
Fast Search Algorithms
for Connected Phone Recognition

Using the Stochastic Segment Model
V.Digalakist M.Ostendorf t J.R. Rohlicek

t Boston University
44 Cummington St.
Boston, MA 02215

:~ BBN Inc.
10 Moulton St.

Cambridge, MA 02138

ABSTRACT
In this paper we present methods for reducing the compu-
tation time of joint segmentation and recognition of phones
using the Stochastic Segment Model (SSM). Our approach
to the problem is twofold: first, we present a fast segment
classification method that reduces computation by a factor
of 2 to 4, depending on the confidence of choosing the most
probable model. Second, we propose a Split and Merge seg-
mentation algorithm as an alternative to the typical Dynamic
Programming solution of the segmentation and recognition
problem, with computation savings increasing proportionally
with model complexity. Even though our current recognizer
uses context-independent phone models, the results that we
report on the TIMIT database for speaker independent joint
segmentation and recognition are comparable to that of sys-
tems that use context information.

Introduction
The Stochastic Segment Model [6, 10, 9] was proposed as
an alternative to hidden Markov models (HMMs), in order
to overcome the limiting assumptions of the latter that ob-
servation features are conditionally independent given the
underlying state sequence. The main disadvantage of the
SSM over other methods is its computational complexity,
which can be attributed to the fact that dropping the con-
ditional independence assumption on the state sequence in-
creases the size of the effective state space. Having ad-
dressed several issues on the classification accuracy of the
SSM in our previous work [2], we now move to speaker in-
dependent connected phone recognition and choose to con-
centrate on the important issue of computational complexity
of the SSM recognition algorithm. We present two new al-
gorithms which together achieve a significant computation
reduction.

This paper is organized as follows. A brief overview of
the SSM is given in this section. For a more detailed de-
scription of the model the reader is referred to [6, 10]. In
the next section, we present a new algorithm for fast phone
classification with the SSM. Next, we address the issue of
joint segmentation and recognition. The originally proposed
solution for this problem used a Dynamic Programming al-
gorithm to find the globally maximum likelihood phone se-
quence. After we examine the computational complexity

of this method, we look at an alternative approach to this
problem based on local search algorithms. We propose a
different search strategy that reduces the computation sig-
nificantly, and can be used in conjunction with the classifi-
cation algorithm. Although theoretically the new algorithm
may not find the global maximum, experimental results on
the TIMIT database, show that the recognition performance
of the fast algorithm is very close to the optimum one.

An observed segment of speech (e.g., a phoneme) is rep-
resented by a sequence of q-dimensional feature vectors
Y = [Yx Y2 . . . YL], where the length L is variable. The
stochastic segment model for Y has two components [10]:
1) a time transformation TL to model the variable-length
observed segment in terms of a fixed-length unobserved se-
quence Y = XTz, where X = [Zl z2 . . . z u] , and 2)
a probabilistic representation of the unobserved feature se-
quence X. The conditional density of the observed segment
Y given phone a and duration L is:

p(Y[~, L) =/x p(XIa)dX" (1)
:Y=XTz

When the observed length, L, is less than or equal to M, the
length of X, Tz is a time-warping transformation which ob-
tains Y by selecting a subset of columns of X and the density
p(Yla) is a marginal distribution of p(Xla). In this work, as
in previous work, the time transformation, TL, is chosen to
map each observed sample Yl to the nearest model sample
zj according to a linear time-warping criterion. The distri-
bution p(Xlc,) for the segment X given the phone a is then
modelled using an Mq-dimensional multi-variate Gaussian
distribution.

Fast Segment Classification
Let Y = [yl y2 . . . Yz] be the observed segment of speech.
Then, the MAP detection rule for segment classification re-
duces to

a* = art n~ax p(Yla, L) p (L l a) p (a)

with the terms p(Lla) representing duration probabilities.
The use of an M q - dimensional Oaussian distribution

for the SSM makes the calculation of the log-likelihoods
l (a) ~ log p(a) + l o g p (L l a) + logp(Yla , L) computationally

173

expensive. In this section, we present an algorithm for fast
segment classification, based on obtaining an upper bound
L(~) of l(~) and eliminating candidate phones based on this
bound. The same idea for HMM's has also been used in
[1], but in the case of the SSM the computation can be done
recursively.

