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Abstract 

This article describes two complementary models that represent dependencies between words in lo- 
ca/ and non-local contexts. The type of local dependencies considered are sequences of part of speech 
categories for words. The non-local context of word dependency considered here is that of word recur- 
rence, which is typical in a text. Both are models of phenomena that are to a reasonable extent domain 
independent, and thus are useful for doing prediction in systems using large vocabularies. 

M o d e l i n g  P a r t  o f  S p e e c h  S e q u e n c e s  

A common method for modeling local word dependencies is by means of second order Markov models (also 
known as trigram models). In such a model the context for predicting word wi at position i in a text consists 
of the two words wi_l, wi-2 that  precede it. The model is built from conditional probabilities: P(wi I wi_l, 
wi-2). The parameters of a part  of speech (POS) model are of the form: P(wi [ Ci) x P(Ci [ Ci-1, Ci-2). 
That  is, for word wi a POS category Ci is first predicted, based on the POS categories of the two previous 
words. The word wi is then predicted in terms of Ci. If the vocabulary consists of the set of N words 
{vl, v2...vg}, then wi, wi-1 and wi-2 range over the elements of this set. For a model containing M parts 
of speech,{S1, S2...SM}, the variables Ci, Ci-1 and Ci_~ likewise range over the M elements. 

POS language models have been used in speech recognition systems (Dumouchel, Gupta,  Lennig and 
Mermelstein, 1988; Shikano, 1987) and for phoneme-to-text transcription (Derouault and Merialdo, 1986). 
In these systems the parameters are obtained from the analysis of an annotated training corpus. To create 
the training corpus a set of POS categories is first defined. A word in the vocabulary may be associated with 
several POS categories depending on the roles it can play in a sentence. A suitably large corpus of training 
text is then manually analyzed and each word of the corpus is annotated with an unambiguous POS category 
according to its function in the text. The Brown Corpus has been analyzed this way, using a set of 87 main 
categories (Francis and Kucera, 1982). To obtain the parameters of a language model, frequency counts are 
made and normalized to produce the required sets of parameters. The problem of training a model, and the 
reliability of the resulting parameters rests on a laborious manual annotation of a necessarily large amount 
of training text. To reduce this burden, a bootstrap method can be used (Derouault and Merialdo, 1986). 
First a relatively small amount of text is annotated, to create a partial model. The partial model is then 
used to automatically annotate more text, which is then corrected manually, and used to re-train the model. 

Here, an alternative approach has been taken to the training problem, which is based on work by Jelinek 
(Jelinek, 1985a). In this approach, a POS language model is viewed as a Hidden Markov model (HMM). That  
is, a word sequence reflects an underlying sequence of parts of speech, which is hidden from the observer. 
The advantage of considering the model in such terms is that the need for an annotated training corpus is 
eliminated, resulting in greater flexibility. The model can be trained with alternative sets of POS categories, 
and can accommodate special POS categories that are defined for specialized domains. Another advantage 
is that  the method can be applied to other languages. To train a model requires the following: 

1. A suitably large training corpus of text (that is not annotated). 

2. A vocabulary of words occurring in the corpus, where each word is associated with a list of all the 
possible parts of speech it can assume. 

3. Estimates of the frequency of occurrence P(Vl)...P(vg) of the words in the vocabulary. These are used 
to set initial probability values in the model. 
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Figure 1: A typical state transition in a first order HMM 

States in the HMM correspond to POS categories, and are labeled by the category they represent. The 
observations generated at a state are those words that  can function as the POS category associated with 
the state. The probability P(Ci = S, I Ci-1 = Sy) labels the transition from state Sy to state S, ,  and 
P(wi = vj I Ci = S,) represents the flh element of the output  matrix for state S~. These are shown in 
Figure 1. If word vk cannot occur as POS category S,  then the kth element of the output  matrix for state 
S,  is zero. This provides a strong source of constraint on the estimation process. Each state is connected to 
all other states, which permits the modeling of any sequence of parts of speech. 

The HMM used for the work is based on the implementation of Rabiner, Levinson and Sondhi (Rabiner 
et M., 1983). A first order HMM was used as a starting point because the resources required to train it 
are significantly less than for a second order model, and thus facilitate experimentation. Twenty-one parts 
of speech were used, corresponding to traditional POS categories such as determiner, adverb, preposition, 
noun, noun-plural, verb-progressive, verb-past-participle etc. 

