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Abstract 

To study the spoken language interface in the context of a 
complex problem-solving task, a group of users were asked 
to perform a spreadsheet task, alternating voice and 
keyboard input. A total of 40 tasks were performed by each 
participant, the first thirty in a group (over several days), the 
remaining ones a month later. The voice spreadsheet 
program used in this study was extensively instrumented to 
provide detailed information about the components of the 
interaction. These data, as well as analysis of the 
participants's utterances and recognizer output, provide a 
fairly detailed picture of spoken language interaction. 

Although task completion by voice took longer than by 
keyboard, analysis shows that users would be able to per- 
form the spreadsheet task faster by voice, if two key criteria 
could be met: recognition occurs in real-time, and the error 
rate is sufficiently low. This initial experience with a spoken 
language system also allows us to identify several metrics, 
beyond those traditionally associated with speech recog- 
nition, that can be used to characterize system performance. 

Introduction 

The ability to communicate by speech is known to 
enhance the quality of communication, as reflected in 
shorter problem-solving times and general user satis- 
faction [2]. Recent advances in speech recognition 
technology [4] have made it possible to build "spoken 
language" systems that create the opportunity for inter- 
acting naturally with computers. Spoken language 
systems combine a number of desirable properties. 
Recognition of continuous speech allows users to use a 
natural speech style. Speaker independence allows 
casual users to easily use the system and eliminates 
training as well as its associated problems (such as 
drift). Large vocabularies make it possible to create 
habitable languages for complex applications. Finally, 
a natural language processing capability allows the 
user to express him or herself using familiar locutions. 

While the recognition technology base that makes 
spoken language systems possible is rapidly maturing, 
there is no corresponding understanding of how such 

systems should be designed or what capabilities users 
will expect to have available. It is intuitively apparent 
that speech will be suited for some functions (e.g., data 
entry) but unsuited for others (e.g., drawing). We 
would also expect that users will be willing to tolerate 
some level of recognition error, but do not know what 
this is or how it would be affected by the nature of the 
task being performed or by the error recovery facilities 
provided by the system. 

Meaningful exploration of such issues is difficult 
without some baseline understanding of how humans 
interact with a spoken language system. To provide 
such a baseline, we implemented a spoken language 
system using currently available technology and used 
it to study humans performing a series of simple tasks. 
We chose to work with a spreadsheet program since 
the spreadsheet supports a wide range of activities, 
from simple data entry to complex problem solving. It 
is also a widely used program, with a large ex- 
perienced user population to draw on. We chose to 
examine performance over an extended series of tasks 
because we believe that regular use will be charac- 
teristic of spoken language applications. 

The voice spreadsheet system 

The voice spreadsheet (henceforth "vsc") consists 
of the uNIx-based spreadsheet program sc interfaced 
to a recognizer embodying the SPHINX technology 
described in [4]. Additional description of vsc  is 
available elsewhere [6], as is a description of the 
spreadsheet language [9]. 

The recognition component of the voice spreadsheet 
makes use of two pieces of special-purpose hardware: 
a signal processing unit (the USA) and a search ac- 
celerator BEAM. See [1] for fuller descriptions of these 
units. The recognition code is embedded in the 
spreadsheet program, so that the complete system runs 
as a single process. 
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Table  1: Comparison of recognizer performance for on-line and read speech 

word utterances 
Test Set utts words accuracy correct 

Reference (read speech) 

Live Session (complete) 

Live Session (clean speech) 

Live Session (read version) 

99 

406 

366 

366 

491 

1486 

1389 

1389 

93.7 

92.7 

94.9 

94.0 

72.7 

78.9 

85.5 

82.8 

To train the phonetic models used in the recognizer, 
we combined several different databases, all recorded 
at Carnegie Mellon using the same microphone as 
used for the spreadsheet study (a close-talking Sen- 
nheiser HMD-414). The training speech consisted of: 
calculator sentences (1997 utterances), a (general) 
spreadsheet database (1819 utterances), and a task- 
specific database for financial data (196 utterances). A 
total of 4012 utterances was thus included in the train- 
ing set. Table 1 provides some performance data that 
characterize system performance. 

