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Abstract  

The paper describes refinements that are currently being investigated in a model for part-of-speech assign- 
ment to words in unrestricted text. The model has the advantage that a pre-tagged training corpus is not 
required. Words are represented by equivalence classes to reduce the number of parameters required and 
provide an essentially vocabulary-independent model. State chains are used to model selective higher-order 
conditioning in the model, which obviates the proliferation of parameters attendant in uniformly higher-order 
models. The structure of the state chains is based on both an analysis of errors and linguistic knowledge. 
Examples show how word dependency across phrases can be modeled. 

Introduct ion  

The determination of part-of-speech categories for words is an important problem in language modeling, 
because both the syntactic and semantic roles of words depend on their part-of-speech category (henceforth 
simply termed "category"). Application areas include speech recognition/synthesis and information retrieval. 
Several workers have addressed the problem of tagging text. Methods have ranged from locally-operating 
rules (Greene and Rubin, 1971), to statistical methods (Church, 1989; DeRose, 1988; Garside, Leech and 
Sampson, 1987; Jelinek, 1985) and back-propagation (Benello, Mackie and Anderson, 1989; Nakamura and 
Shikano, 1989). 

The statistical methods can be described in terms of Markov models. States in a model represent categories 
{cl...c=} (n is the number of different categories used). In a first order model, Ci and Ci_l are random 
variables denoting the categories of the words at position i and (i - 1) in a text. The transition probability 
P(Ci = cz ] Ci_~ = %) linking two states cz and cy, represents the probability of category cx following 
category %. A word at position i is represented by the random variable Wi, which ranges over the vocabulary 
{w~ ...wv} (v is the number of words in the vocabulary). State-dependent probabilities of the form P(Wi  = Wa 
] Ci = cz) represent the probability that word Wa is seen, given category c~. For instance, the word "dog" can 
be seen in the states noun and verb, and only has a non-zero probability in those states. A word sequence 
is considered as being generated from an underlying sequence of categories. Of all the possible category 
sequences from which a given word sequence can be generated, the one which maximizes the probability 
of the words is used. The Viterbi algorithm (Viterbi, 1967) will find this category sequence. The systems 
previously mentioned require a pre-tagged training corpus in order to collect word counts or to perform 
back-propagation. The Brown Corpus (Francis and Kucera, 1982) is a notable example of such a corpus, 
and is used by many of the systems cited above. 

An alternative approach taken by Jelinek, (Jelinek, 1985) is to view the training problem in terms of a 
"hidden" Markov model: that is, only the words of the training text are available, their corresponding 
categories are not known. In this situation, the Baum-Welch algorithm (Baum, 1972) can be used to estimate 
the model parameters. This has the great advantage of eliminating the pre-tagged corpus. It minimizes the 
resources required, facilitates experimentation with different word categories, and is easily adapted for use 
with other languages. 

The work described here also makes use of a hidden Markov model. One aim of the work is to investigate the 
quality and performance of models with minimal parameter descriptions. In this regard, word equivalence 
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classes were used (Kupiec, 1989). There it is assumed that the distribution of the use of a word depends on 
the set of categories it can assume, and words are partitioned accordingly. Thus the words "play" and "touch" 
are considered to behave identically, as members of the class noun-or-verb, and "clay" and "zinc"are members 
of the class noun. This partitioning drastically reduces the number of parameters required in the model, and 
aids reliable estimation using moderate amounts of training data. Equivalence classes {Eqvl ...Eqvm} replace 
the words {wl...Wv} (m << v) and P(Eqvi I Ci) replace the parameters P(Wi I Ci). In the 21 category model 
reported in Kupiec (1989) only 129 equivalence classes were required to cover a 30,000 word dictionary. In 
fact, the number of equivalence classes is essentially independent of the size of the dictionary, enabling new 
words to be added without any modification to the model. 

Obviously, a trade-off is involved. For example, "dog" is more likely to be a noun than a verb and "see" 
is more likely to be a verb than a noun. However they are both members of the equivalence class noun-or- 
verb, and so are considered to behave identically. It is then local word context (embodied in the transition 
probabilities) which must aid disambiguation of the word. In practice, word context provides significant 
constraint, so the trade-off appears to be a remarkably favorable one. 