Specifically, define

i i
y/k = [m y2 . . . yk #k+l,k . . . #z,k]

where

g,~ = E{y~ I,~,, w, . . . , y~}, J >
for all phones oei. Then, because of the Gaussian assump-
tion,

= lnp(~i) + lnp(Lla i) + In p(Ylc~i, L)

< lnp(a l) + lnp(Llai) + lnp(Y~ lal, L) -~

k = 1 , 2 , . . . , L

Lk(al),

Notice that the bounds get tighter as k increases, Lk+l(c0 <
Lk(c0. A fast classification scheme for the SSM is then
described by the following algorithm, where by C we de-
note the set of remaining candidates and by I2 the set of all
candidates.

Initialization Set C =/2 , k = 1

Step 1 For all a i 6 C

compute Lk (ai)

Step 2 Pick ~* = a rgmax~ Lk(ai)

Step 3 Compute the actual likelihood l(~*)

Step 4 For a l l a i 6 C

if Lk(a i) < l(a*) remove a i from C

Step 5 Increment k. If It] > 1 and k < L go to step 1.

Because of the Gaussian assumption, the computation of
the bounds Lk0 in step 1 of iteration k actually corresponds
to a single q-dimensional Gaussian score evaluation for ev-
ery remaining class. The savings in computation are directly
dependent on the discriminant power of the feature vector,
and can be further increased if the frame scores are com-
puted in a permuted order, so that frames with the largest
discriminant information (for example the middle portion of
a phone) are computed first.

The proposed method has the desirable property of being
exact - at the end the best candidate according to the MAP
rule is obtained. On the other hand, the computation sav-
ings can be increased ff instead of pruning candidates based
on the strict bound, we use the bound at each iteration to
obtain a biased estimate of the true likelihood, [k(cO, and
use it in place of Lk0 in step 4 of the algorithm. In the
choice of the estimate there is a trade-off between compu-
tation savings and the confidence level of choosing the true
best candidate. In our phonetic classification experiments,
using a segment model with length M = 5 and assuming
independent frames, we achieved a 50% computation reduc-
tion with the exact method. The savings increased to 75%

without any effect to classification accuracy when pruning
based on the estimates of likelihoods. We can also argue that
the computation reduction should be bigger for a segment
longer than 5 frames and also when the frame independence
assumption is dropped, because in that case the distributions
will be sharper.

J o i n t S e g m e n t a t i o n / R e c o g n i t i o n
Before we present the problem of joint segmentation and
recognition (JSR), it is useful to introduce some notation.
A segmentation S of a sentence that is N frames long and

t will be represented by consists of n segments s r

S ~ S (n) = {8~t , 81"2~-, +1, • • •, 8 ; : _ t + , } ,

l < r l < r 2 < . . . < r n _ l < r,~ = N

The sequence of the observed data can be partitioned in
accordance to the segmentation S(n) as

Y "= Y(S(n))=

= {Y(1, rl), Y(rx + 1, r2), . . . , Y(r,~_, + 1, rn)}

with

Y(r, t) = [y,-, y,-+l, . . . , yt]

