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ABSTRACT 
In this paper we present methods for reducing the compu- 
tation time of joint segmentation and recognition of phones 
using the Stochastic Segment Model (SSM). Our approach 
to the problem is twofold: first, we present a fast segment 
classification method that reduces computation by a factor 
of 2 to 4, depending on the confidence of choosing the most 
probable model. Second, we propose a Split and Merge seg- 
mentation algorithm as an alternative to the typical Dynamic 
Programming solution of the segmentation and recognition 
problem, with computation savings increasing proportionally 
with model complexity. Even though our current recognizer 
uses context-independent phone models, the results that we 
report on the TIMIT database for speaker independent joint 
segmentation and recognition are comparable to that of sys- 
tems that use context information. 

Introduction 
The Stochastic Segment Model [6, 10, 9] was proposed as 
an alternative to hidden Markov models (HMMs), in order 
to overcome the limiting assumptions of the latter that ob- 
servation features are conditionally independent given the 
underlying state sequence. The main disadvantage of the 
SSM over other methods is its computational complexity, 
which can be attributed to the fact that dropping the con- 
ditional independence assumption on the state sequence in- 
creases the size of the effective state space. Having ad- 
dressed several issues on the classification accuracy of the 
SSM in our previous work [2], we now move to speaker in- 
dependent connected phone recognition and choose to con- 
centrate on the important issue of computational complexity 
of the SSM recognition algorithm. We present two new al- 
gorithms which together achieve a significant computation 
reduction. 

This paper is organized as follows. A brief overview of 
the SSM is given in this section. For a more detailed de- 
scription of the model the reader is referred to [6, 10]. In 
the next section, we present a new algorithm for fast phone 
classification with the SSM. Next, we address the issue of 
joint segmentation and recognition. The originally proposed 
solution for this problem used a Dynamic Programming al- 
gorithm to find the globally maximum likelihood phone se- 
quence. After we examine the computational complexity 

of this method, we look at an alternative approach to this 
problem based on local search algorithms. We propose a 
different search strategy that reduces the computation sig- 
nificantly, and can be used in conjunction with the classifi- 
cation algorithm. Although theoretically the new algorithm 
may not find the global maximum, experimental results on 
the TIMIT database, show that the recognition performance 
of the fast algorithm is very close to the optimum one. 

An observed segment of speech (e.g., a phoneme) is rep- 
resented by a sequence of q-dimensional feature vectors 
Y = [Yx Y2 . . .  YL], where the length L is variable. The 
stochastic segment model for Y has two components [10]: 
1) a time transformation TL to model the variable-length 
observed segment in terms of a fixed-length unobserved se- 
quence Y = XTz, where X = [Zl z2 . . .  z u ] ,  and 2) 
a probabilistic representation of the unobserved feature se- 
quence X. The conditional density of the observed segment 
Y given phone a and duration L is: 

p(Y[~, L) =/x p(XIa)dX" (1) 
:Y=XTz 

When the observed length, L, is less than or equal to M, the 
length of X, Tz is a time-warping transformation which ob- 
tains Y by selecting a subset of columns of X and the density 
p(Yla) is a marginal distribution of p(Xla ). In this work, as 
in previous work, the time transformation, TL, is chosen to 
map each observed sample Yl to the nearest model sample 
zj  according to a linear time-warping criterion. The distri- 
bution p(Xlc, ) for the segment X given the phone a is then 
modelled using an Mq-dimensional multi-variate Gaussian 
distribution. 

Fast Segment Classification 
Let Y = [yl y2 . . .  Yz]  be the observed segment of speech. 
Then, the MAP detection rule for segment classification re- 
duces to 

a* = art  n~ax p(Yla, L ) p ( L l a ) p ( a )  

with the terms p(Lla) representing duration probabilities. 
The use of an M q  - dimensional Oaussian distribution 

for the SSM makes the calculation of the log-likelihoods 
l (a )  ~ log p(a) + l o g p ( L l a )  + logp(Yla , L) computationally 
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expensive. In this section, we present an algorithm for fast 
segment classification, based on obtaining an upper bound 
L(~) of l(~) and eliminating candidate phones based on this 
bound. The same idea for HMM's has also been used in 
[1], but in the case of the SSM the computation can be done 
recursively. 