T h e  Basic  M o d e l  

The development of the model was guided by evaluation against a simple basic model (much of the develop- 
ment of the model was prompted by an analysis of the errors in its hehaviour). The basic model contained 
states representing the following categories: 

Determiner 
Noun Singular 
Noun Plural 
Proper Noun 
Pronoun 
Adverb 
Conjunction 
Preposition 
Adjective 
Verb Uninflected 
Verb 3rd Pers. Sing. 
Auxiliary 
Present Participle 
Past Participle 
Question Word 
Unknown 
Lisp 
To-inf. 
Sentence Boundary 

Including mass nouns 

Co-ordinating and subordinating 

Including comparative and superlative 

Am, is, was, has, have, should, must, can, might, etc. 
Including gerund 
Including past tense 
When, what, why, etc. 
Words whose stems could not be found in dictionary. 
Used to tag common symbols in the the Lisp programming language (see below:) 
"To" acting as an infinitive marker 

The above states were arranged in a first-order, fully connected network, each state having a transition 
to every other state, allowing all possible sequences of categories. The training corpus was a collection of 
electronic mail messages concerning the design of the Common-Lisp programming language - a somewhat 
less than ideal representation of English. Many Lisp-specific words were not in the vocabulary, and thus 
tagged as unknown, however the lisp category was nevertheless created for frequently occurring Lisp symbols 
in an attempt to reduce bias in the estimation. It is interesting to note that the model performs very well, 
despite such "noisy" training data. The training was sentence-based, and the model was trained using 6,000 
sentences from the corpus. Eight iterations of the Baum-Welch algorithm were used. 

The implementation of the hidden Markov model is based on that of Rabiner, Levinson and Sondhi (1983). 
By exploiting the fact that the matrix of probabilities P(Eqvi I Ci) is sparse, a considerable improvement can 
be gained over the basic training algorithm in which iterations are made over all states. The initial values 
of the model parameters are calculated from word occurrence probabilities, such that words are initially 
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assumed to function equally probably as any of their possible categories. Superlative and comparative 
adjectives were collapsed into a single adjective category, to economize on the overall number of categories. 
(If desired, after tagging the finer category can be replaced). In the basic model all punctuation except 
sentence boundaries was ignored. An interesting observation is worth noting with regard to words that can 
act both as auxiliary and main verbs. Modal auxiliaries were consistently tagged as auxiliary whereas the 
tagging for other auxiliaries (e.g. "is .... have" etc.) was more variable. This indicates that modal auxiliaries 
can be recognized as a natural class via their pattern of usage. 

Extending the Basic Model  
The basic model was used as a benchmark for successive improvements. The first addition was the correct 
treatment of all non-words in a text. This includes hyphenation, punctuation, numbers and abbreviations. 
New categories were added for number, abbreviation, and comma. All other punctuation was collapsed into 
the single new punctuation category. 

R e f i n e m e n t  o f  B a s i c  C a t e g o r i e s  

The verb states of the basic model were found to be too coarse. For example, many noun/verb ambiguities 
in front of past participles were incorrectly tagged as verbs. The replacement of the auxiliary category by 
the following categories greatly improved this: 

Category Name Words included in Category 

Be be 
Been been 
Being being 
Have have 
Have* has, have, had, having 
be* is, am, are, was, were 
do* do, does, did 
modal Modal auxiliaries 

U n i q u e  E q u i v a l e n c e  C l a s s e s  f o r  C o m m o n  W o r d s  

Common words occur often enough to be estimated reliably. In a ranked list of words in the corpus the 
most frequent 100 words account for approximately 50% of the total tokens in the corpus, and thus data is 
available to estimate them reliably. The most frequent 100 words of the corpus were assigned individually 
in the model, thereby enabling them to have different distributions over their categories. This leaves 50% of 
the corpus for training all the other equivalence classes. 