The basic recognition performance ("Reference"), as 
tested on speech collected at the same time as the 
training data, is about what might be expected given 
the known performance characteristics of the SPI-mqx 
system (specifically, 94% word accuracy for the 
perplexity 60 version of the Resource Management 
task). 

The Table also presents recognition performance for 
speech collected in the user study described below 
("Live Session"). The "complete" version shows sys- 
tem performance over 4 sessions representing 4 dif- 
ferent talkers and chosen from about the mid-point of 
the initial 30 task series (details below). Note that this 
set includes utterances that contain various spon- 
taneous speech phenomena that cannot be handled cor- 
rectly by the current system. The "clean speech" set 
includes only those utterances that both contain no in- 
terjected material (e.g., audible non-speech) and that 
are grammatical. Performance on this set is quite 
good, and there is no evidence that mere "spontaneity" 
leads to poorer recognition performance. We can 
verify this equivalence more concretely by comparing 
read and spontaneous speech produced by the same 
talkers. To do this, we asked the four participants 
whose speech comprised the spontaneous test sets to 
return and record read versions of their spontaneous 

utterances, using scripts taken from our transcriptions. 
As can be seen in the Table, performance is com- 
parable for read and live speechl. 

Given that this pattern of results can be shown to 
generalize to other tasks (and there is no reason to 
believe that they would not), the implications of this 
experiment are highly significant: A system trained on 
read speech will not substantially degrade in accuracy 
when presented with spontaneous speech provided that 
certain other characteristics, such as speech rate, will 
be comparable. Note that this only applies to those 
utterances that are comparable to read speech insofar 
as they are grammatical and contain no extraneous 
acoustic events. The system will still need to deal with 
these phenomena. This result is encouraging for those 
approaches to spontaneous speech [10] that deal with 
such speech in terms of accounting for extraneous 
events and interpreting agrammatical utterances. If 
these problems can be solved in a satisfactory manner, 
then we can comfortably expect spontaneous spoken 
language system performance to be comparable to sys- 
tem performance evaluated on read speech. 

A study of spoken language system usage 

To understand how users approach a voice-driven 
system and how they develop strategies for dealing 
with this type of interface, we had a group of users 
perform a series of more or less comparable task over 
an extended period of time and monitored various 

1The slightly better performance with Live speech might s e e m  

counter-intuitive. Examination of specific errors in the Read v e r s i o n  
indicates that one of the speakers read her raated~l at a distinctly 
slower pace than she spoke it spontaneously (we estimate 34% 
slower). The bulk of the excess errors can be accounted for by this 
interpretation. For example, many of the errors are  splits, charac -  

ter is t ic  of slow speech. 
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aspects of system and user performance over this 
period. 

Method 

We were interested in not only how a casual user 
approaches a spoken language system, but also how 
his or her skill in using the system develops over time. 
Accordingly, we had a total of 8 participants complete 
a series of 40 spreadsheet tasks. 

The task chosen for this study was the entry of per- 
sonal financial data from written descriptions of 
various items in a fictitious person's monthly finances. 
An attempt was made to make each version of the task 
comparable in the amount of information it contained 
and in the number of complex arithmetic operations 
required. On the average, each task required entering 
38 pieces of financial information, an average of 6 of 
these entries required arithmetic operations such as ad- 
dition and multiplication. Movement within the 
worksheet, although generally following a top to bot- 
tom order, skipped around, forcing the user to make 
arbitrary movements, including off-screen movements. 

Users were presented with preformatted worksheets 
containing appropriate headings for each of the items 
they would have to enter. In addition, each relevant 
cell location was given a label that would allow the 
user to access it using symbolic movement instructions 
(as defined in [9]). 

The information to be entered was presented on 
separate sheets of paper, one entry to a sheet, con- 
mined in a binder positioned to the side of the worksta- 
tion. This was done to insure that all users dealt with 
the information in a sequential manner and would fol- 
low a predetermined movement sequence within the 
worksheet. To aid the user, the bottom of each sheet 
gave the category heading for the information to be 
entered and, if existing, a symbolic label for the cell 
into which the information was to be entered. 