Specifically, define 

i i 
y/k = [m y2 . . .  yk #k+l,k . . .  #z,k] 

where 

g,~ = E{y~ I,~,, w, . . . ,  y~}, J > 
for all phones oei. Then, because of the Gaussian assump- 
tion, 

= lnp(~i) + lnp(Lla i )  + In p(Ylc~i, L) 

< lnp(a l )  + lnp(Llai) + lnp(Y~ lal, L) -~ 

k = 1 , 2 , . . . , L  

Lk(al), 

Notice that the bounds get tighter as k increases, Lk+l(c0 < 
Lk(c0. A fast classification scheme for the SSM is then 
described by the following algorithm, where by C we de- 
note the set of  remaining candidates and by I2 the set of all 
candidates. 

Initialization Set C =/2 ,  k = 1 

Step 1 For all a i  6 C 

compute Lk (ai) 

Step 2 Pick ~* = a rgmax~  Lk(ai )  

Step 3 Compute the actual likelihood l(~*) 

Step 4 For a l l a i 6 C  

if Lk(a i )  < l(a*) remove a i  from C 

Step 5 Increment k. If It] > 1 and k < L go to step 1. 

Because of the Gaussian assumption, the computation of 
the bounds Lk0  in step 1 of iteration k actually corresponds 
to a single q-dimensional Gaussian score evaluation for ev- 
ery remaining class. The savings in computation are directly 
dependent on the discriminant power of the feature vector, 
and can be further increased if the frame scores are com- 
puted in a permuted order, so that frames with the largest 
discriminant information (for example the middle portion of 
a phone) are computed first. 

The proposed method has the desirable property of being 
exact - at the end the best candidate according to the MAP 
rule is obtained. On the other hand, the computation sav- 
ings can be increased ff instead of pruning candidates based 
on the strict bound, we use the bound at each iteration to 
obtain a biased estimate of the true likelihood, [k(cO, and 
use it in place of Lk0  in step 4 of the algorithm. In the 
choice of the estimate there is a trade-off between compu- 
tation savings and the confidence level of choosing the true 
best candidate. In our phonetic classification experiments, 
using a segment model with length M = 5 and assuming 
independent frames, we achieved a 50% computation reduc- 
tion with the exact method. The savings increased to 75% 

without any effect to classification accuracy when pruning 
based on the estimates of likelihoods. We can also argue that 
the computation reduction should be bigger for a segment 
longer than 5 frames and also when the frame independence 
assumption is dropped, because in that case the distributions 
will be sharper. 

J o i n t  S e g m e n t a t i o n / R e c o g n i t i o n  
Before we present the problem of joint segmentation and 
recognition (JSR), it is useful to introduce some notation. 
A segmentation S of a sentence that is N frames long and 

t will be represented by consists of n segments s r 

S ~ S ( n )  = {8~t ,  81"2~-, +1, • • •, 8 ; : _ t + , } ,  

l < r l < r 2 < . . . < r n _ l  < r,~ = N 

The sequence of the observed data can be partitioned in 
accordance to the segmentation S(n) as 

Y "= Y(S(n) )=  

= {Y(1, rl), Y(rx + 1, r2), . . . ,  Y(r,~_, + 1, rn)} 

with 

Y(r, t) = [y,-, y,-+l, . . . ,  yt] 

Finally, an n-long sequence of phone labels will be repre- 
sented as 

o : ( n )  = { ~ 0 ,  C X l , . . . , a n - 1 }  

When the phone boundaries are unknown, the joint like- 
lihood of the observed data and an n-long phone sequence 
is 

tCc, Cn)) = ~ v(Y(S(n)), S(n)l,~(n))p(,~(n)) (2) 
S(n) 

and under the assumption of independent phones, 

p(Y(S(n)), S(n)l~(n))p(~(n)) = 
Ti+I 'ri+l 1I]~o I p(Y(ri + 1, ri+lllal, s,.,.l)P(S,,+l [cq)p(al) 

where the terms p(s~+Lla) = p(Lla  ) represent duration prob- 
abilities. For the automatic recognition problem, the MAP 
rule for detecting the most likely phonetic sequence would 
involve calculations of  the form (2). Because of the com- 
plexity of  (2), in a similar fashion to HMM's  where Viterbi 
decoding is used instead of the forward algorithm, we choose 
to jointly select the segmentation and the phone sequence 
that maximize the a posteriori likelihood 

