
THE BBN SPOKEN LANGUAGE SYSTEM

Sean Boisen Yen-Lu Chow Andrew Haas Robert Ingria Salim Roukos
BBN Systems and Technologies Corporation

10 Moulton Street
Mailstop 009

Cambridge, MA 02238

David Stallard

ABSTRACT

We describe HARC, a system for speech understand-
ing that integrates speech recognition techniques with
natural language processing. The integrated system
uses statistical pattern recognition to build a lattice of
potential words in the input speech. This word lattice
is passed to a unification parser to derive all possible
associated syntactic structures for these words. The
resulting parse structures are passed to a multi-level
semantics component for interpretation.

INTRODUCTION

HARC, the BBN Spoken Language System (Boisen,
et al. (1989)) is a system for speech understanding
that integrates speech recognition techniques with
natural language processing. As our integration
methodology, we use lallice parsing. In this architec-
ture, an acoustic processor produces a lattice of pos-
sible words that is passed to a parser which produces
all possible parses for all syntactically permissible
word sequences present in the lattice. These parse
trees are then passed to a semantic interpretation
component, which produces the possible interpreta-
tions of these parse structures, filtering out anomalous
readings where possible.

THE ARCHITECTURE OF HARC

In this section, we present a more detailed outline of
the general architecture of HARC:

1. An acoustic processor, which uses context-
dependent Hidden Markov Models (HMMs)
for acoustic modelling, produces a lattice of
possible words in the input speech.

2. A chart parser uses a unification grammar to
parse the word lattice and produces the set
of all possible parses for all syntactically per-
missible word sequences in the lattice. The
resulting parses are ranked by acoustic
likelihood score.

3. A multi-level semantics component
processes the parse trees? This component

1This architecture and the names of the associated language levels
are from the PHLIQA1 system (Bronnenberg et al. 1980).

uses 4 translation steps to derive the mean-
ing of each parse.

a. The parse tree is converted to an expres-
sion of EFL (English-oriented Formal
Language); at this level, each word has
one EFL constant; this includes words
withmultiple senses.

b. Each EFL expression is translated into
one or more expressions of WML (World
Model Language). Where possible, am-
biguous constants from an EFL expres-
sion are disambiguated and logically
equivalent EFL expressions are col-
lapsed.

c. Each WML expression is converted to an
expression in DBL (Data Base
Language), which contains one constant
for each file in the data base.

d. The value of each DBL expression is
computed by evaluating the expression
against the database; this value is ex-
pressed in CVL (Canonical Value
Language).

For speech understanding, semantics identifies the
highest scoring "meaningful" sentence. This sen-
tence is the recognized spoken utterance and its
meaning is the sytem's interpretation of the input.

TRAINING AND TEST SETS

To measure the coverage of the syntactic and seman-
tic components and the speech understanding perfor-
mance of the integrated system, we use the DARPA
1000-word Resource Management Database corpus.
This corpus is divided into two sets of sentences: 2 a

training corpus of 791 sentences and a test corpus of

2The DARPA database has well.defined training and test sets for
the speech data. However, for natural language development work,
there is no such such well-defined division. For the purpose of
evaluating natural language work, we defined at 8BN a training
corpus of 791 sentences, based on 791 patterns, and a test corpus of
200 sentences, based on an independently selected set of 200
patterns. We feel these two corpora are a reasonable interim solution
for the language modelling problem in the DARPA Resoume
Management domain.

106

200 sentences. Syntax and semantics development
work is done on the basis of the training corpus~ the
test corpus is kept hidden from the system
developers, to simulate novel utlerances that users of
the system might make. Periodically, the test corpus
is run through the system, again without the
developers looking at any of the sentences. However,
statistics are collected on the percentage of sen-
tences successfully processed; this number can be
compared to the percentage of the training corpus
processed, to see how well the system generalizes
from the training (known) to test (unknown) corpus.
Subsequent sections of this paper present coverage
results on both training and test sets for each com-
ponent of the system.

THE ACOUSTIC PROCESSOR

Since the speech understanding search in our system
is decoupled into two phases--speech acoustic scor-
ing and language model scoring, to do this overall
search most efficiently, we need to ensure that suf-
ficient computing is performed in the first stage and
enough information is saved so that optimality is
preserved in the later stages of processing.