PROCEDURE AND DESIGN. All participants per- 
formed 40 tasks. The first 30 tasks were completed in 
a block, over several days. The last ten were com- 
pleted after an interval of about one month. The pur- 
pose of the latter was to determine the extent to which 
users remembered their initial extended experience 
with the voice spreadsheet and to what degree this 
retest would reflect the performance gains realized 

over the course of the original block of sessions. Since 
we were interested in studying a spoken language sys- 
tem in an environment that realistically reflects the set- 
tings in which such a system might eventually be used, 
we made no special attempt to locate the experiment in 
a benign environment or to control the existing one. 
The workstation was located in an open laboratory and 
was not surrounded by any special enclosure. 

At the beginning of each session, each participant 
was given a standard-format typing test to determine 
their facility with the keyboard. The typing test 
revealed two categories of participant, touch typists (3 
people) with a mean typing rate of 63 words per 
minute (wpm) and "hunt and peck" typists (5 people), 
with a mean typing rate of 31 wpm. Task modality 
(whether speech or typing) alternated over the course 
of the experiment, each successive task being carried 
out in a different modality. To control for order and 
task-version effects the initial modality and the se- 
quence of tasks (first-to-last v s  last-to-firs0 was varied 
to produce all possible combinations (four). Two 
people were assigned to each combination. 

The participants were informally solicited from the 
university community through personal contact and 
bulletin board announcements. There were 3 women 
and 5 men, ranging in age from 18 to 26 (mean of 22). 
With the exception of one person who was of 
English/Korean origin, all participants were native 
speakers of English. All had previous experience with 
spreadsheets, an average of 2.3 years (range 0.75 to 5), 
though current usage ranged from daily to "several 
times a year". None of the participants reported any 
previous experience with speech recognition systems 
(though one had previously seen a SPHINX demonstra- 
tion). 

Results 

The data collected in this study consisted of detailed 
timings of the various stages of interaction as well as 
the actual speech uttered over the course of system 
interaction. The analyses presented in this section are 
based on the first 30 sessions completed by the 8 par- 
ticipants. 
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Recognition performance and language 
habitability 

To analyze recognizer performance we captured and 
stored each utterance spoken as well as the cor- 
responding recognition string produced by the system. 
All utterances were listened to and an exact lexical 
transcription produced. The transcription conventions 
are described more fully in [8], but suffice it to note 
that in addition to task-relevant speech, we coded a 
variety of spontaneous speech phenomena, including 
speech and non-speech interjections, as well as inter- 
rupted words and similar phenomena. 

The analyses reported here are based on a total of 
12507 recorded and transcribed utterances, comprising 
43901 tokens. We can use these data to answer a 
variety of questions about speech produced in a com- 
plex problem-solving environment. Recognition per- 
formance data are presented in Figure 1. The values 
plotted represent the error rate averaged across all 
eight subjects. 

Figure 1: Mean utterance accuracy across tasks 
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The top line in Figure 1 shows exact utterance ac- 
curacy, calculated over all utterances in the corpus, 
including system firings for extraneous noise and 
abandoned (i.e., user interrupted) utterances. It does 
not include begin-end detector failures (which produce 
a zero-length utterance), of which there were on the 
average 10% per session. Exact accuracy corresponds 
to utterance accuracy as conventionally reported for 

speech recognition systems using the NBS scoring al- 
gorithm [5]. The general trend of recognition perfor- 
mance over time is improvement, though the improve- 
ment appears to be fairly gradual. The improvement 
indicates that users are sufficiently aware of what 
might improve system performance to modify their be- 
havior accordingly. On the other hand, the amount of 
control they have over it appears to be limited. 

The next line down shows semantic accuracy, cal- 
culated by determining, for each utterance, no matter 
what its content, whether the correct action was taken 
by the system 2. Semantic accuracy, relative to exact 
accuracy, represents the added performance that can be 
realized by the parsing and understanding components 
of an SLS. In the present case, the added performance 
results from the 'silent' influence of the word-pair 
grammar which is part of the recognizer. Thus, gram- 
matical constraints are enforced not through, say, ex- 
plicit identification and reanalysis of out-of-language 
utterances, but implicitly, through the word-pair gram- 
mar. The spread between semantic and exact accuracy 
defines the contribution of higher-level process and is 
a parameter that can be used to track the performance 
of "higher-lever' components of a spoken language 
system. 