(a* (n*), S* (n *), n *) = 

arg max(,~o~),so,),,~){p(Y(S(n)), S(n)la(n))p(a(n))} 

In addition to the phone independence assumption, if we 
further assume that there is no upper bound in the range of 
allowable phone durations, there are 2 N-  x possible segmen- 
tations. If  the second assumption is dropped, and the range 
of phone durations is 1 < L < D, the number of configura- 
tions among which we optimize drops to 2 N-1 - 2 N-D + 1. 
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Dynamic Programming Search 
The joint segmentation and recognition, being a shortest path 
problem, has a solution using the following Dynamic Pro- 
gramming recursion [6] under the assumption of independent 
phones: 

= 0 

J~ = max {J~* + ln[p(Y(r + 1, t)ls)] + ln[p(st~+lls)] 
"r<t~a  

+ ln[p(s)] + C} 

with C being a constant that controls the insertion rate. At 
the last frame N we obtain the solution: 

N = n n)), sCn))p(s(n))) + n 
fez ),n 

We shall express the complexity of a joint segmentation 
and recognition search algorithm in terms of segment score 
evaluations: 

t cr = maax{In[p(Y(r , ~)Is)] + In[p(str Is)] + In[p(s)]} (3) 

Clearly, a segment score evaluation is dominated by the 
first term, which is a (t - ~- + 1)q - dimensional Gaussian 
evaluation. We shall also use the number of q-dimensional 
Ganssian score evaluations as a measure of complexity. A 
segment score evaluation consists of Inl( t -  r ÷  1) Gaussian 
score evaluations, with D the set of all phones. 

The DP solution is efficient with a complexity of O(N 2) 
segment score evaluations, which drops to O(DN) if the 
segment length is restricted to be less than D. However, in 
terms of Gaussian score evaluations (1) this approach is com- 
putationally expensive. If we assume that feature vectors are 
independent in time, then for each frame in the sentence the 
scores of all models and possible positions within a segment 
will effectively be computed and stored. This translates to 
a complexity of O(M x N x Inl) q-dimensional Gaussian 
evaluations, or simply M Gaussian evaluations per frame 
per model, where M is the model length. This complexity 
is further increased when the independence assumption is 
dropped, in which case the number of Gaussian scores that 
must be computed increases drastically and is equal to the 
square of allowable phone durations per frame per model. 
For large q (as in [2]), the DP solution is impractical. In the 
following sections we present a local search algorithm that 
achieves a significant computation reduction. 

Local S e a r c h  A l g o r i t h m s  
We now give the description of a general local search al- 
gorithm for the joint segmentation and recognition problem. 
The set of all segmentations is 

N 
= { s i s  = ,÷1 } }  

The neighborhood of a segmentation S is defined through 
the mapping from ~ to the power set of 3c: 

N :.7: --_~ 2 7 

A local search algorithm for the JSR problem is then de- 
fined as: given any segmentation S, the neighborhood N(S) 

is searched for a segmentation S '  with I(S')  > l(S). If  such 
S '  exists in N(S), then it replaces S and the search con- 
tinues, otherwise a local (perhaps) optimum with respect to 
the given neighborhood is found. The choice of the neigh- 
borhood is critical, as discussed in [7]. In general it must 
be powerful enough to help avoid local optima and on the 
other hand small, so that it can be searched efficiently. 

An important question for any local search algorithm is 
the size of the minimal exact local search neighborhood: that 
is, given any starting configuration S, what is the smallest 
possible neighborhood that must be searched so that we are 
guaranteed convergence to the global optimum after a finite 
number of steps. For the JSR problem, a segmentation S '  is 
in the minimal exact search neighborhood of S if it has no 
common boundaries in a single part of the sentence, except 
the first and last frames of this part, and the scenario before 
and after those two frames is the same. A more formal 
definition of the exact neighborhood and a proof of the above 
stated result is out of the scope of this paper. 

The size of the minimal exact neighborhood of S can be 
shown to be exponential in N .  It also depends on the number 
of segments, and is larger for segmentations with longer 
segments. Of course an explicit search of this neighborhood 
is infeasible and furthermore we already have a solution 
with a complexity of O(N 2) segment evaluations. In the 
next section we shall propose a strategy that searches over 
a subset of N,=,~a(S) with size proportional to the number 
of segments only. 

