandard" against which to judge its 
output.  Soon, we will be able to use the skeletal pars- 
ing of the Penn Treebank we are about  to begin pro- 
ducing to evaluate this work (although evaluating this 
parser against materials which we ourselves provide is 
admittedly problematic) .  For the moment ,  we have sim- 
ply graded the output  of the parser by hand ourselves. 
While the error rate for short sentences (15 words or 
less) with simple constructs is accurate, the error rate 
for longer sentences is more of an approximation than a 
rigorous value. 

On unconstrained free text  from a reserved test cor- 
pus, the parser averages about  two errors per sentence 
for sentences under 15 words in length. On sentences 
between 16 and 30 tokens in length, it averages between 
5 and 6 errors per sentence. In nearly all of these longer 
sentences and many  of shorter ones, at least one of the 
errors is caused by confusion about  conjuncts. 

One interesting possibility is to use the generalized 
mutual  information statistic to extract  a g rammar  from 
a corpus. Since the statistic is consistent, and its win- 
dow can span more than  two constituents, it could be 
used to find constituent units which occur with the same 
distribution in similar contexts. Given the results of 
the next section, it may well be possible to use auto- 
matic techniques to first determine a first approxima- 
tion to the set of word classes of a language, given only 
a large corpus of text,  and then extract  a g rammar  for 
that  set of word classes. Such a goal is very difficult, 
of course, but  we believe that  it is worth pursuing. In 
the end, we believe tha t  this, like many problems in 
natural  language processing, cannot be solved eJficienily 
by grammar-based  algorithms nor accurately by purely 
stochastic algorithms. We believe strongly that  the so- 
lution to some of these problems may well be a combi- 
nation of both  approaches. 

3 D i s c o v e r i n g  the  W o r d  Classes  
of  a L a n g u a g e  

3 . 1  I n t r o d u c t i o n  

As we ask immediately above, to what  extent is it pos- 
sible to discover by some kind of distributional analysis 
the kind of part-of-speech tags upon which our mutual  
information parser depends? In this section, we exam- 
ine the possibility of using distributional analysis to dis- 

3 . 2  T h e  A l g o r i t h m  

The  feature discovery system works as follows. First, 
a large amount  of text  is examined to discover the fre- 
quency of occurrence of different bigrams. 4 Based upon 
this data,  the system groups words into classes. Two 
words are in the same class if they can occur in the same 
contexts. In order to determine whether x and y belong 
to the same class, the sy tem first examines all bigrams 
containing x. If  for a high percentage of these bigrams, 
the corresponding bigram with y subst i tuted for x exists 
in the corpus, then it is likely tha t  y has all of the fea- 
tures that  x has (and maybe more). I f  upon examining 
the bigrams containing y the system is able to conclude 
tha t  x also has all of the features tha t  y has, it then 
concludes tha t  x and y are in the same class. 

For every pair of bigrams, the system must  determine 
how much to weigh the presence of those bigrams as ev- 
idence that  two words have features in common. For 
instance, assume: (a) the bigram ~he boy appears  many 
times in the corpus being analyzed, while the sits never 
occurs. Also assume: (b) the bigram boy the (as in the 
b o y  t h e  girl kissed . . . )  occurs once and sits ~he never 
occurs. Case (a) should be much stronger evidence that  
b o y  and s i t s  are not in the same class than  case (b). 
For each bigram o~x occurring in the corpus, evidence 
offered by the presence (or absence) of the bigram a y  
is scaled by the frequency of a x  in the text divided by 
the total  number of bigrams containing x on their right 
hand side. Since the end-of-phrase position is less re- 
strictive, we would expect each bigram involving this 
position and the word to the right of it to occur less fre- 
quently than bigrams of two phrase-internal words. By 
weighing the evidence, bigrams which cross boundaries 
will be weighed less than those which do not. 

3.2.1 T h e  Spec i f ics  

The  function impl i e s (x ,y )  calculates the likelihood (on 
a scale of [0..1]) that  word y contains all of the features 
of word x. For example, we would expect the value of 
i m p l i e s ( ' a ' ,  ' the ' )  to be close to 1, since ' the '  can occur 
in any context which 'a '  can occur in. Note that:  im-  
pl ies(x,y)  A impl ies (y ,x)  iff x and y are in the same 
class. 

aWe consider the set of features of a par t icular  language to be 
all a t t r ibutes  which that  language makes reference to in its syntax. 