To this end, our lattice computation algorithm at-
tempts, in principle, to compute acoustic likelihood
scores for all words in the vocabulary V for all time
intervals t I and t 2. The acoustic data is typically a
sequence of analyzed and vector-quantized (VQ) in-
put spectra sampled every 10 milliseconds (Chow, et
al. 1987). We model the input speech at the phonetic
level using robust context-dependent HMMs of the
phoneme. The acoustic model for each word in the
vocabulary is then derived from the concatenation of
these phonetic HMMs. Using these acoustic models
of the word, one can compute the acoustic scores for
all words in the input utterance using a time-
synchronous dynamic time warping (DTW) procedure
with beam pruning.

An integral part of the task of the acoustic processor
is to produce a word lattice that can be processed
efficiently by the lattice parser. To do this, we reduce
the lattice size through various lattice pruning tech-
niques. We have used three pruning techniques,
which we describe here briefly. (For full details, see
Boisen, et al. (1989).)

Score Thresholding:
Word hypotheses are pruned on the basis of the
unit score: the hypothesis' acoustic score normal-
ized by its duration; the goal is to keep only those
acoustic theories with a unit score greater than
some predetermined threshold, and eliminate all
others. In practice, we found it nearly impossible
to find a single threshold that works for all words
and have adopted a strategy that uses dual

thresholds---one for short, function words and
another for longer, multi-syllabic words.

Subsumption Pruning:
Subsumption pruning is designed to explicitly
deal with the problem of short, function words,
which are acoustically unreliable and which are
often found throughout the speech signal, even
within longer words.. Since it is almost always
the case that short words match parts of long
words, not vice versa, word theories that are
found completely inside another word theory, with
unit score below some factor 13 of the parent
theory, are eliminated from the word lattice.

Forward-Backward Pruning:
Forward-backward pruning is based on the
familiar forward-backward algorithm for estimat-
ing the parameters of HMMs; it requires that a/I
acoustic theories must be part of a complete path
through the lattice, and furthermore, must score
reasonably well.

Rather then determining the optimal pruning tech-
nique and using it alone, the system uses these tech-
niques in tandem to try to produce the optimal word
lattice in terms of size and information content,

THE SYNTACTIC COMPONENT

THE GRAMMAR FORMALISM

HARC uses a grammar formalism based on an-
notated phrase structure rules; this formalism is called
the BBN ACFG (for Annotated Context Free
Grammar). While it is in the general tradition of aug-
mented phrase structure grammars, its immediate in-
spiration is Definite Clause Grammars (DCGs)
(Pereira & Warren (1980)). In such grammars, rules
are made up of elements that are not atomic
categories but, rather, are complex symbols consist-
ing of a category label and feature specifications.
Features (also called arguments) may be either
constants---indicated by lists in the BBN ACFG--or
variables---indicated by symbols with a leading colon.
Identity of variables in the different elements of a rule
is used to enforce agreement in the feature indicated
by the variable. An example is (features to be dis-
cussed are underlined):

(s (oco~) :MOOD (Wa-) ...)
(NP :NSUBCATFRAME :AGR :NPTYPE . ..)
(W :AGR :NPTYPE :MOOD ...)

(OPTSADJUNCT :AGR ...)

where the variable :AGR enforces agreement be-
tween the VP (ultimately, its head V) and the subject
NP; :NPT'Z'PE, agreement between the syntactic type
of the subject NP and that selected by the head V of
the VP; and :MOOD, agreement between the mood of
the S and that of the VP.

107

In the BBN ACFG, as in DCGs, each grammatical
category has a fixed number of obligatory, positional
arguments. The essential difference between our for-
malism and DCGs is a syntactic typing system,
whereby each argument position is limited to a fixed
number of values. We have found that this restriction,
in conjunction with the obligatory and positional nature
of arguments, to be of great assistance in developing
a large grammar (currently over 800 rules). By es-
chewing more sophisticated mechanisms such as fea-
ture disjunction, feature negation, metarules, optional
arguments, and the use of attribute-value pairsmas
are found in other complex feature based grammars,
such as GPSG (Gazdar, et al (1985)), LFG (Bresnan
(1982)), and PATR-II (Shieber, at al. (1983))-- i t is
relatively straightforward to have a simple syntactic
checker that ensures that all grammar rules are well-
formed. In a grammar as large as the BBN ACFG,
having the ability to automatically make sure that all
rules are well-formed is no small advantage. We
have so far found no need for most of the advanced
facets of other complex feature based formalisms,
with the possible exception of disjunction, which will
probably be added in a restricted form.