Two common local search strategies are the splitting and 
merging schemes. To describe those strategies we shall 
make use of the concept of a segmentation tree: a node 
of this tree is a single segment s~ and can have children 

s~l, st+it2 with tl _< t < t2. The children are not unique, be- 
cause of the freedom in the choice of the boundary t. The 
root of the tree is the segment s~ r (whole sentence). A seg- 
mentation S is then a node cutset separating the root from 
all the leaves [3]. A splitting scheme starts from the top of 
the segmentation tree (initial segmentation is a single seg- 
ment) and moves towards a finer segmentation by searching 
at each point a subset of the exact neighborhood that consists 
of all possible splits for all nodes of the current segmenta- 
tion. The size of this search neighborhood is O(N). The 
opposite, merging strategy, is to start with an initial segmen- 
tation with one frame long segments (bottom of the tree) and 
search over all configurations with a pair of two consecutive 
segments of the original segmentation merged into a single 
segment. The latter scheme, has in general a smaller search 
neighborhood, O(n). We can argue though that this type of 
search is more effective for the JSR problem: the size of 
the minimal exact neighborhood is much smaller for a seg- 
mentation that consists of single frame segments than for a 
segmentation with a single segment. Since the search neigh- 
borhoods for both the splitting and merging schemes have 
approximately the same size, it is much easier to fall into 
local optima near the top of the tree (splitting scheme) than 
at the bottom because we are searching a smaller portion of 
the exact neighborhood. 

As an example in speech processing, the search strat- 
egy followed in the MIT SUMMIT system for finding a 
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Figure 1: Split and Merge segmentation neighbors 

dendrogram[11] is of the latter form. The method is a merg- 
ing scheme that tries to minimize some measure of spectral 
dissimilarity and constrain the segmentation space for the fi- 
nal search. Similar search methods have also been used for 
image segmentation and are referred to as region growing 
techniques. 

A Split and Merge  Algor i thm 
In this paper we propose to use a combined split and merge 
strategy for the JSR problem. Such a method has originally 
been used for image segmentation [3]. This approach has a 
search neighborhood that is the union of the neighborhoods 
of the splitting and merging methods discussed previously. 
The advantages of such a method are first that it is harder 
to fall into local optima because of the larger neighborhood 
size and second that it converges faster, if we assume that 
we start from a point closer to the true segmentation than 
the top or the bottom. 

To relate this algorithm to the general family of local 
search algorithms, consider the neighborhood that consists 
of segmentations with segments restricted to be not smaller 
than half the size of the segments in the current segmen- 
tation. In Figure 1 we show the corresponding single and 
two segment neighbors over one and two segments that also 
belong to the exact neighborhood. In the same way, we can 
define the "half segment" neighbors over three or more con- 
secutive segments. As we shall see though, we found that 
extending the search above two-segment neighbors was un- 
necessary. The original split and merge neighborhood con- 
sists of neighbors 1 and 2 in Figure 1. We can either split 
a segment in half (at the middle frame) or merge it with the 
next segment. Let us denote the corresponding neighbor- 
hoods by Ns (S), Nm(S). Then the basic Split and Merge 
algorithm consists of a local search over all segmentations 
in the union of N6(S) and Nm(S). Furthermore, we choose 

to follow a "steepest ascent" search strategy, rather than a 
first improvement one. Specifically, given that the segmen- 
tation at iteration k is Sk, we choose to replace it with the 
segmentation Sk+1 

S~÷1 = arg max I(S) 
S E No (Sh)u N., (Sh) 

if it improves the current score,/(Sk+l) > l(Sk). 
Convergence in a finite number of steps is guaranteed 

because at each step the likelihood can only increase and 
there are only a finite number of possible steps. 

Improvements to the basic algorithm 
Several other modifications to the basic algorithm were con- 
sidered to help avoid local optima. We found it useful to 
change our splitting scheme to a two step process: first, the 
decision for a split at the middle point is taken, and then 
the boundary between the two children segments is adjusted 
by examining the likelihood ratio of the last and first dis- 
tributions of the corresponding models. The boundary is 
finally adjusted to the new frame if this action increases 
the likelihood. This method does not actually increase the 
search neighborhood, because boundary adjustment will be 
clone only ff the decision for a split was originally taken. 
However, it was adopted as a good compromise between 
computational load and performance. 

