
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 628–635, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Recognising Textual Entailment with Logical Inference

Johan Bos
School of Informatics

University of Edinburgh
2 Buccleuch Place

Edinburgh, EH8 9LW
jbos@inf.ed.ac.uk

Katja Markert
School of Computing
University of Leeds
Woodhouse Lane
Leeds, LS2 9JT

markert@comp.leeds.ac.uk

Abstract

We use logical inference techniques for
recognising textual entailment. As the
performance of theorem proving turns
out to be highly dependent on not read-
ily available background knowledge, we
incorporate model building, a technique
borrowed from automated reasoning, and
show that it is a useful robust method to
approximate entailment. Finally, we use
machine learning to combine these deep
semantic analysis techniques with simple
shallow word overlap; the resulting hy-
brid model achieves high accuracy on the
RTE testset, given the state of the art. Our
results also show that the different tech-
niques that we employ perform very dif-
ferently on some of the subsets of the RTE
corpus and as a result, it is useful to use the
nature of the dataset as a feature.

1 Introduction

Recognising textual entailment (RTE) is the task to
find out whether some text T entails a hypothesis H.
This task has recently been the focus of a challenge
organised by the PASCAL network in 2004/5.1 In
Example 1550 H follows from T whereas this is not
the case in Example 731.

1All examples are from the corpus released as part of
the RTE challenge. It is downloadable fromhttp://www.
pascal-network.org/Challenges/RTE/ . The exam-
ple numbers have also been kept. Each example is marked for
entailment as TRUE if H follows from T and FALSE otherwise.
The dataset is described in Section 4.1.

Example: 1550 (TRUE)
T: In 1998, the General Assembly of the Nippon Sei Ko

Kai (Anglican Church in Japan) voted to accept female
priests.

H: The Anglican church in Japan approved the ordination
of women.

Example: 731 (FALSE)
T: The city Tenochtitlan grew rapidly and was the center

of the Aztec’s great empire.
H: Tenochtitlan quickly spread over the island, marshes,

and swamps.

The recognition of textual entailment is without
doubt one of the ultimate challenges for any NLP
system: if it is able to do so with reasonable accu-
racy, it is clearly an indication that it has some thor-
ough understanding of how language works. Indeed,
recognising entailment bears similarities to Turing’s
famous test to assess whether machines can think,
as access to different sources of knowledge and the
ability to draw inferences seem to be among the pri-
mary ingredients for an intelligent system. More-
over, many NLP tasks have strong links to entail-
ment: in summarisation, a summary should be en-
tailed by the text; paraphrases can be seen as mutual
entailment between T and H; in IE, the extracted in-
formation should also be entailed by the text.

In this paper, we discuss two methods for recog-
nising textual entailment: a shallow method relying
mainly on word overlap (Section 2), and deep se-
mantic analysis, using state-of-the-art off-the-shelf
inference tools, namely a theorem prover and a
model builder (Section 3). These tools rely on Dis-
course Representation Structures for T and H as well
as lexical and world knowledge. To our knowledge,
few approaches to entailment currently use theorem
provers and none incorporate model building (see

628



Section 5 for a discussion of related work).
Both methods are domain-independent to increase

transferrability and have not been tailored to any par-
ticular test suite. In Section 4 we test their accuracy
and robustness on the RTE datasets as one of the few
currently available datasets for textual inference. We
also combine the two methods in a hybrid approach
using machine learning. We discuss particularly the
following questions:

• Can the methods presented improve signifi-
cantly over the baseline and what are the per-
formance differences between them? Does the
hybrid system using both shallow and deep se-
mantic analysis improve over the individual use
of these methods?

• How far does deep semantic analysis suffer
from a lack of lexical and world knowledge and
how can we perform logical inference in the
face of potentially large knowledge gaps?

• How does the design of the test suite affect per-
formance? Are there subsets of the test suite
that are more suited to any particular textual en-
tailment recognition method?

2 Shallow Semantic Features

We use several shallow surface features to model the
text, hypothesis and their relation to each other.