Finally, an n-long sequence of phone labels will be repre-
sented as

o : (n) = { ~ 0 , C X l , . . . , a n - 1 }

When the phone boundaries are unknown, the joint like-
lihood of the observed data and an n-long phone sequence
is

tCc, Cn)) = ~ v(Y(S(n)), S(n)l,~(n))p(,~(n)) (2)
S(n)

and under the assumption of independent phones,

p(Y(S(n)), S(n)l~(n))p(~(n)) =
Ti+I 'ri+l 1I]~o I p(Y(ri + 1, ri+lllal, s,.,.l)P(S,,+l [cq)p(al)

where the terms p(s~+Lla) = p(Lla) represent duration prob-
abilities. For the automatic recognition problem, the MAP
rule for detecting the most likely phonetic sequence would
involve calculations of the form (2). Because of the com-
plexity of (2), in a similar fashion to HMM's where Viterbi
decoding is used instead of the forward algorithm, we choose
to jointly select the segmentation and the phone sequence
that maximize the a posteriori likelihood

(a* (n*), S* (n *), n *) =

arg max(,~o~),so,),,~){p(Y(S(n)), S(n)la(n))p(a(n))}

In addition to the phone independence assumption, if we
further assume that there is no upper bound in the range of
allowable phone durations, there are 2 N- x possible segmen-
tations. If the second assumption is dropped, and the range
of phone durations is 1 < L < D, the number of configura-
tions among which we optimize drops to 2 N-1 - 2 N-D + 1.

174

Dynamic Programming Search
The joint segmentation and recognition, being a shortest path
problem, has a solution using the following Dynamic Pro-
gramming recursion [6] under the assumption of independent
phones:

= 0

J~ = max {J~* + ln[p(Y(r + 1, t)ls)] + ln[p(st~+lls)]
"r<t~a

+ ln[p(s)] + C}

with C being a constant that controls the insertion rate. At
the last frame N we obtain the solution:

N = n n)), sCn))p(s(n))) + n
fez),n

We shall express the complexity of a joint segmentation
and recognition search algorithm in terms of segment score
evaluations:

t cr = maax{In[p(Y(r , ~)Is)] + In[p(str Is)] + In[p(s)]} (3)

Clearly, a segment score evaluation is dominated by the
first term, which is a (t - ~- + 1)q - dimensional Gaussian
evaluation. We shall also use the number of q-dimensional
Ganssian score evaluations as a measure of complexity. A
segment score evaluation consists of Inl(t - r ÷ 1) Gaussian
score evaluations, with D the set of all phones.

The DP solution is efficient with a complexity of O(N 2)
segment score evaluations, which drops to O(DN) if the
segment length is restricted to be less than D. However, in
terms of Gaussian score evaluations (1) this approach is com-
putationally expensive. If we assume that feature vectors are
independent in time, then for each frame in the sentence the
scores of all models and possible positions within a segment
will effectively be computed and stored. This translates to
a complexity of O(M x N x Inl) q-dimensional Gaussian
evaluations, or simply M Gaussian evaluations per frame
per model, where M is the model length. This complexity
is further increased when the independence assumption is
dropped, in which case the number of Gaussian scores that
must be computed increases drastically and is equal to the
square of allowable phone durations per frame per model.
For large q (as in [2]), the DP solution is impractical. In the
following sections we present a local search algorithm that
achieves a significant computation reduction.

Local S e a r c h A l g o r i t h m s
We now give the description of a general local search al-
gorithm for the joint segmentation and recognition problem.
The set of all segmentations is

N
= { s i s = ,÷1 } }

The neighborhood of a segmentation S is defined through
the mapping from ~ to the power set of 3c:

N :.7: --_~ 2 7

A local search algorithm for the JSR problem is then de-
fined as: given any segmentation S, the neighborhood N(S)

is searched for a segmentation S ' with I(S') > l(S). If such
S ' exists in N(S), then it replaces S and the search con-
tinues, otherwise a local (perhaps) optimum with respect to
the given neighborhood is found. The choice of the neigh-
borhood is critical, as discussed in [7]. In general it must
be powerful enough to help avoid local optima and on the
other hand small, so that it can be searched efficiently.

