
Lexicalized TAGs, Parsing and Lexicons*

A n n e Abei l l4 , K a t h l e e n B i s h o p , S h a r o n C o t e , A r a v i n d K. Jo sh i , a n d Y v es S c h a b e s

D e p a r t m e n t of Co mp u t e r and Informat ion Science

University of Pennsylvania, Philadelphia PA 19104-6389 USA

abeille/bishop/cote/joshi/schabes~linc.cis.upenn.edu

A b s t r a c t

In our approach, each elementary structure is systematically associated with a lexical head. These structures
specify extended domains of locality (as compared to a context-free grammar) over which constraints can be
stated. These constraints either hold within the elementary structure itself or specify what other structures
can be composed with a given elementary structure. The 'grammar' consists of a lexicon where each lexical
i tem is associated with a finite number of structures for which that i tem is the head. There are no separate
grammar rules. There are, of course, 'rules' which tell us how these structures are composed. A grammar of
this form will be said to be 'lexicalized'. A 'lexicalized' grammar naturally follows from the extended domain
of locality of TAGs.

A general parsing strategy for 'lexicalized' grammars is discussed. In the first stage, the parser selects
a set of elementary structures associated with the lexical items in the input sentence, and in the second
stage the sentence is parsed with respect to this set. An Earley-type parser for TAGs has been has been
developed. It can be adapted to take advantage of the two steps parsing strategy. The system parses
unification formalisms that have a CFG skeleton and that have a TAG skeleton.

Along with the development of an Earley-type parser for TAGs, lexicons for English are under devel-
opment. A lexicons for French is also being developed. Subsets of these lexicons are being incrementally
interfaced to the parser.

We finally show how idioms are represented in lexicalized TAGs. We assign them regular syntactic
structures while representing them semantically as one entry. We finally show how they can be parsed by a
parsing strategy as mentioned above.

1 Lex ica l i zed Tree A d j o i n i n g G r a m m a r

Most current linguistic theories give lexical accounts of several phenomena that used to be considered purely
syntactic. The information put in the lexicon is thereby increased both in amount and complexity: for
example, lexical rules in LFG (Kaplan and Bresnan, 1983), GPSG (Gazdar, Klein, Pullum and Sag, 1985),
HPSG (Pollard and Sag, 1987), Comhinatory Categoriai Grammars (Steedman 1988), Kart tunen's version
of Categorial Grammar (Kart tunen 1986, 1988), some versions of GB theory (Chomsky 1981), and Lexicon-
Grammars (Gross 1984).

We say that a grammar is 'lexicalized' if it consists of: 1

• a finite set of structures associated with each lexical item, which is intended to be the head of these
structures;

• an operation or operations for composing the structures. The finite set of structures define the domain
of locality over which constraints are specified, and these are local with respect to their lexical heads.

Context free grammars cannot be in general be lexicalized. However TAGs are 'naturally ' lexicalized
because they use an extended domain of locality (Schabes, Abeilld and Joshi, 1988). TAGs were first
introduced by Joshi, Levy and Takahashi (1975), Joshi (1983-1985) and Kroch and Joshi (1985). It is known

*This work is partially supported by the DARPA grant N0014-85-K0018
1 By 'lexicallzation' we mean that in each structure there is a lexical item that is realized. We do not mean just adding

features (such as head) and unification equations to t h e rules of the formalism.

210

that Tree Adjoining Languages (TALs) are mildly context sensitive. TALs properly contain context-free
languages. 2

A basic component of a TAG is a finite set of elementary trees, each of which defines domain of locality,
and can be viewed as a minimal linguistic structure. The elementary structures are projections of lexical
items which serve as heads. We recall that tree structures in TAGs correspond to linguistically minimal but
complete structures: the complete argument structure in the case of a predicate, the maximal projection
of a category in the case of an argument or an adjunct. If a structure has only one terminal, the terminal
is the head of the structure; if there are several terminals, the choice of the head for a given structure is
linguistically determined, e.g. by the principles o f f theory if the structure is o f f type. The head of N P is
N, that of A P is A. S also has to be considered as the projection of a lexical head, usually V. As is obvious,
the head must always be lexically present in all of the structures it produces.