In the model described here, the elements of the output  matrix have been assigned to word equivalence 
classes rather than individual words. This is due to the observation that  in unrestricted domains, the 
number N of different word types that  can occur is so large it precludes practical estimation of the required 
number of parameters  P(wi [ Ci). Words are partitioned into L equivalence classes W1...WL. All words 
that  can function as a noun only are in one equivalence class, and all words that  can function as either 
a noun or adjective are in another class, and so o11. A total of L = 129 equivalence classes were used in 
the model. Each equivalence class has an index in the output  matrix. Words have an uneven distribution 
within these classes, e.g. in the dictionary that  was used the word "more" is the only member  of the class 
noun-or-comparative-adjcctive-or-adverb. Prior to training, initial values of probabilities in all the matrices 
must be chosen. The transition matr ix  is set so that  all the transitions from a state are equiprobable. Word 
occurrence probabilities P(vj) are used to obtain the initial output  matrix probabilities. They are first 
converted to probabilities of word equivalence classes P(Wk). The probability of each equivalence class Wk 
is then divided equally among the POS categories that  are in the equivalence class, to give weights F(Wk, 
Ci). This reflects tile assumption that  all words in an equivalence class can initially function equiprobably as 
any POS category of the class. The output  matrix elements for each state are constructed using the various 
F(Wk, Ci). For each state, the elements are then normalized to sum to unity. 

The process of training a HMM is to statistically infer parameters that  maximize the likelihood of the 
training text,  and the Baum-Welch algorithm (Baum, 1972) was used for this purpose. Typically, the model 
is trained on several iterations over the training data, until the parameter  estimates converge. Then, for any 
given test sentence, the Viterbi algorithm (Viterbi, 1967) can be used to find the most likely state sequence 
through the model, which maximizes the probability of seeing the test sentence. The state sequence is used 
as the annotation for the sentence. 

A text corpus containing 1,180,000 words was used for training and testing the model. The corpus is a 
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Figure 2: An Example of Annotation 

collection of electronic mail messages concerning the design of the Common Lisp programming language. It 
contains 23,190 different words, of which 8,300 only occur once. A dictionary of approximately 30,000 words 
was also available, each word tagged with its possible parts of speech. An annotated corpus vocabulary 
was constructed by intersecting the dictionary with the corpus. This resulted in 90% coverage of the total 
number of words in the corpus, and 45% coverage of the total word types that appear in the corpus. Words 
that  did not have vocabulary entries giving their parts of speech were marked with a special POS category 
called unlabeled. A total of 21 POS categories were used initially, resulting in 441 transitions. The output  
matrix contained 129 elements per state (corresponding to the number of word equivalence classes in the 
annotated corpus vocabulary). The model was trained initially on 3000 sentences from the corpus, using 
10 iterations. Preliminary results are good, even for a first order model. An example of annotation of a 
sentence is shown in Figure 2. The annotation provided by the Viterbi algorithm is shown in bold on the 
line below the words of the sentence. The other possible parts of speech present in the dictionary are shown 
below the annotation. It can be seen that  the major dependencies have been inferred correctly; the main 
difference from the preferred annotation lies in the substitution of adjectival for adverbial categories. 

Modeling Word  Recur rence  

The previous method is useful for modeling sequences of parts of speech. Words were grouped into equivalence 
classes, and it was noted that  there was an uneven distribution of words in different classes. The classes for 
topic independent words such as the, of, in, etc. are relatively small (some are unique) and as a result these 
words are easily predicted given their equivalence class. The equivalence classes for topic dependent words 
such as nouns, adjectives and verbs are very much larger. This section describes a method which addresses 
one aspect of the problem of predicting topic dependent words. The method is concerned with modeling 
word recurrence, which is typical in discourse. The use of previous discourse history as a means of prediction 
has been recognized for some time. Barnett  (Barnett,  1973) describes a system which allocates higher scores 
to "content" words if they have already been mentioned. In the MINDS spoken language dialogue system 
(Young, Hauptmann, Ward, Smith and Werner; 1989) extensive use is made of previous dialogue history, 
which is integrated with high level knowledge sources. These include dialogue knowledge, user goals, plans 
and focus. 