E d i t i n g  t h e  T r a n s i t i o n  S t r u c t u r e  

A common error in the basic model was the assignment of the word "to" to the to-infcategory ("to" acting 
as an infinitive marker) instead of preposition before noun phrases. This is not surprising, because "to" is 
the only member of the to-inf category, P(Wi = "to" [ Ci = to-in]) = 1.0. In contrast, P(Wi = "to" I Ci = 
preposition) = 0.086, because many other words share the preposition state. Unless transition probabilities 
are highly constraining, the higher probability paths will tend to go through the to-infstate. This situation 
may be addressed in several ways, the simplest being to initially assign zero transition probabilities from the 
to-infstate to states other than verbs and the adverb state. 
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ADJECTIVE 

DETERMINER 

NOUN 
To all states 
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except NOUN 
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in Basic Network 

AUGMENTED NETWORK 

BASIC NETWORK 

FULLY-CONNECTED NETWORK 
CONTAINING ALL STATES 

EXCEPT DETERMINER 

Figure 1: Extending the Basic Model 

Augment ing  the Mode l  by Use of Networks  
The basic model consists of a first-order fully connected network. The lexical context available for modeling 
a word's category is solely the category of the preceding word (expressed via the transition probabilities 
P(Ci [ Ci-1). Such limited context does not adequately model the constraint present in local word context. 
A straightforward method of extending the context is to use second-order conditioning which takes account 
of the previous two word categories. Transition probabilities are then of the form P(Ci [ Ci-1, Ci-2). For an 
n category model this requires n 3 transition probabilities. Increasing the order of the conditioning requires 
exponentially more parameters.  In practice, models have been limited to second-order, and smoothing 
methods are normally required to deal with the problem of estimation with limited data. The conditioning 
just described is uniform- all possible two-category contexts are modeled. Many of these neither contribute to 
the performance of the model, nor occur frequently enough to be estimated properly: e.g. P(Ci = determiner 
[ e l - 1  -~ determiner, Ci-2 = determiner). 

An alternative to uniformly increasing the order of the conditioning is to extend it selectively. Mixed higher- 
order context can be modeled by introducing explicit state sequences. In the arrangement the basic first-order 
network remains, permitt ing all possible category sequences, and modeling first-order dependency. The basic 
network is then augmented with the extra state sequences which model certain category sequences in more 
detail. The design of the augmented network has been based on linguistic considerations and also upon an 
analysis of tagging errors made by the basic network. 

As an example, we may consider a systematic error made by the basic model. It concerns the disambiguation 
of the equivalence class adjective-or-noun following a determiner. The error is exemplified by the sentence 
fragment "The period of...", where "period" is tagged as an adjective. To model the context necessary to 
correct the error, two extra states are used, as shown in Figure 1. The "augmented network" uniquely models 
all second-order dependencies of the type determiner - noun - X,  and determiner - adjective - X (X ranges 
over {cl...cn}). Training a hidden Markov model having this topology corrected all nine instances of the 
error in the test data. An important  point to note is that  improving the model detail in this manner does 
not forcibly correct the error. The actual patterns of category usage must be distinct in the language. 
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To complete the description of the augmented model it is necessary to mention tying of the model states 
(Jelinek and Mercer, 1980). Whenever a transition is made to a state, the state-dependent probability 
distribution P(Eqvi I Ci) is used to obtain the probability of the observed equivalence class. A state is 
generally used in several places (E.g. in Figure 1. there are two noun states, and two adjective states: one 
of each in the augmented network, and in the basic network). The distributions P(Eqvi I Ci) are considered 
to be the same for every instance of the same state. Their estimates are pooled and re-assigned identically 
after each iteration of the Baum-Welch algorithm. 

Modeling Dependencies a c r o s s  P h r a s e s  

Linguistic considerations can be used to correct errors made by the model. In this section two illustrations 
are given, concerning simple subject/verb agreement across an intermediate prepositional phrase. These are 
exemplified by the following sentence fragments: 

1. "Temperatures in the upper mantle range apparently from....". 

2. "The velocity of the seismic waves rises to...". 