In the TAG lexicon each i tem is associated with a structure (or a set of structures), and that structure
can be regarded as its category, linguistically speaking. Each lexical i tem has as many entries in the lexicon
as it has Possible category or argument structures. We will now give some examples of structures that appear
in this lexicon.

Some examples of initial trees are (for simplicity, we have omitted the constraints associated with the
nodes) :3

s s
Compj $ S

NP NP NPo$ VP A i I / k NPo VP
A

DET,~ N N V NP~$ v NP 1

I I I
boy Mary s a w saw ej

(4) (5) (6) (7)

COMP COMP DET

I I I
w h o t h a t t h e

(1) (2) (3 /
For X # S, X- type initial trees correspond to the maximal projection of the category X of the head.

They are reduced to a pre-terminal node in the case of simple categories such as C O M P or D E T (trees 1,
2 and 3) and are expanded into more complex structures in the case of categories taking arguments (tree 4).
They correspond to the maximal projection of a category in the case of simple phrases and to trees which will
be systematically substi tuted for one of the argument positions of one of the elementary structures. Trees
6-7 are examples of S- type initial trees: they are usually considered as projections of a verb and usually take
nominal complements. The NP-type tree 'Mary ' (tree 5), and the NP-type tree ' John ' (similar to tree 5),
for example, will be inserted by substitution in the tree 6 corresponding to 'NP0 saw N P i ' to produce 'John
saw Mary' .

Examples of auxiliary trees (they are predicates taking sentential complements, 8-10, or modifiers, 11-12):

S S S

NPo$ VP NPo$ VP NPo$ VP S N

A A (9) ~ (10) A (11) A
V Sl (8) V Sl V NPi$ S2 Adv S A N

I I I I I
thinks saw promise maybe beautiful

(12)

2In some earlier work of Joshi (1969, 1973), the use of the two opera t ions ' ad jo in ing ' and ' r ep lacement ' (a res t r ic ted case of
subs t i t u t ion) was inves t iga ted b o t h m a t h e m a t i c a l l y and linguistically. However, these inves t iga t ions dealt wi th s t r ing rewri t ing
sy s t ems a n d no t tree rewri t ing sys t ems .

3We p u t indices on some non- t e rmina l s to express syntac t ic roles (0 for subjec t , 1 for first object , etc.) . T h e index shown
on the e m p t y s t r ing (e) and the cor responding filler in the s ame tree is for the purpose of ind ica t ing the filler-gap dependency.

We use the convent ion of m a r k i n g s u b s t i t u t i o n nodes by a down arrow (.~).

211

2 Pars ing Lexical ized TAGs

We assume that the input sentence is not infinite and that it cannot be syntactically infinitely ambiguous.
'Lexicalization' simplifies the task of a parser in the following sense. The first pass of the parser filters
the grammar to a grammar corresponding to the input string. It also puts constraints on the way that
adjunctions or substitutions can be performed since each structure has a head whose position in the input
string is recorded. The 'grammar ' of the parser is reduced to a subset of the entire grammar. Furthermore,
since each rule can be used only once, recursion does not lead to the usual non-termination problem. Once
a structure has been chosen for a given token, the other possible structures for the same token do not
participate in the parse. Of course, if the sentence is ambiguous, there may be more than one choice.

If one adopts an off-line parsing algorithm, the parsing problem is reduced to the following two steps:
• In the first step the parser will select the set of structures corresponding to each word in the sentence.

Each structure can be considered as an encoding of a set of 'rules'.

• Then the parser tries to determine whether these structures can be combined to obtain a well-formed
structure. In particular, it puts the structures corresponding to arguments into the structures corre-
sponding to predicates, and adjoins, if needed, the auxiliary structures corresponding to adjuncts to
what they select (or are selected) for.

