
A C S R - N L I N T E R F A C E S P E C I F I C A T I O N
Vers ion 1.51

Douglas B. Paul
Lincoln Laboratory, MIT

Lexington, MA 02173

Advisory Committee:
Janet Baker, Charles Hemphill, Lynette Hirschman

A B S T R A C T

Spoken Language Systems will require integration of continuous speech recognition and natural
language processing. This is a proposed specification for an interface between a continuous speech
recognizer (CSR) and a natural language processor (NLP) to form a spoken language system.
Both components are integrated with a stack controller and contribute to the search control. The
specification also defines a "Top-N" mode in which a "first part" outputs a list of top N scored
sentences for postprocessing by a "second part". An additional use for this specification might
be NLP evaluation testing: a common simulated CSR could be interfaced to each site's NLP to
provide identical testing environments.

1 I N T R O D U C T I O N

This is a proposed specification for an interface between an acoustic matcher, such as a Hidden
Markov Model (HMM) Continuous Speech Recognizer (CSR), and a grammatical component such
as a natural language parser (NLP). Its purpose is to allow independently developed CSR and NLP
systems to be interconnected by a well specified and well structured interface. It can also be used
to provide a simulated SLS environment for developing a CSR or NLP by providing an interface to
a simulator of the other component. After initial independent component development has been
completed, the interface specification will guarantee that the real components can be interconnected
for operation or joint development. It might also be used for NLP evaluation testing by providing
a common (simulated) acoustic recognizer to use in conjunction with the NLPs under test.

The fundamental purpose of this specification is to provide an interface specification for connecting
the two components so that independent sites can join their modules together. I t is hoped that
sites which can produce both components internally will consider this specification on its own merit
and the potential value of being able to interface to modules developed at other sites.

1This work was sponsored by the Defense Advanced Research Projects Agency.

203

This specification provides for two modes of operation: integrated and decoupled. In the integrated
mode, both the CSR and the NLP contribute to the search control. If (or when) the CSR and NLP
technologies are sufficiently mature, this will probably be the preferred mode. The decoupled mode
allows the CSR component to output a list of possible sentences with acoustic match likelihoods.
The NLP can then process this list as it sees fit. Since information flow in the decoupled mode
is strictly feed-forward, no NL information is available to help constrain the search in the CSR
component.

The specification contains overall control architecture and interface definitions. The resulting sys-
tem consists of a combined stack-controller/CSR (SC-CSR) and NLP interconnected by UNIX
pipes. Simulators for each component will be provided to allow sites which are developing only one
of the components to work within the context of a full SLS system and to allow sites which are
developing both components to perform independent development of both modules if they so wish.

The basic algorithmic constraints required by this interface are fairly mild: the interprocess interface
uses UNIX pipes, and both the CSR and NLP components operate left-to-right on their respective
input data. (However, the decoupled mode allows the NLP to use non-left-to-right strategies such
as island-driven. The decoupled mode may increase the CPU requirements of the overall system.)

The original idea and the definition of this interface is the work of D. Paul. An Advisory Commit tee
of both NL and CSR people has reviewed the proposal from both viewpoints. The committee
members are:

Janet Baker Dragon Systems
Charles Hemphill TI
Lynette Hirschman UNISYS

The comments of these committee members have been very useful to the author. However, their
membership does not imply agreement with all provisions of this specification. A draft has been
distributed to all sites in the DARPA SLS program for comment before its presentation at the
October 1989 meeting.

1.1 The Basic S y s t e m Concept

The basic concept requires three parts:

1. A stack controller (similar to the IBM stack decoder). The "stack" is a sorted list of partial
theories.

2. A CSR capable of evaluating the probability of the acoustic data for a given left sentence
fragment.

3. An NLP capable of evaluating the probability of a given left sentence fragment.

The basic system operation is:

1. The stack controller starts with a null theory.

2. Take the most probable partial theory (left sentence fragment) off the stack.

204

.

.

If this theory consumes all acoustic data and is a full sentence, this is the recognized sentence.
Terminate. (If more than one hypothesized sentence is desired, continue until a sufficient
number of sentences axe output . This is Top-N mode, see Sec. 2.5.)

For each possible succeeding word, add the word to the theory, ask the CSR for the acoustic
probability, ask the NLP for the grammatical probability, and insert the new theory into the
stack at a position determined by a combination of the probabilities. ("Fast matches" can he
used to limit the number of succeeding words in order to reduce the search space.) Note: In
general, the CSR probabilities are distributions over time.

5. Repeat from 2.

Stack
Controller

~Output V

Figure h The conceptual system.