4For this experiment,  we take a very local view of context,  only 
considering bigrams.  
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The function leftimply(x,y) is the likelihood (on a 
scale of [0..1]) that y contains all of the features of 
x, where this likelihood is derived from looking a t  bi- 
grams of the form: x a .  rightimply(x,y) derives the 
likelihood by examining all bigrams of the form: ax. 
bothoccur(a,P)  is 1 if both bigrams a and /? occur 
in the corpus, and p occurs with a frequency at least 
11THRESHOLD of that of a, for some THRESHOLD.5 
bothoccur  accounts for the fact that we cannot expect 
the distribution of two equivalent words over bigrams to 
be precisely the same, but we would not expect the two 
distributions to be too dissimilar either. 

bothoccurleft (ab, cd) = 

1 if bigrams ab and cd appear in the corpus and 
percentageleft(c,d) 2 (11THRESHOLD * 

t (a$)) 
0 otherwise 

When computing the relation between x and all 
other words, we use the following function, percent- 
age, to weigh the evidence (as described above), where 
count(ab) is the number of occurrences of the bigram 
ab in the corpus, and numright(x) (numleft(x)) is the 
total number of bigrams with x on their right hand side 
(left hand side). 

count (x y) 
percentageleft (x, y) = numle ft(x) 

For all pairs of words, x and y ,  we calculate im- 
p l i e s ( ~ , ~ )  and implies(y,x). We can then find word 
classes in the following way. We first determine a thresh- 
old value, where a stronger value will result in more spe- 
cific classes. Then, for each word x, we find all words 

51n the experiments we ran, we found THRESHOLD = 6 to give 
the best results. This value was found by examining the values of 
implication found between the ,  a and an. 

y such that both irnplies(x,y) and implies(y,x) are 
greater than the threshold. We next take the transi- 
tive closure of pairs of sets with nonempty intersection 
over all of these sets, and the result is a set of sets, where 
each set is a word class. Classes of different degrees of 
specificity are found by varying the degree of similarity 
between distributions needed to conclude that two words 
are in the same class. If a high degree of similarity is re- 
quired, all words in a class will have the same features. 
If a lower degree of similarity is required, then words in 
a class must have most, but not all, of the same features. 

3.3 The Experiment 
To test the algorithm discussed above, we ran the fol- 
lowing experiment. First, the number of occurrences of 
each bigram in the corpus was determined. Statistics on 
distribution were determined by examining the complete 
Brown Corpus (Francis 82), where infrequently occurring 
open-ciass words were replaced with their part-of-speech 
tag. We then ran the program on a group of words in- 
cluding all closed-class words which occurred more than 
250 times in the corpus, and the most frequently occur- 
ring open-class words. Note that the system attempted 
to determine the relations between these words; this does 
not mean that it only considered bigrams a@, where both 
a and ,f3 were from this list of words which were being 
partitioned. All bigrams which occurred more than 5 
times were considered in the distributional analysis. 

3.4 Analysis of the Experiment 
The program successfully partitioned words into word 
~ l a s s e s . ~  In addition, it was able to find more fine- 
grained features. Among the features found were: 
[possessive-pronoun] , [singular-determiner], [definite- 
determiner], [wh-adjunct] and [pronoun+be]. A descrip- 
tion of some of the word classes the program discovered 
can be found in Appendix A. 

3.5 The Psychological Plausibility of 
Distributional Analysis 

If a child does not know a priori what features are used 
in her language, there are two ways in which she can 
acquire this information: by using either syntactic or s e  
mantic cues. The child could use syntactic cues such as 
the method of distributional analysis described in this 
paper. The child might also rely upon semantic cues. 
There is evidence that children use syntactic rather than 
semantic cues in classifying words. Peter Gordon (Gor- 
don 85) ran an experiment where the child was presented 
with an object which was given a made up name. For 
objects with semantic properties of count nouns (mass 
nouns), the word was used in lexical environments which 
only mass nouns (count nouns) are permitted to be in. 
Gordon showed that the children overwhelmingly used 

60ne exception was the class of pronouns. Since [+nominative] 
and [-nominative] pronouns do not have similar distribution, they 
were not found to be in the same class. 



Raw no. Times Total no. 
of words tagged of words 

Brown Corpus 1,159,381 1 1,159,381 
Library of America 159,267 2 318,534 
DOE abstracts 199,928 2 399,856 
DoT Jones Corpus 2,644,618 1 2,644,618 
Grand total 4,163,194 4,522,389 

Tagger No. of errors Error rate 
RF 105 1.9 
Ctt 151 2.8 
MAM 127 2.3 
MP 158 2.9 
MW 136 2.5 
Mean 135 2.5 

Table 2: Error rates Table 1: Number of words tagged 

the distributional cues and not the semantic cues in clas- 
sifying the words. Virginia Gathercole (Gathercole 85) 
found that  "children do not approach the co-occurrence 
conditions of much and many with various nouns from 
a semantic point of view, but  rather from a morphosyn- 
tactic or surface-distributional one." Yonata Levy (Levy 
83) examined the mistakes young children make in clas- 
sifying words. The mistakes made were not those one 
would expect the child to make if she were using seman- 
tic cues to classify words. 