In principle, any parsing strategy can be applied in the second step, since the number of structures produced
is finite, and since each of them corresponds to a token in the input string, the search space is finite and
termination is guaranteed. In principle, one can proceed inside out, left to right or in any other way. Of
course, standard parsing algorithms can be used, too. In particular, we can use the top-down parsing strategy
without encountering the usual problems due to recursion.

By assuming that the number of structures associated with a lexical item is finite, since each structure
has a lexical item attached to it, we implicitly make the assumption that an input string of finite length
cannot be syntactically infinitely ambiguous.

An Earley-type parser for TAGs has been investigated by Schabes and Joshi (1988). The algorithm has
a linear best time behavior and an O(n 9) worst time behavior. This is the first practical parser for TAGs
because as is well known for CFGs, the average behavior of Earley-type parsers is superior to its worst time
behavior. We extended it to deal with substitution and feature structures for TAGs. By doing this, we have
built a system that parses unification formalisms that have a CFG skeleton and also those that have a TAG
skeleton.

The Earley-type parser for TAGs can be extended to take advantage of lexicalized TAGs. Once the first
pass has been performed, a subset of the grammar is selected. The structures encode the value and positions
of their head. Structures of same head value are merged together, and the list of head positions recorded. 4
This enables us to use the head position information while processing efficiently the structures. For example,
given the sentence The 1 man 2 who 3 s a w 4 t h e 5 w o m a n 6 who 7 saw s John 9 i s 10 happy 11, the
following trees are selected after the first pass (among others): 5

NP

A s
NP S

NP f NP NP Nro$ VP

A A I A
D D~ N Camp [A D~ N N V A~ A

e i V NPi~,
I I I , I I I I

the(l.5) man(2) wh°(3.7) saw(4,s) woman(6) John(9) is(10) happy(n)

4 Unlike our previous suggestions (Schabes, AbeiIl6 and Joshi, 1988), we do not distinguish each structure by its head position
since it increases unnecessarily the number of s tates of the Ear]ey parser. By factoring recursion, the Ear]ey parser enables us
to process only once parts of a tree that are associated with several lexical items of same value but differeht positions. However,
if termination is required for a pure top down parser, it is necessary to distinguish each structure by its head position.

5The example is simplified to illustrate our point.

212

Notice that there is only one tree for the relative clauses introduced by saw but that its head position
can be 4 or 8. Similarly for who and the .

The head positions of each structure imposes constraints on the way that the structures can be combined
(the head positions must appear in increasing order in the combined structure). This helps the parser to
filter out predictions or completions for adjunction or substitution. For example, the tree corresponding to
mere will not be predicted for substitution in any of the trees corresponding to saw since the head positions
would not be in the right order.

3 Lex ica l i zed T A G for Engl i sh

A lexicalized TAG for English is under development (Bishop, Cote and Abeill~, 1988). Trees are gathered
in tree families when an element of a certain type (e.g. a verb) is associated with more than one tree. We
have 55 such tree families that correspond to most of the basic argument structures. There are 10 tree
families for simple verb sentences, 17 families for sentences with verbs taking sentential complements, 11
families for light verb-noun constructions, 7 families for verb-particle combinations and 10 families for light
verb-adjective constructions. A tree family consists on average of 12 trees, which makes approximately 700
trees total.

The g rammar covers subcategorization (strictly lexicalized), wh-movement and unbounded dependencies,
light verb construction, some idioms, transitivity alternations (such as dative shift or the so-called ergative
alternation), subjacency and some island violations.

The current size of the lexicon is approximately 1200 words: 750 verbs; 350 nouns; 50 adjectives; 25
prepositions, adverbs and determiners.

Subsets are being extracted and interfaced to the parser. Each subset is being incrementally augmented
as it is debugged. A similar lexicalized TAG for French is also under development.

4 Pars ing Id ioms in Lexica l ized T A G s

In lexicalized TAGs, idioms fall into the same grammar as 'free' sentences (Abeill~ and Schabes, 1989). We
assign them regular syntactic structures while representing them semantically as one entry. Transformations
and modifiers thus can apply to them. Unlike previous approaches, their variability becomes the general
case and their being totally frozen the exception.