Most importantly, we expect some dependency
between surface string similarity of text and hypoth-
esis and the existence of entailment. Our string sim-
ilarity measure uses only a form of extended word
overlap between text and hypothesis, taking into ac-
count equality of words, synonymy and morpholog-
ical derivations. WordNet (Fellbaum, 1998) is used
as the knowledge source for synonymy and deriva-
tions. The exact procedure is as follows:

Both text and hypothesis are tokenised and lem-
matised. A lemmal1 in the hypothesis is said
to be related to a lemmal2 in the text iff l1 and
l2 are equal, belong to the same WordNet synset
(e.g., “murder” and “slay”), are related via WordNet
derivations (e.g. “murder” and “murderer”) or are
related via a combination of synonymy and deriva-
tions (e.g. “murder” via “murderer” to “liquidator”).
No word sense disambiguation is performed andall
synsets for a particular lemma are considered.

In addition, each lemma in the hypothesis is as-
signed its inverse document frequency, accessing the
Web as corpus via the GoogleAPI, as its weight.
This standard procedure allows us to assign more
importance to less frequent words.

The overlap measurewnoverlap between text
and hypothesis is initialised as zero. Should a lemma
in the hypothesis be related to a lemma in the text,
its weight is added townoverlap , otherwise it is
ignored. In the endwnoverlap is normalised by
dividing it by the sum of all weights of the lemmas
in the hypothesis. This ensures thatwnoverlap is
always a real number between0 and1 and also en-
sures independence of the length of the hypothesis.

Apart from wnoverlap we take into account
length (as measured by number of lemmas) of text
and hypothesis, because in most of the observed
cases for true entailments the hypothesis is shorter
than the text as it contains less information. This is
covered by three numerical features measuring the
length of the text, of the hypothesis and the relative
length of hypothesis with regard to the text.

3 Deep Semantic Analysis

3.1 Semantic Interpretation

We use a robust wide-coverage CCG-parser (Bos et
al., 2004) to generate fine-grained semantic repre-
sentations for each T/H-pair. The semantic represen-
tation language is a first-order fragment of the DRS-
language used in Discourse Representation Theory
(Kamp and Reyle, 1993), conveying argument struc-
ture with a neo-Davidsonian analysis and including
the recursive DRS structure to cover negation, dis-
junction, and implication. Consider for example:

Example: 78 (FALSE)
T: Clinton’s new book is not big seller here.
H: Clinton’s book is a big seller.

drs(T):

x1 x2 x3

book(x1)
book(x2)

¬
x1=x2

clinton(x3)
of(x1,x3)

¬

e4 x5

big(x5)
seller(x5)

be(e4)
agent(e4,x1)

patient(e4,x5)
loc(e4,here)

drs(H):

x1 x2 e3 x4

book(x1)
clinton(x2)
of(x1,x2)
big(x4)

seller(x4)
be(e3)

agent(e3,x1)
patient(e3,x4)

629



Proper names and definite descriptions are treated
as anaphoric, and bound to previously introduced
discourse referents if possible, otherwise accommo-
dated. Some lexical items are specified as presup-
position triggers. An example is the adjective ‘new’
which has a presuppositional reading, as shown by
the existence of two different “book” entities in
drs(T). Scope is fully specified.

To check whether an entailment holds or not, we
use two kinds of automated reasoning tools: Vam-
pire, a theorem prover (Riazanov and Voronkov,
2002), and Paradox, a model builder (Claessen and
Sörensson, 2003). Both tools are developed to deal
with inference problems stated in first-order logic.
We use the standard translation from DRS to first-
order logic (Kamp and Reyle, 1993) to map our se-
mantic representation onto the format required by
the inference tools.

3.2 Theorem Proving

Given a T/H pair, a theorem prover can be used to
find answers to the following conjectures:

1. T implies H (shows entailment)
2. T+H are inconsistent (shows no entailment)

Assume that the functionDRS denotes the DRS cor-
responding to T or H, andFOL the function that
translates a DRS into first-order logic. Then, if the
theorem prover manages to find a proof for

FOL(DRS(T))→FOL(DRS(H)) (A)

we know that we are dealing with a true entailment.
In addition, to use a theorem prover to detect incon-
sistencies in a T/H pair, we give it:

¬FOL(DRS(T);DRS(H)) (B)

If the theorem prover returns a proof for (B), we
know that T and H are inconsistent and T definitely
doesn’t entail H (assuming that T and H are them-
selves consistent).

Examples The theorem prover will find that T im-
plies H for the following examples:

Example: 1005 (TRUE)
T: Jessica Litman, a law professor at Michigan’s Wayne

State University, has specialized in copyright law and
Internet law for more than 20 years.

H: Jessica Litman is a law professor.

Example: 1977 (TRUE)
T: His family has steadfastly denied the charges.
H: The charges were denied by his family.