Our model makes use of previous history at the lower level of word transition probabilities, where au- 
tomatic statistical estimation can be performed. Word recurrence takes place at greater distances than the 
two word context used in the previous model. To account for this, a long range memory called a word cache 
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is used. A word cache may be described as static or dynamic depending on whether its contents are fixed. 
A frequency ordered list of words occurring in a corpus represents a static word cache. In this type of word 
cache the overall probabili ty of occurrence of a word related to a specific topic tends to be small, as a large 
corpus of text  may be composed of material on a large number of diverse topics. The contents of a dynamic 
word cache may be some function of the previous text history. In a small section of the corpus concerned 
with a topic, words related to the topic tend to be repeated. A word's probability may then be higher 
than its overall probability. A dynamic word cache can track this recurrence effect. Dynamic caches can be 
further split into two kinds. A token cache contains the previous n words (i.e. word tokens) seen in a text, 
and acts as a window containing the most recent words encountered. A type cache contains the previous n 
different words (i.e. word types) found, and can be implemented as a linked list of words. When a word is 
encountered that  is already in the cache, the word is simply moved to the front of the list. When a new word 
type is seen it is placed at the front of the list. If  the cache is full, the least recently used word is removed 
from the tail of the list. An interesting comparison between a static and dynamic word cache is given by 
the amount  of coverage they provide. A static word cache containing the n overall most frequent words in 
the corpus of Common Lisp mail messages was compared with an equally sized dynamic type cache. Table 
1 shows the coverage given over the whole corpus by the two kinds of cache, for various n. For cache sizes 
from 90 to 4000 words the dynamic type cache gave slightly better  coverage than the op t imum frequency 
ordered cache. This characteristic was also observed when using subsections of the corpus. The dynamic 
cache does not give 100% coverage when its size is equal to the vocabulary, because at the outset it is empty. 
Words entering the cache for the first time are not covered. The dynamic type cache has the advantage that  
it is adaptable over different domains whereas the opt imum contents of a static cache must  be determined 
by prior analysis. A dynamic token cache was also compared, and it gave inferior performance to either of 
the other kinds of cache because space ill the cache is occupied by multiple tokens of the same word type. 

Dynamic type caches have been considered as a means of vocabulary personalization (Jelinek, 1985b). 
In conjunction with interactive word entry, they have also been viewed as a way of obtaining high coverage 
in a speech recognition system using a very large vocabulary (Merialdo, 1988). The dynamic cache can also 
be considered as a means for improving word prediction. For this purpose, it is necessary to quantify its 
effect and allow direct comparison with an alternative. A first order (bigram) model of word dependency was 
compared with a similar model into which a dynamic cache had been incorporated. A first order model is 
composed of parameters  of the form P(wi I wi_l).  Both wi and wi_l range over all words in the vocabulary. 
If  (v, ,  v~) is such a word pair, the conditional probability P(wi = v,  I wi-1 = vv) denotes the corresponding 
model parameter .  A dynamic cache D is a function of previous history, which can be evaluated at i - 1 for 
any choice vx of wi, and its inclusion is modeled as P(wi ] wi-1, Di-1). D is binary valued and indicates for 
any word type v ,  whether or not it is currently in the cache. This results in two sets of probabilities: P(v~ 
I vy, D = true), P(vz Ivy, D = false) .  These probabilities are obtained from frequency counts as shown in 
Figure 3. In the figure, N(a,  b) represents the count of the number of times the joint event a and b occurred 
in the training text. 