The line at the bottom of the graph shows 
grammaticality error. Grammaticality is determined 
by first eliminating all non-speech events from the 
transcribed corpus then passing these filtered ut- 
terances through the parsing component of the spread- 
sheet system. Grammaticality provides a dynamic 
measure of the coverage provided by the system task 
language (on the assumption that the user's task lan- 
guage evolves with experience) and is one indicator of 
whether the language is sufficient for carrying out the 
task in question. 

The grammaticality function can be used to track a 
number of system attributes. For example, its value 
over the period that covers the user's initial experience 
with a system indicate the degree to which the im- 

2For example, the user might say "LET' S GO DOWN FIVE", 
which lies outside the system language. Nevertheless, because of 
grammatical constraints, the system might force this utterance into 
"DOWN FIVE", which happens to be grammatically acceptable and 
which also happens to cany out the desired action. From the task 
point of view, this recognition is correct; from the recognition point 
of view it is, of course, wrong. 
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plemented language covers utterances produced by the 
inexperienced user and provides one measure of how 
successfully the system designers have anticipated the 
speech language that users intuitively select for the 
task. Examined over time, the grammaticality function 
indicates the speed with which users modify their 
speech language for the task to reflect the constraints 
imposed by the implementation and how well they 
manage to stay within it. Measurement of gram- 
maticality after some time away from the system in- 
dicates how well the task language can be retained and 
is an indication of its appropriateness for the task. We 
believe that grammaticality is an important component 
of a composite metric for the language habitability of 
an SLS and can provide a meaningful basis for com- 
paring different SLS interfaces to a particular 
application 3. 

Examining the curves for the present system we 
find, unsurprisingly, that vsc is rather primitive in its 
ability to compensate for poor recognition perfor- 
mance, as evidenced by how close the semantic ac- 
curacy line is to the exact accuracy line. On the other 
hand, it appears to cover user language quite well, with 
only an average of 2.9% grammaticality error 4. In all 
likelihood, this indicates that users found it quite easy 
to stay within the confines of the task, which in turn 
may not be surprising given its simplicity. 

SPONTANEOUS SPEECH PHENOMENA. When a 
spoken language system is exposed to speech 
generated in a natural setting a variety of acoustic 
events appear that contribute to performance degrada- 
tion. Spontaneous speech events can be placed into 
one of three categories: lexical, extra.lexical, and 
non-lexical, depending on whether the item is part of 
the system lexicon, a recognizable word that is not part 
of the lexicon, or some other event, such as a breath 
noise. These categories, as well as the procedure for 
their transcription, are described in greater detail in 
[8]. Table 2 lists the most common non-lexical events 

encountered in our corpus. The number of events is 
given, as well as their incidence in terms of words in 

SSystem habitability, on the other hand, has to be based on a 
combination of language habitability, robustness with respect to 
spontaneous speech phenomena, and system responsiveness. 

4Bear in mind that this percentage includes intentional 
agrammaticality with respect to the task, such as expressions of 
annoyance or interaction with other humans. 

the corpus. Given the nature of the task:, it is not 
surprising to find, for example, that a large number of 
paper rustles intrudes into the speech stream. Non- 
lexical events were transcribed in 893 of the 12507 
utterances used for this analysis (7.14% of all ut- 
terances). 

Figure 2 show the proportion of transcribed ut- 
terances that contain extraneous material (such as the 
items in Table 2). This function was generated by 
calculating grammaticality with both non-lexical and 
extra-lexical tokens included in the transcription. As 
is apparent, the incidence of extraneous events steadily 
decreases over sessions. Users apparently realize the 
harmful effects of such events and work to eliminate 
them (conversely, the user does not appear to have 
absolute control over such events, otherwise the 
decrease would have been much steeper). The top line 
in the graphs shows utterance error rate, the percent of 
utterances that are incorrectly recognizer and therefore 
lead to an unintended action; it includes errors due to 
both the presence of unanticipated events and to more 
conventional failures of recognition. The similarity in 
the shape of the two functions suggests that speech 
recognition accuracy is fairly constant across sessions, 
major variations being accounted for by changes in 
ambience (as tracked by the lower curve). 