An important question for any local search algorithm is
the size of the minimal exact local search neighborhood: that
is, given any starting configuration S, what is the smallest
possible neighborhood that must be searched so that we are
guaranteed convergence to the global optimum after a finite
number of steps. For the JSR problem, a segmentation S ' is
in the minimal exact search neighborhood of S if it has no
common boundaries in a single part of the sentence, except
the first and last frames of this part, and the scenario before
and after those two frames is the same. A more formal
definition of the exact neighborhood and a proof of the above
stated result is out of the scope of this paper.

The size of the minimal exact neighborhood of S can be
shown to be exponential in N . It also depends on the number
of segments, and is larger for segmentations with longer
segments. Of course an explicit search of this neighborhood
is infeasible and furthermore we already have a solution
with a complexity of O(N 2) segment evaluations. In the
next section we shall propose a strategy that searches over
a subset of N,=,~a(S) with size proportional to the number
of segments only.

Two common local search strategies are the splitting and
merging schemes. To describe those strategies we shall
make use of the concept of a segmentation tree: a node
of this tree is a single segment s~ and can have children

s~l, st+it2 with tl _< t < t2. The children are not unique, be-
cause of the freedom in the choice of the boundary t. The
root of the tree is the segment s~ r (whole sentence). A seg-
mentation S is then a node cutset separating the root from
all the leaves [3]. A splitting scheme starts from the top of
the segmentation tree (initial segmentation is a single seg-
ment) and moves towards a finer segmentation by searching
at each point a subset of the exact neighborhood that consists
of all possible splits for all nodes of the current segmenta-
tion. The size of this search neighborhood is O(N). The
opposite, merging strategy, is to start with an initial segmen-
tation with one frame long segments (bottom of the tree) and
search over all configurations with a pair of two consecutive
segments of the original segmentation merged into a single
segment. The latter scheme, has in general a smaller search
neighborhood, O(n). We can argue though that this type of
search is more effective for the JSR problem: the size of
the minimal exact neighborhood is much smaller for a seg-
mentation that consists of single frame segments than for a
segmentation with a single segment. Since the search neigh-
borhoods for both the splitting and merging schemes have
approximately the same size, it is much easier to fall into
local optima near the top of the tree (splitting scheme) than
at the bottom because we are searching a smaller portion of
the exact neighborhood.

As an example in speech processing, the search strat-
egy followed in the MIT SUMMIT system for finding a

175

. [In l t io l
eegmentotlone ¢

I I I I
1. Split 2. Merge

I I I
"half segment" 5. Spl i t ond Merge Right

neighbors

I II
4. Spl i t end Merge Lef t

5.

Figure 1: Split and Merge segmentation neighbors

dendrogram[11] is of the latter form. The method is a merg-
ing scheme that tries to minimize some measure of spectral
dissimilarity and constrain the segmentation space for the fi-
nal search. Similar search methods have also been used for
image segmentation and are referred to as region growing
techniques.

A Split and Merge Algor i thm
In this paper we propose to use a combined split and merge
strategy for the JSR problem. Such a method has originally
been used for image segmentation [3]. This approach has a
search neighborhood that is the union of the neighborhoods
of the splitting and merging methods discussed previously.
The advantages of such a method are first that it is harder
to fall into local optima because of the larger neighborhood
size and second that it converges faster, if we assume that
we start from a point closer to the true segmentation than
the top or the bottom.

To relate this algorithm to the general family of local
search algorithms, consider the neighborhood that consists
of segmentations with segments restricted to be not smaller
than half the size of the segments in the current segmen-
tation. In Figure 1 we show the corresponding single and
two segment neighbors over one and two segments that also
belong to the exact neighborhood. In the same way, we can
define the "half segment" neighbors over three or more con-
secutive segments. As we shall see though, we found that
extending the search above two-segment neighbors was un-
necessary. The original split and merge neighborhood con-
sists of neighbors 1 and 2 in Figure 1. We can either split
a segment in half (at the middle frame) or merge it with the
next segment. Let us denote the corresponding neighbor-
hoods by Ns (S), Nm(S). Then the basic Split and Merge
algorithm consists of a local search over all segmentations
in the union of N6(S) and Nm(S). Furthermore, we choose

to follow a "steepest ascent" search strategy, rather than a
first improvement one. Specifically, given that the segmen-
tation at iteration k is Sk, we choose to replace it with the
segmentation Sk+1

S~÷1 = arg max I(S)
S E No (Sh)u N., (Sh)

if it improves the current score,/(Sk+l) > l(Sk).
Convergence in a finite number of steps is guaranteed

because at each step the likelihood can only increase and
there are only a finite number of possible steps.