The dynamic cache is likewise used to select probabilities when doing prediction. The  corpus of Common 

Cache Size 
19 
9O 
512 
1000 
2000 
4000 
8000 
12000 
16000 
23191 

Percent. Coverage of Corpus 
Static Cache Dynamic Cache 

30 21 
50 50 
75 78 
83 80 
90 91 
95 95 
98 

98.4 
99.4 
100 

97 
97.7 
97.9 
98 

Table 1: Coverage provided by various sizes of Static and Dynamic Caches 
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P(x I Y, D = true) = N(Vx follows Vy, and Vx is in cache) 
N(Vy is seen, and Vx is in cache) 

P(x I Y, D = false) = N(Vx follows Vy, and Vx is not in cache) 
N(Vy is seen, and Vx is not in cache) 

Figure 3: Conditional Probabilities for a Dynamic Cache 

Lisp mail messages was divided in the ratio 80% - 20% for training and testing respectively. Experiments 
were done with cache sizes ranging from 128 to 4096 words. The criterion of average rank of the correct word 
was used to compare the "dynamic" model based on P(wi I wi-1, D) to the "static" model based on ordinary 
bigrams P(wi I wi-1). When a word pair v~, vy occurred in the test text, which had zero probability in 
the training text, unigrams were used to rank v~. The dynamic model used P(v~ I D) whereas the static 
model used P(v~). Several runs were made using different sections of the corpus for training and testing. For 
any run, less than 5% of words in the test text were absent from the training text. Over different runs, the 
average rank of the correct word in the static model ranged from 520 to 670. In each run, the dynamic model 
consistently produced a lower average rank, ranging from 7% to 17% less than that  of the static model. The 
performance of the model varied by less than 1% for cache sizes between 350 and 750. 

Another method of combining the bigram and unigram probabilities is by means of an interpolated 
estimator (Jelinek and Mercer, 1980). An interpolated estimator is a weighted linear combination of other 
estimates. Opt imum weights are derived by the Baum-Welch algorithm, and their values give an indication 
of the overall utility of each component. Parameters of both the Static and dynamic models were used in an 
interpolated estimator. The corpus was divided in the proportion 60% - 20% - 20% respectively for training 
the model, obtaining the weights, and test text. The use of the interpolated estimator contributed a further 
reduction in average rank of a few percent. A typical set of values that  were obtained for weights of each 
component are shown below: 

Pint(vz Ivy) = 0.3P(vx Ivy, D) + 0.25P(vx IVy) + 0.35P(vx I D) + 0.1P(vx) 

Discussion 

POS categories provide reasonable models of local word order in English. Further work is necessary to 
understand the sensitivity of the model to factors such as the granularity of POS classifications. States 
representing sentence boundary and punctuation marks would also be useful. Our model would benefit 
from further refinement of some POS categories. The category auxiliary-verb is currently absent, and the 
words "might" and "will" are in the equivalence class labeled noun-or-verb. Accordingly, they are classed as 
exhibiting the same behaviour as words like "thought", "feel" and "structure". It may also be advantageous 
to assign unique equivalence classes to common words, retaining the same POS categories, but allowing them 
to assume different parameter values in the output  matrix. This enables the modeling of words that function 
uniquely. Moreover, common words tend to be topic independent and their estimation is not impaired by 
lack of data. Higher order conditioning is also an obvious area for further work. Due to the limitations 
of local context and the simplicity of the model, it cannot resolve all kinds of ambiguities found in text. 
Consider, for instance, the disambiguation of the word "that" in the following sentences: 

"I think that  function is more important than form". 
"I think that  function is more important  than this one". 

Traditional parts of speech have been used deliberately, to enable the model to interface to other tools of 
computational linguistics. In particular, a morphological analyzer is being integrated into the model to aid 
POS category predictions for words that are not in the vocabulary. The output  from the model can also be 
used as input to other types of linguistic processing. 
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Results indicate that word prediction can be improved by making use of word recurrence, which can be 
considered as a simple focus-of-attention strategy. For speech recognition it would be a suitable component 
in a language model that must cover two or more application areas, where each area has its own set of 
commonly used topic dependent words. The improvements provided by the model depend on the extent to 
which the usage of a word is repeatedly clustered, resulting in a non-uniform distribution throughout a text. 
Unlike the part of speech model, common "function words" do not contribute to the word recurrence model. 
The two models can be viewed as addressing complementary topic-independent and topic-dependent aspects, 
and could be integrated into a combined model. The word recurrence results would benefit from verification 
on other corpora, as a corpus consisting of electronic mail is not the ideal choice for such experiments, and 
must be used with caution. The phenomenon of word recurrence is subsumed by the more general interaction 
of topic related words, which may be used to predict each other as well as exhibiting recurrence. This would 
be an interesting direction for future effort. 
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