Example: 898 (TRUE)
T: After the war the city was briefly occupied by the Allies

and then was returned to the Dutch.
H: After the war, the city was returned to the Dutch.

Example: 1952 (TRUE)
T: Crude oil prices soared to record levels.
H: Crude oil prices rise.

These examples show how deep semantic analy-
sis deals effectively with apposition, active-passive
alternation, coordination, and can integrate lexical
knowledge.

The RTE dataset only contains a few inconsistent
T/H pairs. Even although Example 78 might look
like a case in point, it is not inconsistent: It would
be if the T in the example would have beenClinton’s
new book is not a big seller. The addition of the
adverbheremakes T+H consistent.

3.3 Background Knowledge

The theorem prover needs background knowledge
to support its proofs. Finding a proof for Example
1952 above is only possible if the theorem prover
knows that soaring is a way of rising.

How does it know this? Because in addi-
tion to the information from T and H alone, we
also supply relevant background knowledge in the
form of first-order axioms. Instead of giving just
FOL(DRS(T);DRS(H)) to the theorem prover, we sup-
ply it with (BK ∧ FOL(DRS(T);DRS(H))) where BK
is short for the relevant background knowledge.

We generate background knowledge using three
kinds of sources: generic knowledge, lexical knowl-
edge, and geographical knowledge. Axioms for
generic knowledge cover the semantics of posses-
sives, active-passive alternation, and spatial knowl-
edge. There are about 20 different axioms in the cur-
rent system and these are the only manually gener-
ated axioms. An example is

∀e∀x∀y(event(e)∧agent(e,x)∧in(e,y)→in(x,y))

which states that if an event is located in y, then so
is the agent of that event.

Lexical knowledge is created automatically from
WordNet. A hyponymy relation between two

630



synsets A and B is converted into∀x(A(x)→B(x)).
Two synset sisters A and B are translated into
∀x(A(x)→ ¬B(x)). Here the predicate symbols
from the DRS are mapped to WordNet synsets using
a variant of Lesk’s WSD algorithm (Manning and
Schuetze, 1999). Examples 78 and 1952 would be
supported by knowledge similar to:

∀x(clinton(x)→person(x)) ∀x(book(x)→artifact(x))
∀x(artifact(x)→ ¬person(x)) ∀x(soar(x)→rise(x))

Finally, axioms covering geographical knowledge
about capitals, countries and US states are extracted
automatically from the CIA factbook. An example:

∀x∀y(paris(x)∧france(y)→in(x,y))

3.4 Model Building

While theorem provers are designed to prove that a
formula is a theorem (i.e., that the formula is true in
any model), they are generally not good at deciding
that a formula isnot a theorem. Model builders are
designed to show that a formula is true in at least one
model. To exploit these complementary approaches
to inference, we use both a theorem prover and a
model builder for any inference problem: the theo-
rem prover attempts to prove the input whereas the
model builder simultaneously tries to find a model
for the negation of the input. If the model builder
finds a model for

¬FOL(DRS(T))→FOL(DRS(H)) (= ¬A)

we know that there can’t be a proof for its negation
(hence no entailment). And if the model builder is
able to generate a model for

FOL(DRS(T);DRS(H)) (= ¬B)

we know that T and H are consistent (maybe entail-
ment). (In practice, this is also a good way to termi-
nate the search for proofs or models: if the theorem
prover finds a proof for¬φ, we can halt the model
builder to try and find a model forφ (because there
won’t be one), and vice versa.)

Another attractive property of a model builder is
that it outputs a model for its input formula (only of
course if the input is satisfiable). A model is here
the logical notion of a model, describing a situation
in which the input formula is true. Formally, a model
is a pair〈D,F 〉 whereD is the set of entities in the

domain, andF a function mapping predicate sym-
bols to sets of domain members. For instance, the
model returned for fol(drs(T)) in Example 78 is one
where the domain consists of three entities (domain
size = 3):

D = {d1,d2,d3} F(loc) = {}
F(book) = {d1,d2} F(seller) = {}
F(clinton) = {d3} F(be) = {}
F(of) = {(d1,d3)} F(agent) = {}
F(big) = {} F(patient) = {}

Model builders like Paradox generate finite mod-
els by iteration. They attempt to create a model for
domain size 1. If they fail, they increase the domain
size and try again, until either they find a model or
their resources run out. Thus, although there are in-
finitely many models satisfying fol(drs(T)), model
builders generally build a model with a minimal do-
main size. (For more information on model building
consult (Blackburn and Bos, 2005)).