Improvements to the basic algorithm
Several other modifications to the basic algorithm were con-
sidered to help avoid local optima. We found it useful to
change our splitting scheme to a two step process: first, the
decision for a split at the middle point is taken, and then
the boundary between the two children segments is adjusted
by examining the likelihood ratio of the last and first dis-
tributions of the corresponding models. The boundary is
finally adjusted to the new frame if this action increases
the likelihood. This method does not actually increase the
search neighborhood, because boundary adjustment will be
clone only ff the decision for a split was originally taken.
However, it was adopted as a good compromise between
computational load and performance.

A second method that helped avoid local optima was the
use of combined actions. In addition to single splits or
merges, we search over segmentations produced by split-
ting a segment and merging the first or second half with the
previous or next segment respectively. In essence, this ex-
pands the search neighborhood by including the neighbors
3 and 4 in figure 1.

We also considered several other methods to escape local
optima, like taking random or negative steps at the end.
However, since the performance of the algorithm with the
previous improvements was very close to the optimum as
we shall see, the additional overload was not justified.

Constrained searches
In this section, we describe how the split and merge search
can be constrained when the phones are not independent,
for example when bigram probabilities are used. So far, the
independence assumption allowed us to associate the most
likely candidate to each segment and then perform a search
over all possible segmentations. When this assumption is

t is t associated to the segment s,. no longer valid, the cost c~.
not unique for all possible segmentations that include this
segment, so the search must be performed over all possible
segmentations and phone sequences. For the DP search,
if bigram probabilities of the form P(ak+llak) are used, the
search should be done over all allowable phone durations and
all phone labels at each time, which means that the search
space size is multiplied by the number of phone models. A
suboptimal search can be performed with the split and merge
segmentation algorithm as follows:

At each iteration of the algorithm, the scores of all the
candidate phones are computed and stored for all segments

176

and all segmentations in the search neighborhood, without
using the constraint probabilities (we make the assumption
that we have probabilistic constraints, in the form of a statis-
tical grammar as above). Next, an action (split or merge) is
taken if by changing only the phone labels of the segments
the global likelihood is increased, this time including the
constraint probabilities. This guarantees that the likelihood
of the new segmentation is bigger than the previous one. If
the decision is to take the action, we fix the segmentation
and then perform a search over the phone labels only. For
example, if we use bigram probabilities, this can be done
with a Dynamic Programming search over the phonetic la-
bels with the acoustic scores of the current segmentation.
This last step is necessary, because once an action is taken
and a local change is made, we are not guaranteed that the
current scenario is globally optimum for the given segmen-
tation because of the constraints (e.g. independent phones).

As in the independent phone case, convergence of the al-
gorithm is ensured because after each iteration of the algo-
rithm a new configuration will be adopted only if it increases
the likelihood.

In the case of non-independent phones, the exact mini-
mal search neighborhood can be shown to be the set of all
segmentations. It is therefore much easier for a local search
algorithm to get trapped into local optima. For this reason,
it is important that for constrained searches the above men-
tioned algorithm starts with a good initial segmentation. In
practice we obtained a good starting segmentation by first
running an unconstrained search using only unigram proba-
bilities and incorporating the constraints as mentioned above
in a second pass.