Figure 2: Incidence of non-lexical events 
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While existing statistical modeling techniques can 
be used to deal with the most common events (such as 
paper rustles) in a satisfactory manner (as shown by 
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Table 2: Frequency and incidence of (some) non-lexical spontaneous speech tokens. 

1.332 585 ++RUSTLE+ 0.009 4 ++PHONE-RING+ 
0.469 206 ++BREATH+ 0.009 4 ++NOISE+ 
0.098 43 ++MUMBLE+ 0.009 4 ++DOOR-SLAM+ 
0.041 18 ++SNIFF+ 0.009 4 ++CLEARING-THROAT+ 
0.029 13 ++BACKGROUND-NOISE+ 0.009 4 ++BACKGROUND-VOICES+ 
0.025 Ii ++MOUTH-NOISE+ 0.005 2 ++SNEEZE+ 
0.022 i0 ++COUGH+ 0.002 I ++SIGH+ 
0.013 6 ++YAWN+ 0.002 1 ++PING+ 
0.011 5 ++GIGGLE+ 0.002 1 ++BACKGROUND-LAUGH+ 

Note: The 
token. 

first column given the percentage and the second column the actual number of tokens for the given non-lexical 

[10]), more general techniques will need to be 
developed to account for low-frequency or otherwise 
unexpected events. A spoken language system should 
be capable of accurately identifying novel events and 
dispose of them in appropriate ways. 

The  time it takes to do th ings 

Of particular interest in the evaluation of a speech 
interface is the potential advantages that speech offers 
over alternate input modalities, in particular the 
keyboard. On the simplest terms, a demonstration that 
a given modality provides a time advantage is a strong 
a priori  argument that this modality is more desirable 
than another. 

Q 
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Figure 3: Total task completion rime 
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AGGREGATE TASK TIMES. The total time it takes to 
perform a task is a good indication of how effectively 
it can be carried out in a particular fashion. Figure 3 
shows the mean total time it took users to perform the 
spreadsheet tasks. As can be seen, keyboard entry is 
faster. Moreover, the time taken to perform a task by 
keyboard improves steadily over time. The com- 
parable speech time, while improving for a time, 
seems to asymptote a level above that of keyboard 
input. Since the tasks being performed are essentially 
(and over individuals, exactly) the same, we must infer 
that the lack of improvement is due in some fashion to 
the nature of the speech interface. 

The reasons for this become clearer if we examine 
in greater detail where the time goes. The present 

implementation incurs substantial amounts of system 
overhead that at least in principle could be eliminated 
through suitable modifications. Currently, sizable 
delays are introduced by the need to initialize the 
recognizer (about 200 ms), to log experimental data 
(about 600 ms), and by the two times real-time perfor- 
mance of the recognizer. What would happen if we 
eliminate this overhead? 

If we replot the data by subtracting these times, but 
retaining the time taken to speak an utterance, we find 
that the difference between speech and keyboard is 
reduced, though not eliminated (see Figure 4). This 
result underlines the probable importance of designing 
tightly-coupled spoken language systems for which the 
excess time necessary for entering information by 
speech has been reduced to a value comparable to that 
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found for keyboard input. In a personal workstation 
environment this would essentially have to be nil, and 
we believe represents a minimum requirement for suc- 
cessful speech-based applications that support goal- 
directed behavior. 

There is an additional penalty imposed on speech in 
the current system--recognition error. In terms of the 
task, the only valid inputs are those for which the ut- 
terance is correctly recognized. If an input is incor- 
rect, it has to be repeated. We can get an idea of how 
fast the task could actually be performed ff we dis- 
count the total task time by the error rate. That is, if a 
task is presently carried out in 10 min, but exhibits a 
25% utterance error, then the task could actually have 
been carried in 7.5 min, had we been using a system 
capable of providing 100% utterance recognition. 
Figure 4 compares total task time corrected by this 
procedure. If we do this, we find that the amount of 
time taken to carry out the task by voice is actually 
faster than by keyboard. 