The above is an implementation of a "uniform" [2] search, which will find the correct (most prob-
able) answer far to slowly to be practical. A more efficient version is outlined below.

2 D E T A I L E D C O N C E P T S

2 . 1 A B e t t e r L i k e l i h o o d F u n c t i o n

The uniform search is inefficient because it delays extension of the longer theories while it extends
the shorter (poorer) theories. Instead, an approximation to an "A*" search [1,2] will be used. This
uses a likelihood function which gives much better comparisons between theories of varying lengths
and results in a much more efficient search. If properly implemented, it is an admissible search
(i.e., it is guaranteed to find the best path.) In practice, it may not be possible to compute some
of the parameters so that the required approximations may compromise the guarantee. (In fact,
intentionally using incorrect parameters can further reduce the search space and one may trade off
computat ion for search error risk--see below.)

205

One way of implementing the A* search is to use the difference between the actual log-probability
of reaching a subgoal and an upper bound upon that log-probability as the search control function.
A reasonably good upper bound may be computed for the CSR component, N-gram languages
and, hopefully, also for NL grammars. (In practice, estimates for the upper bound might have to
be used.) This likelihood function can be evaluated in a strictly left-to-right fashion and thus the
search may begin before the end of the acoustic data is found.

Thus, the basic costs used here will be log likelihoods (i.e., the difference between the upper bound
log probability and the actual log probability). (The term cost as used here is more like value:
high is good and low is bad.) The stack likelihood function should also include some extra control
parameters:

stack_likelihood = CSR_likelihood + a ' l eng th + fl*NLP_likelihood + gamma*nr_words
where a is an acoustic length penalty

length is the amount of acoustic data covered by the theory
is a grammar weight

7 is a word insertion penalty
and nr_words is the number of words in the theory.

a controls the width of the search: a > 0 will encourage the longer theories and thus reduce the
search and a < 0 will penalize the longer theories and thus increase the search. Since length of
the entire acoustic input is is a constant across all theories, a cannot alter the relative likelihood
of a complete theory- -bu t it can prevent the best theory from being found first if it is too large.
(This is, in effect, a pruning error.) fl controls the relative weights of the acoustic and grammatical
evidence. 7 controls the relative number of insertion and deletion errors. In a perfect A* search,
both CSR_likelihood and NLPJikelihood would be less than or equal to zero.

By manipulat ing these parameters and the likelihoods returned by the CSR and NLP, it is possible
to implement a wide variety of search strategies including uniform and A*. This interface is
capable of operating with any of this range of strategies--the best one is a function of the CSR
and NLP algorithmic sophistication and the allowable amount of computation. Finding the best
set of likelihood function parameters is an optimization which can only be performed when the
components are integrated into a complete SLS.

2.2 P a r t i a l T h e o r y M e m o r y

Memoryless CSR and NLP components as used in 1.1 are inefficient because they require recom-
putat ion of the embedded left sentence likelihoods. Thus, both the CSR and the NLP will cache
the partial theories and the information required to efficiently compute any extensions of those
theories. The theory identifiers will have a one-to-one correspondence with the theories.

An alternative would be to store all partial theory information on the stack. This would allow
an "almost memoryless" CSR and NLP. This scheme has been rejected for the present, due to its
communications overhead. It might be useful in a later version for a loosly-coupled multi-processor
environment. (See Sec. 3.2.)

206

2.3 S tochas t i c G r a m m a r s

Likelihoods (which are, of course, based upon probabilities) are the common language for communi-
cation between the two modules and the search control. Thus, grammars which give the probability
of a full or partial sentence provide much more information to the combined CSR-NLP system than
grammars which just accept or reject a sentence. The simple strategy of estimating the probability
of a word as 1/(nr of possible words at this point) may or may not be useful. (It does not help
the Resource Management word-pair grammar when used in our CSR.) A much better first cut at
a stochastic grammar would be to use N-gram probabilities on top of an "accept-reject" grammar.
In the long run, the probabilities should be integrated into the NL grammar, but the first-cut is a
reasonable baseline. (Observe, for instance, IBM's success with purely N-gram grammars [1].)

The control scheme used in this proposed specification is tolerant: it can handle full probabilities,
branching factor based probabilities, or just acceptance-rejection "probabilities" (i.e., l 's or O's).
Presumably, the more accurate the probabilities, the better the overall performance.

2.4 Fast m a t c h e s

To reduce the search space, both the CSR and NLP will provide fast matches. These matches take
a partial theory and use computationally-efficient methods for providing a quick estimate of the
probabilities of the words which may follow. The lists from both components are combined to give
the stack a list of words for the slower detailed match. The goal here is just to get the correct
word on a small list of candidates. The "fast" probabilities will be used in combining, ordering,
and pruning the list, but not in the stack likelihood function.