3.5 Approximating Entailment

In an ideal world we calculate all the required back-
ground knowledge and by either finding a proof or
a countermodel, decide how T and H relate with re-
spect to entailment. However, it is extremely hard
to acquire all the required background knowledge.
This is partly due to the limitations of word sense
disambiguation, the lack of resources like WordNet,
and the lack of general knowledge in a form suitable
for automatic inference tasks.

To introduce an element of robustness into our ap-
proach, we use the models as produced by the model
builders to measure the “distance” from an entail-
ment. The intuition behind it is as follows. If H
is entailed by T, the model for T+H is not informa-
tive compared to the one for T, and hence does not
introduce new entities. Put differently, the domain
size for T+H would equal the domain size of T. In
contrast, if T does not entail H, H normally intro-
duce some new information (except when it contains
negated information), and this will be reflected in
the domain size of T+H, which then is larger than
the domain size of T. It turns out that this difference
between the domain sizes is a useful way of measur-
ing the likelihood of entailment. Large differences
are mostly not entailments, small differences mostly
are. Consider the following example:

631



Example: 1049 (TRUE)
T: Four Venezuelan firefighters who were traveling to a

training course in Texas were killed when their sport
utility vehicle drifted onto the shoulder of a highway
and struck a parked truck.

H: Four firefighters were killed in a car accident.

Although this example is judged as a true entail-
ment, Vampire doesn’t find a proof because it lacks
the background knowledge that one way of causing a
car accident is to drift onto the shoulder of the high-
way and strike something. It generates a model with
domain size 11 for fol(drs(T)), and a model with do-
main size 12 for fol((drs(T);drs(H))). The absolute
difference in domain sizes is small, and therefore
likely to indicate an entailment. Apart from the ab-
solute difference we also compute the difference rel-
ative to the domain size. For the example above the
relative domain size yields1/12 = 0.083.

The domain size only tells us something about the
number of entities used in a model—not about the
number of established relations between the model’s
entities. Therefore, we also introduce the notion of
model size. The model size is defined here by count-
ing the number of all instances of two-place relations
(and three-place relations, if there are any) in the
model, and multiplying this with the domain size.
For instance, the following model

D = {d1,d2,d3}
F(cat) = {d1,d2}
F(john) = {d3}
F(of) = {(d1,d3)}
F(like) = {(d3,d1),(d3,d2)}

has a domain size of 3 and 3 instantiated two-place
relations, yielding a model size of3 ∗ 3 = 9.

3.6 Deep Semantic Features

Given our approach to deep semantic analysis,
we identified eight features relevant for recognis-
ing textual entailment. The theorem prover pro-
vides us with two features:entailed determin-
ing whether T implies H, andinconsistent
determining whether T together with H is incon-
sistent. The model builder gives us six features:
domainsize and modelsize for T+H as well
as the absolute and relative difference between the
sizes of T and T+H, both for the size of the domains
(domainsizeabsdif , domainsizereldif )
and the size of the models (modelsizeabsdif ,
modelsizereldif ).

4 Experiments

There are not many test suites available for textual
inference. We use throughout this section the dataset
made available as part of the RTE challenge.

4.1 Dataset Design and Evaluation Measures

The organisers released a development set of 567
sentence pairs and a test set of 800 sentence pairs.
In both sets, 50% of the sentence pairs were anno-
tated as TRUE and 50% as FALSE, leading to a 50%
most frequent class baseline for automatic systems.
The examples are further distinguished according to
the way they were designed via a so-calledTask
variable. For examples marked CD (Comparable
Documents), sentences with high lexical overlap in
comparable news articles were selected, whereas the
hypotheses of examples marked QA (Question An-
swering) were formed by translating questions from
e.g., TREC into statements. The other subsets are IE
(Information extraction), MT (Machine Translation)
RC (Reading Comprehension), PP (Paraphrase Ac-
quisition) and IR (Information Retrieval). The dif-
ferent examples and subsets cover a wide variety of
different aspects of entailment, from incorporation
of background knowledge to lexical to syntactic en-
tailment and combinations of all these. For a more
exhaustive description of dataset design we refer the
reader to (Dagan et al., 2005).

