
Hardware for Hidden Markov-Model-Based, Large-Vocabulary 
Real-Time Speech Recognition 

M. Wein t raub ,  G. Chen,  J. Mankoski ,  H. Murve i t  
SRI International 

A. StSlzle, S. Narayanaswamy,  P. Schrupp ,  B. Richards ,  J. Rabaey,  R. Broder sen  
University of California, Berkeley, CA 

A b s t r a c t  

SRI and U.C. Berkeley have begun a cooper- 
ative effort to develop a new architecture for 
real-time implementation of spoken language 
systems (SLS). Our goal is to develop fast 
speech recognition algorithms, and support- 
ing hardware capable of recognizing continu- 
ous speech from a bigram- or trigram-based 
20,000-word vocabulary or a 1,000- to 5,000- 
word SLS. 

1 I n t r o d u c t i o n  

In order to implement a hid- 
den Markov-model-based, real-time, large- 
vocabulary speech recognition system it is 
necessary to support  the most time-critical 
parts of the algorithm in custom VLSI hard- 
ware. For systems with 20,000 words and 
more it is also necessary to have algorithmic 
support  to reduce the amount  of computa- 
tions that  have to be done. 

Our first version of real-time speech recog- 
nition hardware [1] was targeted for sys- 
tems with up to 3,000 words. It continu- 
ously processed all the states of the Markov 
model that  describe the vocabulary words, 
even states that  are not likely to fit to the 
speech that  has to be recognized. However, 
for larger systems (20,000 words and more) it 

is necessary to perform a pruning algorithm 
such that  only states with a high probabil- 
ity are processed. Nevertheless, it is desir- 
able to process as many states as possible 
to reduce the risk that  meaningful states are 
pruned. Our first hardware version used dy- 
namic memories with an access cycle time of 
200 ns, and since accessing memory is the 
crucial bottleneck of the system, not more 
than 5,000 states per frame could be pro- 
cessed. Other shortcomings were that  the 
board design turned out to be very compli- 
cated: at the end of each frame most of the 
memories had to be flipped between proces- 
sors. Since these memories also had to be 
accessed by the host processor, about  50% of 
the board area was used just for multiplexing 
the buses. In addition, the grammar  pro- 
cessing system was implemented with cus- 
tom hardware such that  only systems with a 
statistical bigram grammar  [1] could be sup- 
ported. 

This paper describes a new system that  
implements pruning and is capable of pro- 
cessing up to 20 million active states per 
second. Assuming that  a frame has a du- 
ration of 10 ms and a phoneme is modeled 
with three states, a vocabulary word is mod- 
eled with an average of six phonemes, 50% 
of the vocabulary words are active at any 
given frame and that  one third of the phones 

82 



in these words are active, the new system 
can perform in real time for vocabulary sizes 
of up to 60,000 words. It also contains cus- 
tom hardware to support grammar process- 
ing routines that are common to a whole vari- 
ety of grammar models. Thus, grammar pro- 
cessing or natural language processing can 
be implemented on a general-purpose pro- 
cessor that uses the custom hardware for the 
time-critical part. To ease the system design 
and to reduce the memory requirements, we 
use a switching processor architecture and a 
caching scheme to preload only a small sub- 
set of the model parameters at a given frame. 
The new hardware contains 14 custom VLSI 
processors that access fast static memories 
with cycle times of 20 MtIz. 

2 A r c h i t e c t u r e  

Fig. 1 shows the overall architecture of the 
recognition hardware. The phone process- 
ing system updates the state probabilities us- 
ing the Viterbi algorithm, while the grammar 
processing system takes care of the transition 
between phones. The communication be- 
tween these subsystems is done using "gram- 
mar nodes". Associated with a grammar 
node is a probability that gives the proba- 
bility function that a phone starts (source 
grammar node) or that a phone ends (desti- 
nation grammar node). These nodes are not 
states in the hidden Markov model, which 
means, a transition into a grammar node 
does not consume a frame delay, and they 
do not output a speech segment. Their pur- 
pose is solely to formalize the communication 
between the subsystems. 

The grammar subsystem multiplies the 
destination grammar node probabilities 
(DGNP) with transition probabilities to 
source grammar nodes (see Fig. 1). The 
source grammar node probability (SGNP) of 
a certain phone is the maximum probability 
of all the incoming transitions. 

The recognition hardware is partitioned 
according to Fig. 2: The phone processing 
system and the part of the grammar sys- 
tem that computes the best SGNP is imple- 
mented on a custom board using application- 
specific integrated circuits. The compu- 
tation of the product of the DGNP with 
the transition probability is performed on 
general-purpose hardware. Thus, different 
algorithms to dynamically derive the tran- 
sition probabilities between phones can be 
implemented on the general-purpose hard- 
ware while the computationally most inten- 
sive part of the grammar system, finding the 
best SGNP, can be done with custom VLSI 
hardware. 