Idioms are represented by extended elementary trees with multicomponent head. When an idiomatic tree
is selected by its head, lexical items are attached to some nodes in the tree. Idiomatic trees are selected by
a single head node; however the head value imposes lexical values of other nodes in the tree. This operation
of attaching the head i tem of an idiom and its lexical parts is called lex lca l a t t a c h m e n t . The resn]ting
tree has the lexical items corresponding to the pieces of the idiom already attached to it.

The parser must be able to conjecture idiomatic and literal interpretation of an idiom. We propose
to parse idioms in two steps which are merged in the two steps parsing strategy that we use. The first
step performed during the lexical pass selects trees corresponding to the literal and idiomatic interpretation.
However it is not always the case that the idiomatic trees are selected as possible candidates. We require that
all basic pieces building the minimal idiomatic expression must be present in the input string (in the right
order). This condition is a necessary condition for the idiomatic reading but of course it is not sufficient. The
second step performs the syntactic analysis as in the usual case. During the second step, idiomatic reading
might be rejected. Idioms are thus parsed as any 'free' sentences. Except during the selection process, idioms
do not require any special parsing mechanism.

Furthermore, our representation allows us to recognize discontinuities in idioms that come from internal
structures and from the insertion of modifiers.

Take as example the sentential idiom NPo k i cked the bucke t . We have, among others, the following

213

S

s A
A NP0$ VP

NP NP NPo$ VP v NP 1

I A A I
N D D$ N V NPi$ kicked Dn N1

I I I I I I
John the bucket k i c k e d the bucket

(aNPn[John]) (aD[the]) (olNPdn[bucket]) (ottnl [kicked]) (a t d n 1 [kicked-the-bucket])

Figure h Trees selected for the input: John k i cked the bucke t

entries in the lexicon: 6

kicked , V : T n l (simple transitive verb) (a)
kicked , V : Tdnl[D1 = the, N1 = bucket] (idiom: kicked the bucket) (b)
the , D : cuD (one node tree rooted by D) (c)
bucket , N : o~NPdn (NP tree expecting a determiner) (d)
John , N : o~NP (NP tree for proper nouns) (e)

Suppose that the input sentence is .John k i cked t h e bucket . In the first pass, the trees in Figure 1 are
be selected (among others).

The first entry for kicked (a) specifies that kicked can be attached under the V node in the tree ~ tn l
(See the tree o~tnl[kicked] in Figure 1). However the second entry for kicked (b) specifies that k i ck ed can be
attached under the V node and that t he must be attached under the node labeled by D1 and that bucket
must be attached under the node labeled N1 in the tree o~tnl (See the tree atdnl[kicked-the-bucket] in
Figure 1).

The sentence can be parsed in two different ways. One derivation is built with the trees: c~tnl[kicked]
(transitive verb), otNPn[John], c~D[the] and o~NPn[bucket] . It corresponds to the literal interpretation; the
other derivation is built with the trees: atdnl[kicked-the-bucket] (idiomatic tree) and o~NPn[John] (John).
However, both derivations have the same derived tree:

¢xtdnl[kl cked- the- bucket]
,,
I

aNPn] John] (1)

Idiomatic derivation

tztnl[kicked]

¢xNPn[john] (1) cxNPdn[bucket] (2.2)
,,
!

ctD[the] (1)

Literal derivation

s

NP VP

N V NP

John kicked D N

I I
the bucket

Unique derived tree

5 C o n c l u s i o n

We have presented a general parsing strategy based on 'lexicalized' grammars. TAGs are shown to be
naturally 'lexicalized'. Lexicalization of a grammar suggests a two-step parsing strategy. The first step
selects the set of structures corresponding to each word in the sentence. The second step puts the argument
structures into predicate structures. In the first step, structures, rather than non-terminals, are associated
with lexical items. The Earley-type parser for TAGs has been extended to take advantage of this strategy.