4.2 Experiment 1: Human Upper bound

To establish a human upper bound as well as inves-
tigate the validity of the datasets issued, one of the
authors annotated all 800 examples of the test set
for entailment, using the short RTE annotation rules.
The annotation was performed before the release of
the gold standard annotation for the test set and was
therefore independent of the organisers’ annotation.
The organisers’ and the author’s annotation yielded
a high percentage agreement of 95.25%. However,
33% of the originally created examples were already
filtered out of the corpus before release by the organ-
isers because of agreement-related problems. There-
fore we expect that human agreement on textual en-
tailment in general is rather lower.

632



4.3 Decision trees for entailment recognition

We expressed each example pair as a feature vector,
using different subsets of the features described in
Section 2 and Section 3 for each experiment. We
then trained a decision tree for classification into
TRUE and FALSE entailment on the development
set, using the Weka machine learning tool (Witten
and Frank, 2000), and tested on the test set. Apart
from a classification, Weka also computes a confi-
dence value for each decision, dependent on the leaf
in the tree that the classified example falls into: if the
leaf coversx examples in the training set, of whichy
examples are classified wrongly, then the error rate
is y/x and the confidence value is1− y/x.

Our evaluation measures are accuracy (acc) as
the percentage of correct judgements as well as
confidence-weighted average score (cws), which re-
wards the system’s ability to assign a higher confi-
dence score to correct judgements than wrong ones
(Dagan et al., 2005): after then judgements are
sorted in decreasing order by their confidence value,
the following measure is computed:

cws =
1
n

n∑
i=1

#correct-up-rank-i
i

All evaluation measures are computed over the
whole test set as well as on the 7 different subsets
(CD, IE, etc.). The results are summarised in Ta-
ble 1. We also computed precision, recall and F-
measure for both classes TRUE and FALSE and will
discuss the results in the text whenever of interest.

Experiment 2: Shallow Features In this experi-
ment only the shallow features (see Section 2) were
used. The overall accuracy of 56.9% is significantly
higher than the baseline.2

Column 2 in Table 1 shows that this decent per-
formance is entirely due to excellent performance
on the CD subset. (Recall that the CD set was de-
signed explicitly with examples with high lexical
overlap in mind.) In addition, the method overes-
timates the number of true entailments, achieving a
Recall of 0.926 for the class TRUE, but a precision
of only 0.547 on the same class. In contrast, it has

2We used thez-test for the difference between two propor-
tions to measure whether the difference in accuracy between
two algorithms or an algorithm and the baseline is statistically
significant at the 5% level.

good precision (0.761) but low recall (0.236) for the
FALSE class. Thus, there is a correspondence be-
tween low word overlap and FALSE examples (see
Example 731 in the Introduction, where important
words in the hypothesis like “swamps” or “marshes”
are not matched in the text); high overlap, however,
is normally necessary but not sufficient for TRUE
entailment (see also Example 78 in Section 3).

Experiment 3: Strict entailment To test the po-
tential of entailment as discovered by theorem prov-
ing alone, we now use only theentailment and
inconsistent features. As to be expected, the
decision tree shows that, if a proof for T implies H
has been found, the example should be classified as
TRUE, otherwise as FALSE.3 The precision (0.767)
for the class TRUE is reasonably high: if a proof
is found, then an entailment is indeed very likely.
However, recall is very low (0.058) as only 30 proofs
were found on the test set (for some examples see
Section 3). This yields an F-measure of only 0.10
for the TRUE class. Due to the low recall, the over-
all accuracy of the system (0.52, see Table 1) is not
significantly higher than the baseline.

Thus, this feature behaves in the opposite way
to shallow lexical overlap and overgenerates the
FALSE class. Missing lexical and background
knowledge is the major cause for missing proofs.

Experiment 4: Approximating entailment As
discussed in Section 3.5 we now try to compensate
for missing knowledge and improve recall for TRUE
entailments by approximating entailment with the
features that are furnished by the model builder.
Thus, Experiment 4 uses all eight deep semantic
analysis features, including the features capturing
differences in domain- and modelsizes. The recall
for the TRUE class indeed jumps to 0.735. Al-
though, unavoidably, the FALSE class suffers, the
resulting overall accuracy (0.562, see Column 4 in
Table 1) is significantly higher than when using the
features provided by the theorem prover alone (as
in Experiment 3). The confidence weighted score
also rises substantially from 0.548 to 0.608. The
approximation achieved can be seen in the different
treatment of Example 1049 (see Section 3.5) in Ex-
periments 3 and 4. In Experiment 3, this example

3Theinconsistent feature was not used by the decision
tree as very few examples were covered by that feature.