Finally, we can ask what level of recognition perfor- 
mance is necessary for speech to equal keyboard input. 
Given that the mean task time over 15 sessions for 
keyboard is 448 ms and that the mean task time for the 
"real-time" adjustment is 528 ms, then we can estimate 
that a 15% error rate (a halving of the current rate) will 
produce equivalent task completion times for speech 
and keyboard. We believe that this goal is achievable 
in the near term. 

The above speculations are, of course, exercises in 
arithmetic and cannot take the place of an actual 
demonstration. We are currently working towards the 
goals of creating a true real-time implementation of 
our system and on improving system accuracy. 

TIME FOR INDIVIDUAL ACTIONS. The tasks we 
have chosen are very simple in nature and can be 
decomposed into a small number of action classes (see 
[9]). Our detailed logging procedure allows us to ex- 

amine the times taken to perform different classes of 
actions in the spreadsheet task. In the following 
analysis, we will concentrate on the three classes that 
allow the user to perform the two major actions neces- 
sary for task completion, movement to a cell location 
and entry of numeric data. 

Movement actions. Examination of the movement 
data shows that users adopt very different strategies 

Figure 4: Adjusted total task completion time 
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for moving about the spreadsheet, depending on 
whether they are using keyboard input or speech input. 
As Figure 5 shows, when in typing mode users rely 
heavily on relative motion (the "arrow" keys on their 
keyboard). In contrast, users use symbolic and ab- 
solute movements in about the same proportion when 
in speech mode. A detailed discussion of the reasons 
for this shift are beyond the scope of this paper. 
Briefly stated, the strategy shift can be traced to the 
presence of a system response delay in the voice con- 
dition. Delays affect the perceived relative cost of the 
two movement actions, making absolute and symbolic 
movements more attractive. A more thorough presen- 
tation, with additional experimental data, can be found 
in [7]. 

Figure 6 shows the total time taken by movement 
instructions within each modality. Surprisingly, voice 
movement commands take less overall time than 
movement commands in keyboard mode, at least in- 
itially. As the user refines his or her task skills, total 
keyboard movement time overtakes the voice time. 
Voice time initially also improves, but eventually ap- 
pears to asymptote, very likely because of a floor im- 
posed by the combination of system response and 
recognition accuracy. These data appear to support, at 
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the very least, the assertion that total movement time is 
comparable for the two modalities and that spreadsheet 
movement can be carried out with comparable ef- 
ficiency by voice and by keyboard. Of course, con- 
temporary workstations make available alternate op- 
tions for movement. The hand-operated mouse is one 
example, which might prove to be more efficient for 
some classes of movement. A controlled comparison 
of speech and mouse movement would be of great in- 
terest, but lies beyond the scope of the current study. 

Figure 6: Total time for movement actions 
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Number Entry. The input time data for number 
entry (or more properly numeric expression entry, 
since the task could require the entry of arithmetic ex- 
pressions) clearly show that speech is superior in terms 
of time. As seen in Figure 7 (which shows the median 
input time for entry commands) the advantage is ap- 
parent from the beginning and continues to be main- 
tained over successive repetitions of the task. 

Figure 7: Median numeric input time 
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The advantage for speech entry can be due to a 
number of reasons. First, it may be faster to say a 
number than to type it (a digit-string entry experiment 
[3] shows that the break-even point occurs between 3 

and 5 digits). Second, when working from paper notes 
(a probably situation for this task in real life), users do 
not need to shift their attention from paper to keyboard 
to screen when speaking a number. They would have 
to do so if they were typing, particularly if they are 
hunt-and-peck typists. Data supporting this interpreta- 
tion can be found in [3]. 

Of course, we should not lose sight of the fact that 
the current implementation produces longer total task 
times for speech than for keyboard and that this system 
cannot show an overall advantage for speech input. 
Nevertheless, it clearly demonstrates that component 
operations can be at least as fast and in some cases 
faster than keyboard input. These characteristics will 
only be observed in the complete system when system 
response and recognition accuracy attain critical 
levels. 
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Discussion 

The results obtained in this study provide a valuable 
insight into the potential advantages of spoken lan- 
guages systems and allow us to identify those aspects 
of system design whose improvement is critical to the 
usability of such systems. Furthermore, this study lays 
out a framework for the evaluation of SLS perfor- 
mance, identifying a number of useful diagnostic 
metrics. 