Methods for performing acoustic fast matches are currently known. NLP fast matches may or may
not be possible. (Typically, neither will be available in the early stages of module development.)
The interface will still be able to operate, but a wider search and more computation will generally
be required.

2.5 Mul t i p l e O u t p u t Sentences : Top-N M o d e

The stack controller can continue to output sentences in decreasing likelihood order. Thus, the user
may be asked to choose from a short list of outputs if the system cannot choose one sufficiently
reliably.

This mode may also be used to allow non-left-to-right NLP search strategies. The SC-CSR can
operate without a grammar or with a purely stochastic grammar (such as N-gram) to generate a
list of sentences with (stack) likelihoods. The NLP can then add its likelihood contribution and
the best sentence in the list is chosen. (In the case of an accept-reject grammar, the NLP can
simply reject non-grammatical sentences in order until one is accepted.) This decoupled mode will
reduce the overall computation over the coupled mode only if the NLP requires significantly more
computation than the no (or limited) grammar CSR.

This mode may also be used in the tradeoff of search width vs. risk of search error tradeoff. If the
search is narrowed too much by increasing ~, the sentences may be recognized out of (likelihood
function) order. It may be cheaper to run a narrower search and choose the winner later than to

207

run an (empirically) admissible search where the best answer will be output first. Again, these
tradeoffs can only be determined in the context of a complete system.

2.6 S e c o n d S t a g e R e - e v a l u a t i o n or D i s c r i m i n a t i o n

If a second stage re-evaluation of the evidence for the top few sentences is desired, the system can
be operated in Top-N mode. When the Top-N list is full, a re-evaluation may be performed and
the chosen sentence output . This mode only makes sense if a more detailed but greedier or non-
left-to-right acoustic matching algorithm or NLP is used. This is similar to the decoupled mode
mentioned in 2.5, except (hopefully) more accurate re-evaluation is being performed after the initial
evaluation, using the stack. The search then proceeds in three stages: fast-coarse, medium-medium,
and slow-detailed.

2.7 S p e e c h U n d e r s t a n d i n g

Since in speech understanding more than one word sequence can have the same meaning, a mech-
anism has been considered for combining theories. However, such a combination is incompatible
with the Top-N re-evaluations described in 2.5 and 2.6. Once two theories are combined, they
cannot be separated, and it may be necessary to distinguish between them in the re-evaluation.
Thus, such a mechanism is not being included in this version of the interface specification.

The "normal" output of this system is the best word sequence which matches the acoustic and
NL constraints. In addition, a mechanism is included for the NLP to output the meaning of
the recognized sentence. This meaning will be expressed as text (i.e., ascii characters to make it
machine-independent), but its format is undefined by this specification. This will allow the NLP
to feed an interpretation or a parse tree to a later module for execution. For example, a database
query SLS might output in a database query language or it might output a parse tree for later
interpretation into a database query. (Of course, if the SLS is fully integrated into the task, its
explicit output might be ignored--i ts output might be a change of state in the task which may be
observable by the user via other modalities. For instance, a chess-playing system might move the
chess piece and the user would just see the move on the game board.)

2.8 F e a t u r e s

Linguistic features which have acoustic expression (prosodics, beginning of sentence, end of sentence,
etc.) may be attached to words by the NLP. Global features, i.e., features which apply for the entire
sentence, must be stated at the beginning of the sentence (due to left-to-right evaluations). A global
feature is treated as if it is attached to each and every word. There is a mechanism for the CSR
and NLP to exchange feature lists to allow the systems to adapt to each other.

The actual features are undefined by this specification. Only the syntax and mechanisms for
transmission are defined here. The features themselves are just text s t r ings-- they have no meaning
except as interpreted by the CSR and NLP.

208

2.9 Contro l

The stack is the sole controller of the system. It sends out a request to a slave and waits for a
reply. Either slave (i.e., the CSR or NLP) may, in turn, make a request of a helper, but any such
helpers must be slaves of the CSR or NLP. Neither the CSR or NLP nor any helpers may initiate
any action involving the stack.

2.10 Integrat ion o f the Stack and the CSR.

If the system were configured into three separate modules as shown in the figure, it would require
excessive communications overhead. The communications with the NLP are simpler than with the
CSt t - - t ime registration is not an issue for the NLP. Because the CSR must actually return time
distributions (likelihood as a function of time), the stack and the CSR are integrated into a single
stack-controller CSR module (the SC-CSR) to remove the higher bandwidth channel. This causes
no change in the control structure: the stack is still the sole master and the CSR and the NLP are
still its slaves. This also causes no change in the NLP interface.