An additional difference between our work and stan-
dard DCGs is a depth-boundedness restriction, which
is discussed in the next section.

THE PARSING ALGORITHM

The BBN Spoken Language System uses a parsing
algorithm which is essentially that of Graham, Har-
rison, and Ruzzo (1980), henceforth, GHR. This algo-
rithm, in turn, is based on the familiar Cocke-Kasami-
Younger (CKY) algorithm for context-free grammars.
The CKY algorithm is quite simple and powerful: it
starts with the terminal elements in a sentence and
builds successively larger constituents that contain
those already found and constructs all possible
parses of the input. However, while the CKY algo-
rithm requires that each rule introducing non-terminal
symbolsmessentially the parts of speech, as op-
posed to the terminal symbols (lexical items and
grammatical formatives)--be in Chomsky Normal
Form (i.e. of the form ~ ~ B C, with exactly two
non-terminal symbols on the right hand side), the
GHR algorithm uses several mechanisms, including
tables and "dotted rules", to get around this restric-
tion. Since the GHR algorithm, like the CKY algo-
rithm, deals with context-free grammars, rather than
context-free grammars annotated with features, the
use of the required feature substitution
mechanism--unification--is an extension to the
GHR algorithm; see Haas (1987) for full details.

One useful result of our work on extending the GHR
algorithm to handle annotated context free grammars
(ACFGs) is the discovery that there is a class of

ACFGs, depth-bounded ACFGs, for which the parsing
algorithm is guaranteed to find all parses and halt
(Haas (1989)). Depth-bounded ACFGs are charac-
terized by the property that the depth of a parse tree
cannot grow unboundedly large unless the length of
the string also increases. In effect, such grammars do
not permit rules in which a category derives only itself
and no other children; such rules do not seem to be
needed for the analysis of natural languages, so com-
putational tractability is maintained without sacrificing
linguistic coverage. The fact that the parsing algo-
rithm for this class of ACFGs halts is a useful result,
since parsers for complex feature based grammars
cannot be guaranteed to halt, in the general case. By
restricting our grammars to those that satisy depth-
boundedness, we can be sure that we can parse input
utterances bottom-up and find all parses without the
parser going into an infinite loop.

CONSTRAINING SYNTACTIC AIVIBIGUITY

Since the BBN ACFG parser finds all the parses for a
given input, there is a potential problem regarding the
number of parses that are found for each input ut-
terance. Our experience has been that while the
average number of parses per sentence is usually
quite reasonable (about 2), in cases of conjunction or
ellipsis the number of parses can grow wildly. In or-
der to obtain broad coverage without explosive am-
biguity, we have experimented with a version of the
parser in which rules are sorted into different levels of
grammaticality. In this version of the parser, parses
are ranked according to the rules utilized. Initial ef-
forts, in which ranks were assigned to rules by hand,
are encouraging. A version of the grammar which
included rules such as determiner ellipsis that in-
creased ambiguity, had an average of 18 parses per
sentence and a mode of 2 parses. However, when
only first order parses were considered the average
was 2.86 parses and the mode was 1. The parser
without the extra rules and without ranking has an
average of 3.95 parses and a mode of 1.

We have also experimented with utilizing statistical
methods of assigning probabilities to rules, based on
the frequency of occurrence of the rules of the gram-
mar in the training corpus. Testing the results of this
automatic assignment against a corpus of 48 sen-
tences (from the training corpus) that were manually
parsed, the parse assigned the top score by the
probabilistic parser was correct 77% of the time.
Looking only at the top 6 parses, the correct parse
was present 96% of the time. Since the success rate
is 96% considering only the top 6 parses, while 50%
of the sentences have 6 or more parses, this suggests
that this probabalistic approach is on the right track.