The basic model tagged these sentences correctly, except for- "range" and "rises" which were tagged as 
n o u n  and plural-noun respectively 1. The basic network cannot model the dependency of the number of 
the verb on its subject, which precedes it by a prepositional phrase. To model such dependency across the 
phrase, the networks shown in Figure 2 can be used. It can be seen that only simple forms of prepositional 
phrase are modeled in the networks; a single noun may be optionally preceded by a single adjective and/or 
determiner. The final transitions in the networks serve to discriminate between the correct and incorrect 
category assignment given the selected preceding context. As in the previous section, the corrections are not 
programmed into the model. Only context has been supplied to aid the training procedure, and the latter is 
responsible for deciding which alternative is more likely, based on the training data. (Approximately 19,000 
sentences were used to train the networks used in this example). 

D i s c u s s i o n  and R e s u l t s  

In Figure 2, the two copies of the prepositional phrase are trained in separate contexts (preceding singu- 
lax/plural nouns). This has the disadvantage that they cannot share training data. This problem could 
be resolved by tying corresponding transitions together. Alternatively, investigation of a trainable gram- 
mar (Baker, 1979; Fujisaki et al., 1989) may be a fruitful way to further develop the model in terms of 
grammatical components. 

A model containing all of the refinements described, was tested using a magazine article containing 146 
sentences (3,822 words). A 30,000 word dictionary was used, supplemented by inflectional analysis for words 
not found directly in the dictionary. In the document, 142 words were tagged as unknown (their possible 
categories were not known). A total of 1,526 words had ambiguous categories (i.e. 40% of the document). 
Critical examination of the tagging provided by the augmented model showed 168 word tagging errors, 
whereas the basic model gave 215 erroneous word tags. The former represents 95.6% correct word tagging 
on the text as a whole (ignoring unknown words), and 89% on the ambiguous words. The performance of a 
tagging program depends on the choice and number of categories used, and the correct tag assignment for 
words is not always obvious. In cases where the choice of tag was unclear (as often occurs in idioms), the 
tag was ruled as incorrect. For example, 9 errors are from 3 instances of "... as well as ..." that arise in 
the text. It would be appropriate to deal with idioms separately, as done by Gaxside, Leech and Sampson 
(1987). Typical errors beyond the scope of the model described here are exemplified by incorrect adverbial 
and prepositional assignment. 

1 It is easy to construct counter-examples to the sentences presented here, where the tagging would be correct. However, the 
training procedure affirms that  counter-examples occur less frequently in the corpus than the cases shown here. 
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NOUN 

PREPOSITION ADJECTIVE NO U N ~  

PLURAL NOUN 

PLURAL NOUN 

PREPOSITION A E?TIVE NO2NJC) 

NOUN 

~ j VERB 
TRANSITIONS TO/FROM ~ 3RD. SINGULAR 

ALL STATES IN 
BASIC NETWORK 
NOT SHOWN 

Figure 2: Augmented Networks for Example of Subject/Verb Agreement 

For example, consider the word "up" in the following sentences: 

"He ran up a big bill". 
"He ran up a big hill". 

Extra information is required to assign the correct tagging. In these examples it is worth noting that even if a 
model was based on individual words, and trained on a pre-tagged corpus, the association of "up" (as adverb) 
with "bill" would not be captured by trigrams. (Work on phrasal verbs, using mutual information estimates 
(Church et ai., 1989b) is directly relevant to this problem). The tagger could be extended by further category 
refinements (e.g. inclusion of a gerund category), and the single pronoun category currently causes erroneous 
tags for adjacent words. With respect to the problem of unknown words, alternative category assignments 
for them could be made by using the context embodied in transition probabilities. 

Conclus ions  

A stochastic method for assigning part-of-speech categories to unrestricted English text has been described. 
It minimizes the resources required for high performance automatic tagging. A pre-tagged training corpus is 
not required, and the tagger can cope with words not found in the training text. It can be trained reliably 
on moderate amounts of training text, and through the use of selectively augmented networks it can model 
high-order dependencies without requiring an excessive number of parameters. 
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