2.11 S e a r c h A b o r t s

To allow efficient "layered" grammars, the NLP may request a search abort . This abort keeps the
same acoustic da ta bu t re-initializes the stack to its initial state. Thus, a system which first tries a
restrictive grammar and then decides that this grammar is unable to match the input, may abort
the search and try again with a less restrictive grammar. The NLP may request as many aborts
as necessary (although it may be necessary to place an upper limit enforced by the controller to
prevent infinite loops).

2 .12 Errors

Either the CSR or the NLP can make an error reply to the stack. Four responses are possible: ignore
the error, abort this theory, abort this sentence, or abort the program. The first two responses
have the option of report ing the error, the third and fourth must report the error. (For instance,
in a demo one might wish to suppress error reporting, while in a debugging run, one might want
to see all of the errors.) A possible cause for non-fatal errors might be features which are only
implemented for some phones in the CSR.

2.13 C o m m e n t s

Either the SC-CSR or the NLP may place comments onto the pipe interface. These comments
will be ignored by the modules. Their only purpose is to place additional information into the
communication streams for debugging or demonstrat ion purposes.

209

3 T H E A R C H I T E C T U R E

3.1 T h e P h y s i c a l C o n n e c t i o n

Logically, the architecture consists of the three parts listed above: the stack controller (SC), a
CSR, and an NLP. (As described in 2.10, the stack controller will be combined in a single process
with the CSR, but will have the same functionality as if the two were separate.) The SC-CSR
process will communicate with the NLP process via UNIX pipes. (A complete interchange has been
benchmarked at about 1 ms on a SUN 4/260.) Therefore, the two processes need not be written
in the same language and need not even be running on the same machine. (This interchange has
been benchmarked at about 4 ms between a SUN 4/260 and 4/110 on our local Ethernet. Network
overhead would be prohibitive if any number of gateways were involved.) The NLP will receive its
commands on the I /O channel "stdin" and reply on I /O channel "s tdout ' . (Stderr will retain its
usual function.)

The specification as defined here, uses standard (unnamed) pipes. An easy way to make inter-
machine pipes is with the rsh (remote shell) command. (Rsh sets up stdin, stdout, and stderr
such that the network between the machines is invisible,) An alternative is to use sockets. (Pipes
are implemented on some machines using sockets.) Sockets have some advantages, but are more
complex to use. Thus any a t tempt to include sockets in this specification will be delayed until a
clear need is developed. Once the socket-based interconnection is established, the communication
would be the same as in the pipe-based interconnection.

To minimize the communications overhead, the request for detailed matches may be batched in
groups which are extensions of the same theory. Thus the block of commands will be sent from the
SC to to the NLP and the replies will be expected as a block (in corresponding order) when the
NLP is finished. This will be particularly important when two separate machines are used.

3.2 P a r a l l e l P r o c e s s i n g

If the CSR and NLP are implemented on separate machines, they may execute simultaneously--i.e. ,
both may perform a fast match for the same theory, or both may perform the (possibly blocked)
detailed analysis of a theory.

Parallel execution of the CSR or NLP can be performed by removing several theories from the stack
and sending each to a different processor. The difficulty centers on the cached theories which must
be located and t ransmit ted between processors on demand. (If all theory information were stored
on the stack, the CSR and NLP modules would be memoryless and this would not be a problem.
However, all partial theory information would have to be transferred from and onto the stack for
every operation. The overhead would be prohibitive.) Only the form of parallelism described in
the previous paragraph is supported in this version of the specification. If necessary, a later version
could support the second form. Note that the system would eventually bottleneck on the stack
controller.

210

4 T H E D A T A F O R M A T S P E C I F I C A T I O N

4.1 T h e M e s s a g e s

The messages will consist entirely of text in order to make them machine and language independent
and easy to debug. (Appropriate use of hashing and special purpose I /O routines can be used to
minimize the overhead of conversion to and from text.) Both processes will cache partial theories
which will be identified by a positive unordered integer handle (label). Handle "0" will be the null
theory. Communications between the stack-CSR and the NLP will be in a command-reply format.

Features are expressed as "word\{feature-value-pair l feature-value-pair2 \}" and global features
must be asserted at the beginning of the sentence before any words: " \(global-feature-value-pair l
global-feature-value-pair2\} wordl ". The features are not interpreted in any way by the s tack-
they are simply passed as (ascii) text between the CSR and the NLP. (Note: feature=value will
be passed from the NLP to the CSR-- i t will not be interpreted by the stack.) Word features will
override global features which will, in turn, override default features. The actual features are not
defined by this specification.