6The lexical entries are somewhat simplified for illustrating how idioms are handled.

214

We have briefly described the current state of the implementation and the size of the associated lexicon.
Finally we show that in lexicalized TAGs idioms can be processed without defining special rules for processing
them. We can access simultaneously frozen elements at different levels of depths in contrast to a CFG which
either has to flatten the idiomatic structure (and loose the possibility of regular insertion of modifiers) or to
use specific devices to check the presence of an idiom. The two pass parsing strategy we use, combined with
the operation of direct attachment of lexical items in idiomatic trees, enable us to cut down the number of
idiomatic trees that the parser takes as possible candidates. We easily get the possibly idiomatic and literal
reading for a given sentence. The only distinctive property of idioms is the non compositional semantics of
their frozen constituents.

References
Abeill4, Anne and Schabes, Yves, April 1989. Parsing Idioms in Tree Adjoining Grammars. In Fourth Conference of
the European Chapter of the Association for Computational Linguistics. Manchester.

Bishop, Kathleen M.; Cote, Sharon; and Abeill4, Anne, 1988. A Lexicalized Tree Adjoining Grammar for English:
some Basic Accounts. Technical Report, Department of Computer and Information Science, University of Pennsyl-
vania.

Chomsky, N., 1981. Lectures on Government and Binding. Foris, Dordrecht.

Gazdar, G.; Klein, E.; Pullum, G. K.; and Sag, I. A., 1985. Generalized Phrase Structure Grammars. Blackwell
Publishing, Oxford. Also published by Harvard University Press, Cambridge, MA.

Gross, Maurice, 2-6 July 1984. Lexicon-Grammar and the Syntactic Analysis of French. In Proceedings of the l 0 th

International Conference on Computational Linguistics (Coling'8~). Stanford.

Joshi, Aravind K., August 1969. Properties of Formal Grammars with Mixed Type of Rules and their Linguistic
Relevance. In Proceedings of the International Conference on Computational Linguistics. Sanga Saby.

Joshi, Aravind K., 1973. A Class of Transformational Grammars. In M. Gross, M. Halle and Sehutzenberger, M.P.
(editors), The Formal Analysis of Natural Languages. Mouton, La Hague.

3oshi, Aravind K., 1985. How Much Context-Sensitivity is Necessary for Characterizing Structural Descriptions--
Tree Adjoining Grammars. In DoTty, D.; Karttunen, L.; and Zwicky, A. (editors), Natural Language Processing--
Theoretical, Computational and Psychological Perspectives. Cambridge University Press, New York. Originally
presented in a Workshop on Natural Language Parsing at Ohio State University, Columbus, Ohio, May 1983.

3oshi, A. K.; Levy, L. S.; and Takahashi, M., 1975. Tree Adjunct Grammars. J. Comput. Syst. Sci. 10(1).

Karttunen, Lauri, 1986. Radical Lexicalism. Technical Report CSLI-86-68, CSLI, Stanford University. To also appear
in New Approaches to Phrase Structures, University of Chicago Press, Baltin, M. and Kroch A., Chicago, 1988.

Kroch, A. and 3oshi, A. K., 1985. Linguistic Relevance of Tree Adjoining Grammars. Technical Report MS-CIS-85-18,
Department of Computer and Information Science, University of Pennsylvania.

Pollard, Carl and Sag, Ivan A., 1987. Information-Based Syntax and Semantics. Vol 1: Fundamentals. csli.

Schabes, Yves and Joshi, Aravind K., June 1988. An Earley-Type Parsing Algorithm for Tree Adjoining Grammars.
In 26 th Meeting of the Association for Computational Linguistics. Buffalo.

Schabes, Yves; Abeill4, Anne; and Joshi, Aravind K., August 1988. Parsing Strategies with 'Lexicalized' Grammars:
Application to Tree Adjoining Grammars. In Proceedings of the 12 th International Conference on Computational
Linguistics.

Steedman, M., 1988. Combinatory Grammars and Parasitic Gaps. To appear in Natural Language and Linguistic
Theory.

215