Complexity
The size of the search neighborhood at each iteration of the
split and merge algorithm is O(n), with n the number of
current segments. However, if the scores at each iteration
of the algorithm are stored, then the number of segment
score evaluations as defined in (3) has the order of the num-
ber of iterations with an additional initial cost. In the case
of constrained searches, we can argue that there may exist
pathological situations where all possible configurations are
visited, and the number of iterations is exponential with N.
As we shall see though, we found experimentally that the
number of iterations was roughly equal to n.

Resul ts
The methods that we presented in this paper were evaluated
on the TIMIT database [4]. The phone-classifier that we
used in our experiments was identical to the baseline sys-
tem described in [2]. We used Mel-warped cepstra and their
derivatives together with the derivative of log power. The
length of the segment model was M = 5 and had indepen-
dent samples. We used 61 phonetic models, but in counting
errors we folded homophones together and effectively used
the reduced CMU/MIT 39 symbol set. However, we did
not remove the glottal stop Q in either training or recogni-
tion, and allowed substitutions of a closure-stop pair by the

corresponding single closure or stop as acceptable errors.
Those two differences from the conditions used in [5, 8]
have effects on the performance estimates which offset one
another.

The training and test sets that we used consist of 317
speakers (2536 sentences) and 103 speakers (824 sentences)
respectively. We report our baseline results on this large test
set, but our algorithm development was done on a subset of
this set, with 12 speakers (96 sentences), and the comparison
of the split and merge algorithm to the DP search is done
on this small test set.

DP / Split and Merge comparison
The average sentence length in our small test set was 3
seconds, or 300 flames when the cepstral analysis is done
every 10 msec. The number of segment score evaluations
per sentence for a DP search is 15,000 when we restrict
the length of the phones to be less than 50 frames, and can
be reduced to approximately 4,000 if we further restrict the
accuracy of the search to 2 frames. In addition, for 61 phone
models and a M = 5 long segment, there are 90,000 different
Gaussian score evaluations under the frame independence
assumption that will eventually be computed during the DP
search.

The average number of iterations for the non-constrained
split and merge search over these sentences was 114, with
750 segment and 40,000 Gaussian score evaluations, when
we also include the fast classification scheme. The split and
merge search was on average 3 times faster than a two frame
accurate DP search under these conditions, and 5 times faster
than a single frame accurate DP search. Furthermore, the
savings increase with the length of the model: we verified
experimentally that doubling the length of the model had
little effect on the split and merge search, whereas it doubled
the recognition time of the DP search.

The computation savings remain the same in the case of
constrained searches also. The additional segment and frame
score evaluations in the second phase of the split and merge
are offset by the increased search space in the DP search.
Finally, we should notice that the fast classification scheme
has only a small effect when a DP search is used.

A fast suboptimal search for the JSR problem is justified
if the solutions it provides are not far from the global opti-
mum. Starting with a uniform initial segmentation near the
bottom of the tree, we found that the split and merge search
had almost identical performance to the DP search, without
and with the bigram probabilities. The results on our small
test set are summarized in Table 1, counting substitutions
and deletions as errors in percent correct and with accuracy
defined to be 100% minus the percentage of substitutions,
deletions and insertions.

Baseline results and Discussion
After adjusting the parameters of our recognizer, we tested
it on the long test set. The results for the split and merge
algorithm and the dynamic programming search, both us-
ing bigram probabilities, are shown in Table 2. On the

177

Unigram

Bigram

1-Frame DP
2-Frame DP

Split & merge

Segment/Frame
Score Eval.

15,000/90,000
3,750180,000
750/40,000

Correct
/Accuracy
70.5 / 64.8
70.6 / 64.9
69.7 / 64.6

2-Frame DP 3,750180,000 72.3 / 66.7
Split & merge 950160,000 71.9 / 66.7

Table 1: DP - Split and Merge comparison

full 61 TIMIT symbol set our recognition rate is 60% cor-
rect/54% accuracy. On the reduced symbol set, our baseline
result of 70% correct/64% accuracy compares favorably with
other systems using context independent models. For exam-
ple, Lee and Hon [5] reported 64% correct/53% accuracy
on the same database using discrete density HMMs. Their
recognition rate increases to 74% correct/66% accuracy with
right-context-dependent phone modelling. Lately, Robinson
and Fallside [8] reported 75% correct/69% accuracy using
connectionist techniques. Their system also uses context in-
formation through a state feedback mechanism (left context)
and a delay in the decision (right context).