108

SYNTACTIC COVERAGE

The current ACFG grammar contains 866 rules: of
these, 424 introduce grammatical formatives (such as
the articles "a", "the", prepositions, etc). The remain-
ing rules handle the general syntactic constructions of
English. Coverage on the training corpus is currently
g1% and coverage of the test corpus is 81% with this
grammar. The version of the grammar used by the
parser that utilizes ranked rules contains 873 rules.
Coverage with this version of the grammar is 94% on
training and 88% on test.

THE SEMANTIC COMPONENT

As a previous section noted, the semantic processing
of an input query takes place in several stages. First,
the output of the parser, the parse tree, is passed to
the structural semantic module. This produces an
expression of the logical language EFL, which may be
ambiguous. The second stage of processing accepts
as input an expression of EFL and returns as output
zero or more expressions of the logical language
WML. The EFL translation is concerned with struc-
tural semantics--in other words, just the effect of
syntactic structure on meaning. The WML translation
is concerned with lexical semantics--the meaning (in
a given domain) of particular words.

The third steps converts the WML expression to an
expression of DBL. This translation step maps be-
tween the logical structure most natural in describing
an application domain and the actual structure of
database files. Finally, the answer to a database
query in DBL is expressed in a formula of CVL.

THE LOGICAL LANGUAGES

Each of the logical languages just mentioned---EFL,
WML, DBL and CVL---is derived from a common logi-
cal language from which each differs only in the par-
ticular constant symbols which are allowed and not in
the operators (the only .exception is CVL, whose
operators are a subset of the operators of this com-
mon language).

This logical language has three main properties.
First, it is higher-order, which means that it can quan-
tify not only over individuals, but over sets, tuples and
functions as well. Second, it is intensional, which
means that the denotations of its expressions are as-
signed relative to external indices of world and time,
and it incorporates an "intension" operator which
denotes the "sense" (with respect to these indices) of
an expression. Third, the languge has a rich system
of types which are used to represent semantic selec.
tional restrictions and so serve to delimit the set of
meaningful expressions in the language.

STRUCTURAL SEMANTICS

The structural semantic component uses a set of
structural semantic rules, paired one for one with the
syntactic rules of the grammar. An example of these
rules is given below: 3

S --~ NP VP OPTSADJUNCT
(lambda (np vp oa)

(oa (intension ((q np) vp))))

This is the top-level declarative clause rule given ear-
lier, with its corresponding semantic rule. Note that
there are three variables bound in the lambcla--np,
vp oa--corresponding to the three terms on the right-
hand side of the syntactic rule---NP, VP, and
OPTSADJUNCT. During semantic interpretation, the
semantic translations of these right-hand terms are
substituted in for the variables np, vp and oa to make
the interpretation of the whole clause.

The effect of this rule is to construct a proposition
corresponding to the application of the predicate of
the clause--the VP- - to the subject of the
clause---the NP. This proposition is modified by the
optional sentential adjunct, whose semantic trans-
lation is applied to it. Examples of sentential adjuncts
are phrases such as "during April", and "in Africa", as
well as adverbs and more complicated modifiers.

LEXlCAL SEMANTICS

The lexical semantic component is concerned with the
specific meanings of a word in a subject domain, as
opposed to the manner in which these meanings are
combined. These specific meanings are represented
by expressions of WML which are associated by rules
with the constant symbols of EFL.

A recursive-descent translation algorithm returns for
each node of an EFL expression a set of WML trans-
lations. The translations for a constant expression are
just those dictated by its WML translation rule. The
translations for a complex expression are derived by
combining, in a cartesian product fashion, the trans-
lations of the parts of the expression. At each level,
the set of possible translations is filtered to remove
anomalous translations---those which involve com-
binations of WML expressions with incompatible
semantic types.

Sentences which are semantically ambiguous (such
as "They went to the bank") will simply return multiple
WML translations. Sentences which have no non-
anomalous WML translation (and are therefore con-
sidered meaningless by the system) will return the
empty set as the result of WML translation.

3Feature specifications are omitted here for conciseness.