A second method that helped avoid local optima was the 
use of combined actions. In addition to single splits or 
merges, we search over segmentations produced by split- 
ting a segment and merging the first or second half with the 
previous or next segment respectively. In essence, this ex- 
pands the search neighborhood by including the neighbors 
3 and 4 in figure 1. 

We also considered several other methods to escape local 
optima, like taking random or negative steps at the end. 
However, since the performance of the algorithm with the 
previous improvements was very close to the optimum as 
we shall see, the additional overload was not justified. 

Constrained searches 
In this section, we describe how the split and merge search 
can be constrained when the phones are not independent, 
for example when bigram probabilities are used. So far, the 
independence assumption allowed us to associate the most 
likely candidate to each segment and then perform a search 
over all possible segmentations. When this assumption is 

t is t associated to the segment s,. no longer valid, the cost c~. 
not unique for all possible segmentations that include this 
segment, so the search must be performed over all possible 
segmentations and phone sequences. For the DP search, 
if bigram probabilities of the form P(ak+llak) are used, the 
search should be done over all allowable phone durations and 
all phone labels at each time, which means that the search 
space size is multiplied by the number of phone models. A 
suboptimal search can be performed with the split and merge 
segmentation algorithm as follows: 

At each iteration of the algorithm, the scores of all the 
candidate phones are computed and stored for all segments 
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and all segmentations in the search neighborhood, without 
using the constraint probabilities (we make the assumption 
that we have probabilistic constraints, in the form of a statis- 
tical grammar as above). Next, an action (split or merge) is 
taken if by changing only the phone labels of the segments 
the global likelihood is increased, this time including the 
constraint probabilities. This guarantees that the likelihood 
of the new segmentation is bigger than the previous one. If  
the decision is to take the action, we fix the segmentation 
and then perform a search over the phone labels only. For 
example, if we use bigram probabilities, this can be done 
with a Dynamic Programming search over the phonetic la- 
bels with the acoustic scores of the current segmentation. 
This last step is necessary, because once an action is taken 
and a local change is made, we are not guaranteed that the 
current scenario is globally optimum for the given segmen- 
tation because of the constraints (e.g. independent phones). 

As in the independent phone case, convergence of the al- 
gorithm is ensured because after each iteration of the algo- 
rithm a new configuration will be adopted only if it increases 
the likelihood. 

In the case of non-independent phones, the exact mini- 
mal search neighborhood can be shown to be the set of all 
segmentations. It is therefore much easier for a local search 
algorithm to get trapped into local optima. For this reason, 
it is important that for constrained searches the above men- 
tioned algorithm starts with a good initial segmentation. In 
practice we obtained a good starting segmentation by first 
running an unconstrained search using only unigram proba- 
bilities and incorporating the constraints as mentioned above 
in a second pass. 

Complexity 
The size of the search neighborhood at each iteration of the 
split and merge algorithm is O(n), with n the number of 
current segments. However, if the scores at each iteration 
of the algorithm are stored, then the number of segment 
score evaluations as defined in (3) has the order of the num- 
ber of iterations with an additional initial cost. In the case 
of constrained searches, we can argue that there may exist 
pathological situations where all possible configurations are 
visited, and the number of iterations is exponential with N.  
As we shall see though, we found experimentally that the 
number of iterations was roughly equal to n. 

Resul ts  
The methods that we presented in this paper were evaluated 
on the TIMIT database [4]. The phone-classifier that we 
used in our experiments was identical to the baseline sys- 
tem described in [2]. We used Mel-warped cepstra and their 
derivatives together with the derivative of log power. The 
length of the segment model was M = 5 and had indepen- 
dent samples. We used 61 phonetic models, but in counting 
errors we folded homophones together and effectively used 
the reduced CMU/MIT 39 symbol set. However, we did 
not remove the glottal stop Q in either training or recogni- 
tion, and allowed substitutions of a closure-stop pair by the 

corresponding single closure or stop as acceptable errors. 
Those two differences from the conditions used in [5, 8] 
have effects on the performance estimates which offset one 
another. 