In conclusion, we achieved the main goal of this work,
a significant computation reduction for connected phone
recognition using the SSM with no loss in recognition per-
formance. Our current recognition rate is close to that of
systems that use context dependent modelling. However, we
expect to achieve significant additional improvements when
we incorporate context information and time correlation in
the segment model.

A c k n o w l e d g m e n t
This work was jointly supported by NSF and DARPA under
NSF grant # IRI-8902124.

References
[1] L.Bahl, P.S.Gopalakrishnan, D.Kanevsky

and D.Nahamoo, "Matrix Fast Match: A Fast Method
for Identifying a Short List of Candidate Words for
Decoding", in IEEE Int. Conf. Acoust., Speech, Signal
Processing, Glasgow, Scotland, May 1989.

[2] V. Digalakis, M. Ostendorf and J. R. Rohlicek, "Im-
provements in the Stochastic Segment Model for
Phoneme Recognition," Proceedings of the Second

DARPA Workshop on Speech and Natural Language,
pp. 332-338, October 1989.

[3] S. L. Horowitz and T. Pavlidis, "Picture segmentation
by a tree traversal algorithm," Journal Assoc. Comput.
Mach., Vol. 23, No. 2, pp. 368-388, April 1976.

[4] L.F. Lamel, R. H. Kassel and S. Seneff, "Speech
Database Development: Design and Analysis of the
Acoustic-Phonetic Corpus," in Proc. DARPA Speech
Recognition Workshop, Report No. SAIC-86/1546, pp.
100-109, Feb. 1986.

[5] K.-F. Lee and H.-W. Hon, "Speaker-independent phone
recognition using Hidden Markov Models," IEEE
Trans. on Acoust., Speech and Signal Proc., Vol. ASSP-
37(11), pp. 1641-1648, November 1989.

[6] M. Ostendorf and S. Roucos, "A stochastic segment
model for phoneme-based continuous speech recogni-
tion," In IEEE Trans. Acoustic Speech and Signal Pro-
cessing, ASSP-37(12): 1857-1869, December 1989.

[7] C.H.Papadimitriou and K.Steiglittz, Combinatorial Op-
timization, Algorithms and Complexity, Prentice-Hall,
New Jersey 1982.

[8] T. Robinson and F. Fallside, "Phoneme Recognition
from the TIMIT database using Recurrent Error Propa-
gation Networks," Cambridge University technical re-
port No. CUED/F-INFENG/TR.42, March 1990.

[9] S. Roucos and M. Ostendorf Dunham, "A stochastic
segment model for phoneme-based continuous speech
recognition," In IEEE Int. Conf. Acoust., Speech, Sig-
nal Processing, pages 73-89, Dallas, TX, April 1987.
Paper No. 3.3.

[10] S. Roucos, M. Ostendorf, H. Gish, and A. Derr,
"Stochastic segment modeling using the estimate-
maximize algorithm," In IEEE Int. Conf. Acoust.,
Speech, Signal Processing, pages 127-130, New York,
New York, April 1988.

[11] V. Zue, J. Glass, M. Philips and S. Seneff, "Acoustic
segmentation and Phonetic classification in the SUM-
MIT system," in IEEE Int. Conf. Acoust., Speech, Sig-
nal Processing, Glasgow, Scotland, May 1989.

Correct
Substitutions
Deletions
Insertions
Accuracy

Split & Merge DP search
69.7% (22,285)
19.8% (6,339)
10.5% (3,350)
6.0% (1,905)

63.7%

70.0% (22,387)
19.9% (6,350)
10.1% (3,237)
5.8% (1,868)

64.2%

Table 2: Baseline results

178