633



Table 1: Summary of Results for Experiments 1 to 6
Exp 1: Human 2: Shallow 3: Strict 4: Deep 5: Hybrid 6: Hybrid+Task
Task acc cws acc cws acc cws acc cws acc cws acc cws

CD 0.967 n/a 0.827 0.881 0.547 0.617 0.713 0.787 0.700 0.790 0.827 0.827
IE 0.975 n/a 0.508 0.503 0.542 0.622 0.533 0.616 0.542 0.639 0.542 0.627
MT 0.900 n/a 0.500 0.515 0.500 0.436 0.592 0.596 0.525 0.512 0.533 0.581
QA 0.961 n/a 0.531 0.557 0.461 0.422 0.515 0.419 0.569 0.520 0.577 0.531
RC 0.979 n/a 0.507 0.502 0.557 0.638 0.457 0.537 0.507 0.587 0.557 0.644
PP 0.920 n/a 0.480 0.467 0.540 0.581 0.520 0.616 0.560 0.667 0.580 0.619
IR 0.922 n/a 0.511 0.561 0.489 0.421 0.567 0.503 0.622 0.569 0.611 0.561
all 0.951 n/a 0.569 0.624 0.520 0.548 0.562 0.608 0.577 0.632 0.612 0.646

is wrongly classified as FALSE as no proof can be
found; in Experiment 4, it is correctly classified as
TRUE due to the small difference between domain-
and modelsizes for T and T+H.

There is hardly any overall difference in accuracy
between the shallow and the deep classifier. How-
ever, it seems that the shallow classifier in its current
form has very little potential outside of the CD sub-
set whereas the deep classifier shows a more promis-
ing performance for several subsets.

Experiment 5: Hybrid classification As shallow
and deep classifiers seem to perform differently on
differently designed datasets, we hypothesized that a
combination of these classifiers should bring further
improvement. Experiment 5 therefore used all shal-
low and deep features together. However, the overall
performance of this classifier (see Column 5 in Ta-
ble 1) is not significantly better than either of the
separate classifiers. Closer inspection of the results
reveals that, in comparison to the shallow classifier,
the hybrid classifier performs better or equally on all
subsets but CD. In comparison to the deep classifier
in Column 4, the hybrid classifier performs equally
well or better on all subsets apart from MT. Over-
all, this means more robust performance of the hy-
brid classifier over differently designed datasets and
therefore more independence from dataset design.

Experiment 6: Dependency on dataset design
As Eperiment 5 shows, simple combination of meth-
ods, while maybe more robust, will not necessar-
ily raise overall performance if the system does not
know when to apply which method. To test this hy-
pothesis further we integrated the subset indicator

as a feature with the values CD, IE, MT, RC, IR,
PP, QA into our hybrid system. Indeed, the resulting
overall accuracy (0.612) is significantly better than
either shallow or deep system alone. Note that us-
ing both a combination of methodologiesand the
subset indicator is necessary to improve on individ-
ual shallow and deep classifiers for this corpus. We
integrated the subset indicator also into the shallow
and deep classifier by themselves, yielding classi-
fiers Shallow+Task and Deep+Task, with no or only
very small changes in accuracy (these figures are not
included in Table 1).

5 Related Work

Our shallow analysis is similar to the IDF models
proposed by (Monz and de Rijke, 2003; Saggion et
al., 2004). We have expanded their approach by us-
ing other shallow features regarding text length.

The basic idea of our deep analysis, using a de-
tailed semantic analysis and first-order inference,
goes back to (Blackburn and Bos, 2005). It is sim-
ilar to some of the recent approaches that were pro-
posed in the context of the PASCAL RTE workshop,
i.e. using the OTTER theorem prover (Akhmatova,
2005; Fowler et al., 2005), using EPILOG (Bayer et
al., 2005), or abduction (Raina et al., 2005).

None of these systems, however, incorporate
model building as a central part of the inference
mechanism. We have shown that solely relying on
theorem proving is normally insufficient due to low
recall, and that using model builders is a promising
way to approximate entailment.