Fig. 3 shows the overall architecture of the 
custom board. At any given frame two pro- 
cesses, each implemented with three custom 
VLSI processors, are operating in parallel. 
One process computes the state probabilities 
of active phones that are listed in the Ac- 
tiveword Memory (Viterbi process) while the 
other process generates a list of active phones 
for the next frame (ToActiveWord process). 

2.1 V i t erb i  process  

The Viterbi process sequentially reads active 
phones from the ActiveWord Memory and 
computes their state probabilities. Based on 
a pruning threshold derived from the best 
state probability of that current frame, the 
Viterbi process decides whether the phoneme 
should stay active in the next frame and/or  
whether it has a high probability to end so 
that succeeding phonemes can be activated. 
Based on this decision, information associ- 
ated with this phone is sent to the ToAc- 
tiveWord processor and/or  to the general- 
purpose grammar processor. To prevent 
arithmetic overflow, the Viterbi process also 
normalizes probabilities based on the best 
state probability of the previous frame. 

83 



Phone System 

Destination 
Grammar Node 

Probability 

J 

Source 
Grammar Node 

Probability 

Grammar System 

. ' ' " "  ~ ~ ~ . . . .  " - /  Source Destination 
/" x ~ ~ "  ~ ~ ": Gramm~Node Grammar Node 

/ 
',,X,J' " ~ ' < , , ~ . ~ . ~ - ~  " ~ , -J  ,' Probability Probability 

Figure 1: Basic Architecture of the Speech Recognition Hardware 

°/• 

/ 
/ 

\., 

f m 

.: / \ 

P h o n e  S y s t e m  G r a  .. ar S y s t e m  
I • t 

. I  . j l  

Full 
Custom 
Board 

t 
I 

! 
# 

i 
/ 

i / 
j "  

General- 
Purpose 
Boards 

Figure 2: Hardware Partition 

84 



The model parameters that  describe the 
topology of phonemes are partitioned into 
two memories. One memory is located on the 
prob and the back processor (see Fig. 3) and 
describes the graph of the hidden Markov 
chain for certain prototype phonemes. This 
description can span up to 128 states, par- 
titioned into up to 32 prototype phonemes. 
The other memory is an off-chip static mem- 
ory that  contains the transition probabilities 
of up to 64,000 unique phonemes. Thus, the 
topology of a phoneme is defined with a 5- 
bit value to indicate the graph and a 16-bit 
address that  specifies the transition proba- 
bilities. 

To reduce the memory bandwidth the pro- 
cessors contain a dual-ported register file to 
cache the state probabilities of the previous 
frame (see [1]). 

2 .2 T o A c t i v e W o r d  p r o c e s s  

The ToActiveWord process has two inputs: 
it gets information from the Viterbi process 
associated with phones that  were active in 
the current frame and should stay active in 
the next frame. The other input is from the 
grammar  processor that  gives information 
about phonemes that  are newly activated be- 
cause their predecessor phonemes had a high 
probability to end. Given these inputs, the 
ToActiveWord process generates a list of ac- 
tive phonemes for the next frame. A certain 
phoneme can be activated several times be- 
cause it might be activated by the grammar  
processor as well as by the Viterbi process. 
Also, the grammar  processor could activate 
the phoneme several times, especially if it 
is the first phoneme of a word with several 
predecessor words that  have a high probabil- 
ity to end. To avoid replication in the Ac- 
tiveWord Memory, the ToActiveWord pro- 
cess merges all these different instances of an 
active phoneme into one, based on the best 
probability that  this phone starts. 

2 .3  C a c h i n g  m o d e l  p a r a m e t e r s  

To decrease the amount  of memory on the 
system board, we use a caching scheme for 
the output  probabilities, the parameters with 
the biggest storage requirements: only a 
small subset of these parameters- the  sub- 
set that  corresponds to the output  probabil- 
ities for a given speech segment-are loaded 
onto the board. This loading operation is 
overlapped with the processing of the frame 
whose output  probabilities had been down- 
loaded in the previous frame. With this ap- 
proach it is possible to use different mod- 
eling techniques for computing the output  
probability distributions. The current ap- 
proach is to use as many as four indepen- 
dent discrete probability distributions that  
are stored and combined on the "Output  
Distribution Board." Other modeling ap- 
proaches such as continuous distributions 
and tied mixtures are also possible, as long 
as the probabilities can be computed and 
loaded in real time. 