Sys tem characteristics 

Although we found that total task time was greater 
for speech input than for keyboard, this was not due to 
any intrinsic deficit for voice input. In fact, if we 
examine the component actions performed by the user, 
we find that they could be completed faster by voice 
than by typing. The failure of the speech mode to 
achieve greater throughput can be attributed to two 
shortcomings of our spoken language system. 

A time penalty is imposed by our current implemen- 
tation, which processes speech at about 2 times real- 
time and incorporates a substantial overhead. The 
penalty is reflected not only in longer task times, but 
also in changes to user strategies. Fortunately, real- 
time performance can be achieved with a suitable im- 
plementation and sufficient hardware resources. We 
are currently reimplementing our system on a multi- 
processor computer and expect to achieve sub-real- 
time performance in the near future. 

While speed is a tractable problem, low accuracy is 
less so. We can expect to improve utterance recog- 
nition on the order of 10% if we properly model ex- 
traneous events, but even if we do so, recognition per- 
formance may still be at a level that significantly inter- 
feres with task performance. Judging from Figure 4, it 
may be sufficient to provide a moderate improvement 
in recognition accuracy, which together with real-time 
recognition would be sufficient to allow a spoken lan- 
guage system to perform at a level equivalent to a 
keyboard system. 

Evaluation methodology 

The present study also provides a strong basis for 
the development of exact evaluation techniques for 
spoken language systems. 

The results of this study make it appar~mt that ut- 
terances are the key unit of analysis for SLS perfor- 
mance evaluation. The success or failure, of a par- 
ticular transaction depends on whether the system cor- 
rectly interprets the user's intention, as expressed by 
that utterance. Utterance misinterpretation impacts 
one of the critical measures of task efficiency, the time 
it takes to complete a task. Word accuracy, while a 
useful metric, cannot be used to accurately charac- 
terize system performance. 

We have described three utterance-level metrics that 
we believe are necessary for a full characterization of 
SLS performance. 

Exact accuracy tracks the performance of the 
speech recognition component and reflects both the 
ability to identify words and the ability to deal with 
certain classes of extraneous non-lexical events. Exact 
accuracy is therefore a measure of "raw" recognition 
power. 

Semantic accuracy tracks the performance of the 
system as a whole and is the actual determiner of 
transaction success. The contribution of higher-level 
processing is defined by the spread between the exact 
and semantic accuracy curves. But note that the mar- 
ginal contribution of such processing is also a function 
of exact accuracy. As the latter improves, the former 
will improve only insofar as it provides an improve- 
ment over the existing recognition performance. 

Grammatical accuracy specifies the utterance 
rejection rate for the parsing component of the system. 
In the case of the present system, a rejection is simply 
any transcription that cannot be parsed. In the case of a 
more sophisticated system (for example, one that is 
capable of engaging the user in a clarification dialogue 
or interpreting agrammatical utterances), defining 
grammaticality may be more difficult but should not 
on principle be impossible. Grammatical accuracy 
also reflects the habitability of a system, inasfar as it 
allows the user to express his or her task-relevant in- 
tentions in a natural manner. In any case, tracking 
grammatical accuracy allows the evaluation of how 
well the system embodies the language necessary for 
task performance by a given user population. Gram- 
matical accuracy, measured over time as in the present 
study can also provide insight into how easy a system 
language is to learn and how adequate it is for a given 
range of activities. Measurements taken after an 
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elapsed interval, as in the current paradigm, can 
provide an indication of how well a user remembers 
the language constraints imposed by a SLS and can 
thus reflect the quality of its design. 

The metrics presented above can be used to describe 
system performance in ways that are useful for under- 
standing the characteristics of a particular spoken lan- 
guage system. As such, they would be of limited in- 
terest to those not directly involved in spoken lan- 
guage research. In a larger arena, SLSs will be com- 
peting with other interface technologies and the bases 
for comparison will be universally applicable medics, 
such as task completion time and ease of use. The 
challenge is to build systems that can compete suc- 
cessfully on those terms. 
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