Results of other approaches to determining tex-
tual entailment indicate that it is an extremely hard

634



task. The aforementioned RTE workshop revealed
that participating systems reached accuracy figures
ranging between 0.50 and 0.59 and cws scores be-
tween 0.50 and 0.69 (Dagan et al., 2005). Com-
paring this with our own results (accuracy 0.61 and
cws 0.65) shows how well our systems performs on
the same data set. This is partly due to our hy-
brid approach which is more robust across different
datasets.

6 Conclusions

Relying on theorem proving as a technique for de-
termining textual entailment yielded high precision
but low recall due to a general lack of appropriate
background knowledge. We used model building as
an innovative technique to surmount this problem to
a certain extent. Still, it will be unavoidable to incor-
porate automatic methods for knowledge acquisition
to increase the performance of our approach. Future
work will be directed to the acquisition of targeted
paraphrases that can be converted into background
knowledge in the form of axioms.

Our hybrid approach combines shallow analysis
with both theorem proving and model building and
achieves high accuracy scores on the RTE dataset
compared to other systems that we are aware of.
The results for this approach also indicate that (a)
the choice of entailment recognition methods might
have to vary according to the dataset design and/or
application and (b) that a method that wants to
achieve robust performance across different datasets
might need the integration of several different entail-
ment recognition methods as well as an indicator of
design methodology or application.

Thus, although test suites establish a controlled
way of assessing textual entailment detection sys-
tems, the importance of being able to predict textual
entailment in NLP might be better justified using
task-based evaluation. This can be achieved by in-
corporating them in QA or summarisation systems.

Acknowledgements We would like to thank Mirella La-

pata and Malvina Nissim as well as three anonymous review-

ers for their comments on this paper. We are also grateful to

Valentin Jijkoun and Bonnie Webber for discussion and Steve

Clark and James Curran for help on using the CCG-parser.

References
E. Akhmatova. 2005. Textual entailment resolution via

atomic propositions. InPASCAL. Proc. of the First
Challenge Workshop. Recognizing Textual Entailment.

S. Bayer, J. Burger, L. Ferro, J. Henderson, and A. Yeh.
2005. Mitre’s submission to the eu pascal rte chal-
lenge. InPASCAL. Proc. of the First Challenge Work-
shop. Recognizing Textual Entailment.

P. Blackburn and J. Bos. 2005.Representation and In-
ference for Natural Language. A First Course in Com-
putational Semantics. CSLI.

J. Bos, S. Clark, M. Steedman, J. Curran, and J. Hocken-
maier. 2004. Wide-coverage semantic representations
from a CCG parser. InProc of COLING.

K. Claessen and N. S̈orensson. 2003. New techniques
that improve mace-style model finding. InModel
Computationa - Principles, Algorithms, Applications
(Cade-19 Workshop), Miami, Florida.

I. Dagan, O. Glickman, and B. Magnini. 2005. The pas-
cal recognising textual entailment challenge. InPAS-
CAL. Proc. of the First Challenge Workshop. Recog-
nizing Textual Entailment.

C. Fellbaum, editor. 1998.WordNet: An Electronic Lex-
ical Database. MIT Press, Cambridge, Mass.

A. Fowler, B. Hauser, D. Hodges, I. Niles, A. Novis-
chi, and J. Stephan. 2005. Applying cogex to recog-
nize textual entailment. InPASCAL. Proc. of the First
Challenge Workshop. Recognizing Textual Entailment.

H. Kamp and U. Reyle. 1993.From Discourse to Logic.
Introduction to Modeltheoretic Semantics of Natural
Language, Formal Logic and Discourse Representa-
tion Theory. Kluwer, Dordrecht, Netherlands.

C. Manning and H. Schuetze. 1999.Foundations of Sta-
tistical Natural Language Processing. MIT Press.

C. Monz and M. de Rijke. 2003. Light-weight entail-
ment checking for computational semantics. InProc.
of ICOS-3.

R. Raina, A.Y. Ng, and C. Manning. 2005. Robust tex-
tual inference via learning and abductive reasoning. In
Proc. of AAAI 2005.

A. Riazanov and A. Voronkov. 2002. The design and
implementation of Vampire.AI Comm., 15(2-3).

H. Saggion, R. Gaizauskas, M. Hepple, I. Roberts, and
M Greenwood. 2004. Exploring the performance of
boolean retrieval strategies for open domain question
answering. InProc. of the IR4QA Workshop at SIGIR.

I. H. Witten and E. Frank. 2000.Data Mining: Practi-
cal Machine Learning Tools and Techniques with Java
Implementations. Morgan Kaufmann, San Diego, CA.

635