2 .4  S w i t c h i n g  p r o c e s s o r s  

A frame is processed if the Viterbi process 
finished the computat ion of the state proba- 
bilities of the active phones in the Active- 
Phone Memory and if the ToActiveWord 
process finished the generation of the list 
of active phones for the next frame. Con- 
ceptually, the ActiveList Memories as well 
as the memories containing the state proba- 
bilities have to be swapped before the next 
frame can be processed. However, instead of 
swapping the memories, we activate a sec- 
ond set of processing elements that  are con- 
nected to the memories in the right way. Fig. 
4 sketches this principle. During frame A 
the ToActiveWord process A is active and 
builds up the ActiveWordMemoryA. Simul- 
taneously, ViterbiB is active and processes 
the active phonemes listed in the Active- 
WordMemoryB. In the next frame, ViterbiB 

85 



AcUveWord 
Memory 

sequential 
list of 
active 

phonemes 

AcUveWord 
Memory 

El El El I 
ViM'hi , r o c e s s  

To / From Grammar 

J E! El LJ L 
] .oAc..wo.,,__ I" 

ActlveWord 
Memory A 

acCuSal 
list of 
ac(ive 

phonemes 

ActlveWord 
Memory B 

l~obabflity 
Me~iorLe s TableA 

H E-t,g!.g' F 
H .E!,,,g!.g, i -- 

.I E l  ILl E l  L 
] r . ,_ . ,  ..... I 

I%°°"11 - I " 

Figure 3: Basic Architecture of the Phone 
Processing System 

Figure 4: Switching Processors 

and ToActiveWordA are inactive and Viter- 
biA and ToActiveWordB are active. This 
way, no multiplexors are needed to swap 
memories. All that is required is to activate 
the right set of processors. This approach 
also has the advantage that the complete sys- 
tem is symmetric: the subsystem that has 
the elements A is identical to the subsystem 
with elements B. 

3 Implementation 

All the memories on the system are accessible 
by the host CPU via VME bus. To reduce 
the number of discrete components on the 
system, the host CPU communicates only to 
the custom VLSI processors. These proces- 
sors have a small instruction set to read and 
write memories and internal status registers. 
Using this approach, no address or data bus 

has to be multiplexed. 

The testing strategy for the custom proces- 
sors is scanpath testing. Individual chips can 
be tested by using a generic scantest setup, 
or they can be tested on the board by using 
the existing VME interface. A dedicated on- 
chip test controller supervises this VME test 
mode so that even the VME interface con- 
troller can be tested. This way, every state 
on the complete board (except the test con- 
troller itself) is observuble and controllable 
without a change of hardware. 

The board has two copies of six generic 
VLSI processors that implement the ToAc- 
tiveWord and Viterbi processes. The chips 
were designed with the Berkeley LagerIV sili- 
con assembly system [2] and are currently un- 
der fabrication using a 2-#m CMOS technol- 
ogy. The table below summarizes the statis- 
tics for the processors. 

86 



V L S I  C u s t o m  processors  
name transist. I size [mm2] I Pads 

Viterbi chipset: 
Prob i 57,000 12.1x12.2 204 
Back 38,000 11.2x11.8 204 
Add 12,000 10.5x10.5 204 

ToActiveList chipset: 
Request 27,000 10.5x11.2 204 

GndProb 5,530 4.9 x 5.6 83 
Data 15,700 11.2x10.5 204 

HS_Int 19,800 6.7 x 5.8 108 
31,900 6 .9x7 .4  130 SHAnt 

4 S t a t u s  and  f u t u r e  w o r k  

All the chips listed have been designed and 
verified. They are currently being fabricated 
through MOSIS using a 2-#m CMOS pro- 
cess. We have received some of the chips 
back, and are currently testing them and 
building the two custom boards. After com- 
pleting the construction of the current hard- 
ware design, we will be developing software 
tools to support this architecture, and to run 
recognition experiments and real-time sys- 
tems. 

Once we have completed the construction 
of the first system, we will evaluate the cur- 
rent architecture to determine the computa- 
tional and algorithmic bottlenecks. To fully 
use the capabilities of this design we will be 
developing a large vocabulary recognizer to 
run on this board. A major area of research 
will be the design and implementation of al- 
gorithms for real-time grammar processing 
computation, since these parts of the system 
will be running on general-purpose CPUs 
(TMS320C30s communicating with SUNs). 

recognition for large vocabularies in real 
time. The system will be at least by a factor 
of 50 more powerful than existing solutions. 

R e f e r e n c e s  

[1] 

[2] 

J. Rabaey, R. Brodersen, A. StSlzle, 
S. Narayanaswamy, D. Chen, R. Yu, 
P. Schrupp, H. Murveit, and A. Santos, 
VLSI Signal Processing III, chapter A 
Large Vocabulary Real Time Continuous 
Speech Recognition System, pages 61-74, 
IEEE Press, 1988. 

C. S. Shung, R. Jain, K. Rimey, E. Wang, 
M. B. Srivastava, E. Lettang, S. K. Azim, 
P. N. Hilfinger, J. Rabaey, and R. W. 
Brodersen, An Integrated CAD Sys- 
tem for Algorithm-Specific IC Design. In 
22nd Hawaii Int. Conf. System Science 
(HICSS-22), January 1989. 

5 C o n c l u s i o n  

We have presented a novel architecture that 
uses full custom integrated circuits to per- 
form hidden Markov-moddel-based speech 

87 