The training and test sets that we used consist of 317 
speakers (2536 sentences) and 103 speakers (824 sentences) 
respectively. We report our baseline results on this large test 
set, but our algorithm development was done on a subset of 
this set, with 12 speakers (96 sentences), and the comparison 
of the split and merge algorithm to the DP search is done 
on this small test set. 

DP / Split and Merge comparison 
The average sentence length in our small test set was 3 
seconds, or 300 flames when the cepstral analysis is done 
every 10 msec. The number of segment score evaluations 
per sentence for a DP search is 15,000 when we restrict 
the length of the phones to be less than 50 frames, and can 
be reduced to approximately 4,000 if we further restrict the 
accuracy of the search to 2 frames. In addition, for 61 phone 
models and a M = 5 long segment, there are 90,000 different 
Gaussian score evaluations under the frame independence 
assumption that will eventually be computed during the DP 
search. 

The average number of iterations for the non-constrained 
split and merge search over these sentences was 114, with 
750 segment and 40,000 Gaussian score evaluations, when 
we also include the fast classification scheme. The split and 
merge search was on average 3 times faster than a two frame 
accurate DP search under these conditions, and 5 times faster 
than a single frame accurate DP search. Furthermore, the 
savings increase with the length of the model: we verified 
experimentally that doubling the length of the model had 
little effect on the split and merge search, whereas it doubled 
the recognition time of the DP search. 

The computation savings remain the same in the case of 
constrained searches also. The additional segment and frame 
score evaluations in the second phase of the split and merge 
are offset by the increased search space in the DP search. 
Finally, we should notice that the fast classification scheme 
has only a small effect when a DP search is used. 

A fast suboptimal search for the JSR problem is justified 
if the solutions it provides are not far from the global opti- 
mum. Starting with a uniform initial segmentation near the 
bottom of the tree, we found that the split and merge search 
had almost identical performance to the DP search, without 
and with the bigram probabilities. The results on our small 
test set are summarized in Table 1, counting substitutions 
and deletions as errors in percent correct and with accuracy 
defined to be 100% minus the percentage of substitutions, 
deletions and insertions. 

Baseline results and Discussion 
After adjusting the parameters of our recognizer, we tested 
it on the long test set. The results for the split and merge 
algorithm and the dynamic programming search, both us- 
ing bigram probabilities, are shown in Table 2. On the 
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Unigram 

Bigram 

1-Frame DP 
2-Frame DP 

Split & merge 

Segment/Frame 
Score Eval. 

15,000/90,000 
3,750180,000 
750/40,000 

Correct 
/Accuracy 
70.5 / 64.8 
70.6 / 64.9 
69.7 / 64.6 

2-Frame DP 3,750180,000 72.3 / 66.7 
Split & merge 950160,000 71.9 / 66.7 

Table 1: DP - Split and Merge comparison 

full 61 TIMIT symbol set our recognition rate is 60% cor- 
rect/54% accuracy. On the reduced symbol set, our baseline 
result of 70% correct/64% accuracy compares favorably with 
other systems using context independent models. For exam- 
ple, Lee and Hon [5] reported 64% correct/53% accuracy 
on the same database using discrete density HMMs. Their 
recognition rate increases to 74% correct/66% accuracy with 
right-context-dependent phone modelling. Lately, Robinson 
and Fallside [8] reported 75% correct/69% accuracy using 
connectionist techniques. Their system also uses context in- 
formation through a state feedback mechanism (left context) 
and a delay in the decision (right context). 

In conclusion, we achieved the main goal of this work, 
a significant computation reduction for connected phone 
recognition using the SSM with no loss in recognition per- 
formance. Our current recognition rate is close to that of 
systems that use context dependent modelling. However, we 
expect to achieve significant additional improvements when 
we incorporate context information and time correlation in 
the segment model. 
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Correct 
Substitutions 
Deletions 
Insertions 
Accuracy 

Split & Merge DP search 
69.7% (22,285) 
19.8% (6,339) 
10.5% (3,350) 
6.0% (1,905) 

63.7% 

70.0% (22,387) 
19.9% (6,350) 
10.1% (3,237) 
5.8% (1,868) 

64.2% 

Table 2: Baseline results 
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