109

SEMANTIC COVERAGE

Currently, the semantics is able to map 75% of the
training sentences and 52% of the test sentences to a
WML expression. The corresponding figures for CVL
are 44% for training and 32% for test.

THE LATTICE PARSER

The basic approach we have taken for speech under-
standing is to extend the text parser to deal with
spoken input. So instead of operating on typed input,
where a single word appears unambiguously at each
position, the parser must now deal with speech input,
which is highly ambiguous: a set of words is possible
at every position with varying acoustic likelihood
scores. While the data structure which is the input to
the text parser is relatively simple---a list of
words---the input to the lattice parser is a lattice of all
the possible words which have been found. As-
sociated with each word in the lattice (and therefore
each grammatical constituent) is a set of acoustic
match scores, with each score corresponding to par-
ticular starting and ending times.

Parsing now consists of building larger grammatical
constituents from smaller ones and also keeping track
of the resulting acoustic scores as the new con-
stituents span longer intervals. The parser builds
these larger constituents word synchronously in a way
similar to the text parser. Two parsing algorithms
have been implemented for the lattice parser: the first
is a relatively straightforward modification of the text
parser's algorithm to deal with the input word lattice.
The second is similar, but supplements the text
parser's algorithm with a top-down predictive filtering
component. This significantly reduces the computa-
tional complexity of the lattice parsing algorithm; see
Chow & Roukos (1989) for full details.

Currently, in the integrated speech understanding sys-
tem, just as in the text processing system, the seman-
tics component is applied after all parsing is done and
is not interleaved with the parsing. While there are
possible disadvantages to this approachmmore com-
putation may be done since semantic knowledge is
not applied until late in processingmwe have chosen
this method of integration as our first attempt since
the integration is simple and clean.

INTEGRATED SYSTEM PERFORMANCE

In this section, we present results for HARC on the
standard DARPA 1000-Word Resource Management
speech database (Price, et al. (1988)), with 600 sen-
tences (about 30 minutes) of training speech to train
the acoustic models for each speaker. For these ex-
periments, speech was sampled at 20 kHz, and 14
MeI-Frequency cepstral coeffients (MFCC), their

derivatives (DMFCC), plus power (R0) and derivative
of power (DR0) were computed for each 10 ms, using
a 20 ms analysis window. Three separate 8-bit
codebooks were created for each of the three sets of
parameters using K-means vector quantization (VQ).
The experiments were conducted using the multi-
codebook paradigm in the HMM models, where the
output of vector quantizer, which consists of a vector
of 3 VQ codewords per 10 ms frame, is used as the
input observation sequence to the HMM.

For the purpose of making computation tractable, we
applied the lattice pruning techniques described
above to a full word lattice to reduce the average
lattice size from over 2000 word theories to about 604 .
At this lattice size, the probability of having the correct
word sequence in the lattice is about 98%, which
places an upperbound on subsequent system perfor-
mance using the language models.

Grammar Perplexity

None 1000

Word Pair 60

Syntax 700

+Semantics NA

%Word % Sentence
Error Error

15.45 71.3

3.9 26.0

7.5 38.0

6.9 36.4

Figure 1: Recognition Performance of HARC

Figure 1 shows the results averaged across 7
speakers, using a total of 109 utterances, under 4
grammar conditions. As shown, the grammars tested
include: 1) no grammmar: all word sequences are
possible; 2) the word pair grammar, containing all
pairs of words occuring in the set of sentences that
was used to define the database; 3) the syntactic
grammar alone; and 4) semantic interpretation for a
posteriori filtering on the output of lattice parsing.

Note that the performance using the syntactic lan-
guage model is 7.5% error. At a perplexity of 700, its
performance should be closer to the no grammar
case, which has a perplexity of 1000 and an error rate
of about 15%. We hypothesize that perplexity alone
is not adequate to predict the quality of a language
model. In order to be more precise, one needs to look
at acoustic perplexity: a measure of how well a lan-
guage model can selectively and appropriately limit
acoustic confusability. A linguistically motivated lan-
guage model seems to do just that--at least in this
limited experiment. Also, surprisingly, using seman-
tics gave insignificant improvement in the overall per-
formance. One possible explanation for this is that

460 word theories corresponds to about 4000 acoustic scores.

ii0

semantics gets to filter only a small number of the
sentences accepted by syntax. Out of the sentences
which receive semantic interpretations, syntax alone
determined the correct sentence better than 60 per-
cent of the time, leaving only about 20 sentences in
which the semantics has a chance to correct the error.
Unfortunately, of these errorful answers, most were
semantically meaningful, although there were some
exceptions. Pragmatic information may be a higher
level knowledge source to constrain the possible word
sequences, and therefore improve performance.