4.2 D a t a F o r m a t s

Most of the messages are short and can be t ransmit ted as a single line terminated by a "new-line"
character (i.e., a s tandard UNIX single line). Lists are t ransmit ted as a group of lines, one list
i tem per line, and terminated by a blank line. White space shall separate items on a line. All
probabilities and likelihoods are expressed in log base 10, and logl0(0) shall be expressed as "-Inf".
The numbers themselves will be writ ten as [-]x.xxx (C language f format) .

4.3 T o p - N M o d e O u t p u t F o r m a t

Top-N mode will output its sentences in the following format: a likelihood, white space, the sentence
text, and a "new line" per sentence. A blank line terminates the output list. The list may or may
not be in likelihood order. An ordered list will make further processing more convenient, but an
unordered list can be output as soon as each sentence is found to allow parallelism with any later
processing.

211

The list of exchanges is (optional parts are shown as [...], lists are bounded by <. . .>, and control responses
begin with a "V'):

Stack-CSR NL Reply Explanation
ready ver-nr ok Ready to go, protocol version number

features <feature-list> <feature-list> transmit CSR feature list
to NLP
receive NLP feature list from NLP
(lists may be null)
(default null lists)

feature-defaults <feature-list> request list of feature defaults

fastmatch yes/no Does the NLP have a fast match?

reset ok Reset NLP to start state

old-id <new-id word list> <likelihood [\end or \optend] list> append word to old-id, assign to new-id
respond with incremental log-likelihood
the old id appears only on the 1st item
if(\end) must be end of sentence
if(\optend) optional end of sentence

meaning id text-meaning give the meaning of the sentence
(language of text-meaning undefined)

fast id <wd likelihood-list> fast match

purge id ok purge [partial] theory

norm id likelihood get A* normalization prob for id

(any) \abor t abort search, restart with same input

(any) \error react# [explanation] error return from any command
reac t#=0 ignore
following lines are a normal response
r e a c t # = l delete theory
reac t#=2 give up on sentence
reac t#=3 abort program
if present, the explanation is reported

\ # SC-CSR comment \ # NLP comment A comment from either source
has a ' # ' at the start of the line.

"V' is used to introduce anything which must be interpreted as a control word where it might be confused
with a vocabulary word. ("V' itself is written " \ \ ") . All lists are terminated by a blank line.

212

A typical session for the sentence "who is he" might be (the acoustic probabilities do not show at the
interface):

Stack-Controller NL Reply Comments
ready 1.1 ok
features stress
(null-list)

list of features
no features have been agreed upon

reset ok

fast 0 when -1.1
who -3.4
show -2.2
a -2.1

possible first words of sentence

01 when
2 who

-2.4
-1.3

theory "when", (batched command)
theory "who"

fast 2 is -2.2
was -3.4

possible extensions of theory "who"

23 is
4 was

-1.2
-1.5

theory "who is", (batched)
theory "who was"

fast 3 he -2.0
she -2.0

possible extensions of theory "who is"

3 5 h e
6 she

-1.0 \end theory "who is he \end", (batched)
-1.1 \end theory "who is she \end"

(stack now picks 5 and outputs "who is he")

reset ok ready for next sentence

213

5 S I M U L A T O R S

To allow each group to work on its part of the task (CSR or NLP) independently of the other part,
a set of simulators will be used. These simulators will communicate using the protocols specified
above. Both would be designed to be computationally cheap to expedite the developmental work.

The s tack/CSR simulator will be text-driven, use a dictionary and acoustic phoneme models gen-
erated from real speech data to cause errors to be "realistic" and have controls to adjust the error
rates. (NLP evaluation tests could use defined settings of the control parameters.)

The NLP simulator would use an N-gram language model for efficiency. For the Resource Manage-
ment database, the BBN word-pair or BBN class grammar could be used.

6 S U M M A R Y

This specification is an a t tempt to provide a reasonable set of protocols for integrating CSR and
NLP components into a unified structure. We have addressed all issues that we could think of,
but undoubtedly, new issues will arise or some of the decisions made in this version will need to be
changed. The version numbers were included to provide a coherent mechanism for graceful growth
of this interface to meet our future needs.

R e f e r e n c e s

[1] L.R. Bahl, F. Jelinek, and R. L. Mercer, "A Maximum Likelihood Approach to Continuous
Speech Recognition," PAMI-5, No. 2, March 1983.

[2] N. J. Nilsson, "Problem-Solving Methods in Artificial Intelligence" (McGraw-Hill, New York),
1971.

214