4 P e n n  T r e e b a n k  
In this section, we report  some recent performance mea- 
sures of the Penn Treebank Project.  

To date, we have tagged over 4 million words by part  of 
speech (cf. Table 1). We are tagging this material with 
a much simpler tagset than used by previous projects, 
as discussed at the Oct. 1989 DARPA Workshop. The 
material is first processed using Ken Church's tagger 
(Church 1988), which labels it as if it were Brown Corpus 
material, and then is mapped to our tagset by a SED- 
script. Because of fundamental differences in tagging 
strategy between the Penn Treebank Project  and the 
Brown project, the resulting mapping is about 9% in- 
accurate, given the tagging guidelines of the Penn Tree- 
bank project (as given in 40 pages of explicit tagging 
guidelines). This material is then hand-corrected by our 
annotators; the result is consistent within annotators to 
about 3% (cf. Table 3), and correct (again, given our 
tagging guidelines) to about 2.5% (cf. Table 2), as will 
be discussed below. We intend to use this material to 
retrain Church's tagger, which we then believe will be 
accurate to less than 3% error rate. We will then adju- 
dicate between the output  of this new tagger, run on the 
same corpus, and the previously tagged material. We 
believe that  this will yield well below 1% error, at an 
additional cost of between 5 and 10 minutes per 1000 
words of material. To provide exceptionally accurate 
bigram frequency evidence for retraining the automatic 
tagger we are using, two subcorpora (Library of America, 
DOE abstracts) were tagged twice by different annota- 
tors, and the Library of America texts were adjudicated 
by a third annotator,  yielding ~160,000 words tagged 
with an accuracy estimated to exceed 99.5%. 

Table 2 provides an estimate of error rate for part-of- 
speech annotation based on the tagging of the sample 
described above. Error rate is measured in terms of the 

CH MAM MP MW 
RF 2.6% 3.5% 3.2% 3.0% 
CH - 2.9% 3.9% 3.7% 
MAM - - 3.3% 2.7% 
MP - - - 2.8% 
Mean: 3.2% 

Table 3: Inter-annotator inconsistency 

number of disagreements with a benchmark version of 
the sample prepared by Beatrice Santorini. We have 
also estimated the rate of inter-annotator inconsistency 
based on the tagging of the sample described above (cf. 
Table 3). Inconsistency is measured in terms of the pro- 
portion of disagreements of each of the annotators with 
each other over the total  number of words in the test 
corpus (5,425 words). 

Table 4 provides an estimate of speed of part-of- 
speech annotation for a set of ten randomly selected texts 
from the DoT Jones Corpus (containing a total of 5,425 
words), corrected by each of our annotators.  The an- 
notators were throughly familiar with the genre, having 
spent over three months immediately prior to the ex- 
periment correcting texts from the same Corpus. Given 
that  the average productivity overall of our project has 
been between 3,000-3,500 words per hour of time billed 
by our annotators,  it appears that  our strategy of hiring 
annotators for no more than 3 hours a day has proven 
to be quite successful. 

Finally, the summary statistics in Table 5 provide an 
estimate of improvement of annotation speed as a func- 
tion of familiarity with genre. We compared the anno- 
tators '  speed on two samples of the Brown Corpus (10 
texts) and the DoT Jones Corpus (100 texts). We ex- 
amined the first and last samples of each genre that  the 

Tagger Time Words Minutes per 
(in minutes) per hour 1,000 words 

RF 68 4,804 12.5 
CH 79 4,129 14.5 
MAM 57 5,751 10.4 
MP 74 4,423 13.3 
MW 100 3,268 18.3 
Mean 76 4,283 14.0 
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Table 4: Speed of part-of-speech annotation 
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Words Minutes per 
per hour 1,000 words 

Early Brown 2,816 21.3 
Dow Jones 1,711 35.1 
Mean 2,621 22.9 

Late Brown 3,483 17.2 
Dow Jones 3,641 16.5 
Mean 3,511 17.1 

I 

I Improvement 34% 25% 1 
Table 5: Speed as function of familiarity with genre 

annotators tagged; in each case, more than two months 
of experience lay between the samples. 
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