ACKNOWLEDGMENTS

The work reported here was supported by the Ad-
vanced Research Projects Agency under Contract No.
N00014-C-87-0085 monitored by the Office of Naval
Research. The views and conclusions contained in
this document are those of the authors and should not
be interpreted as necessarily representing the official
policies, either expressed or implied, of the Defense
Advanced Research Projects Agency of the United
States Government.

References

Boisen S., Y. Chow, A. Haas, R. lngria,
S. Roucos, R. Scha, D. Stallard and
M. Vilain (1989) Integration of Speech and
Natural Language: Final Report, Report No.
6991, BBN Systems and Technologies Cor-
poration, Cambridge, Massachusetts.

Bresnan, Joan W. (1982) The Mental Represen-
tation of Grammatical Relations, MIT Press,
Cambridge, Massachusetts.

Bronnenberg, W.J.H.J., Harry C. Bunt, S.P. Jan
Landsbergen, Remko J .H. Scha, W.J.
Schoenmakers, and E.P.C. van Utteren
(1980) "The Question Answering System
PHLIQAI", in Leonard Bolc, ed., Natural
Language Question Answering Systems,
Hanser, Munich, pp. 217--305.

Chow, Y.L., M.O. Dunham, O.A. Kimball, M.A.
Krasner, G.F. Kubala, J. Makhoul, P.J.
Price, S. Roucos, and R.M. Schwartz (1987)
"BYBLOS: The BBN Continuous Speech
Recognition System", IEEE Int. Conf.
Acoust., Speech, Signal Processing, Dallas,
TX, April 1987, pp. 89--92, Paper No. 3.7.

Chow, Yen-Lu and Salim Roukos (1989)
"Speech Understanding Using a Unification
Grammar", in Proceedings of the/EEE Inter-
national Conference on Acoustics, Speech,
and Signal Processing, Glasgow, Scotland.

Gazdar, Gerald, Ewan Klein, Geoffrey Pullum,
Ivan Sag (1985) Generalized Phrase Struc-
ture Grammar, Harvard University Press,
Cambridge, Massachusetts.

Graham, Susan t., Michael A. Harrison, and
Walter L. Ruzzo (1980) "An Improved
Context-free Recognizer", ACM Trans-
actions on Programming Languages and
Systems, 2.3, pp. 415--461.

Haas, Andrew (1987) "Parallel Parsing for
Unification Grammar", Proceedings of the
Tenth International Joint Conference on Ar-
tificial Intelligence, pp. 615--618.

Haas, Andrew (1989) "A Generalization of the
Offline Parsable Grammars", 27th Annual
Meeting of the Association for Computa-
tional Linguistics: Proceedings of the
Conference, Association for Computational
Linguistics, Morristown, NJ.

Pereira, Fernando C. N. and David H. D. Warren
(1980) "Definite Clause Grammars for Lan-
guage Analysis---A Survey of the For-
malism and a Comparison with Augmented
Transition Networks", Artificial Intelligence
13, pp. 231--278.

Price, P., W.M. Fisher, J. Bernstein and D.S. Pal-
lett (1988) "The DARPA 1000-Word
Resource Management Database for Con-
tinuous Speech Recognition", IEEE Int.
Conf. Acoust., Speech, Signal Processing,
New York, NY, April 1988, pp. 651 --654.

Shieber, Stuart, Hans Uszkoreit, Fernando
Pereira, Jane Robinson, and Mabry Tyson
(1083) "The Formalism and Implementation
of PATR-II" in Grosz, Barbra J. and Mark
E. Stickel (1983) Research on Interactive
Acquisition and Use of Know/edge: Final
Report SRI Project 1894, SRI International,
Menlo Park, California., pp. 39--79.

iii

