
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 451–458, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Matching Inconsistently Spelled Names in Automatic Speech Recognizer
Output for Information Retrieval

Hema Raghavan and James Allan
Department of Computer Science

University of Massachusetts Amherst
Amherst, MA 01003, USA

{hema,allan}@cs.umass.edu

Abstract

Many proper names are spelled inconsis-
tently in speech recognizer output, posing
a problem for applications where locating
mentions of named entities is critical. We
model the distortion in the spelling of a
name due to the speech recognizer as the
effect of a noisy channel. The models fol-
low the framework of the IBM translation
models. The model is trained using a par-
allel text of closed caption and automatic
speech recognition output. We also test a
string edit distance based method. The ef-
fectiveness of these models is evaluated on
a name query retrieval task. Our methods
result in a 60% improvement in F1. We
also demonstrate why the problem has not
been critical in TREC and TDT tasks.

1 Introduction
Proper names are key to our understanding of topics
in news. For example, to determine that a news
story is on the 2004 elections in the United States,
the words President Bush, John Kerry and USA
are necessary features of the story. In other words,
names of people, places and organizations are key
entities of a news story. For many tasks, like in
topic detection and tracking (TDT), the entities
form an important feature for distinguishing topics
from one another. For example, it is the people
that distinguish stories on the 2004 election from
stories on the 2000 U.S election. Names, especially
rare and foreign ones are a problem for automatic

speech recognition (ASR) systems as they are often
out of vocabulary (OOV) i.e., they do not exist in
the lexicon of the ASR system. An OOV word is
replaced with the most similar word in the lexicon
of the speech recognizer. Sometimes, even if a
name is in the lexicon of the speech recognizer, it
may have multiple spelling variants. The following
is a sample ASR snippet from the TDT3 1 corpus
that demonstrates how the same entity may have
different spellings even within the same snippet of
ASR text.

...newspaper quotes qaddafi is saying they’ll
turn them over but only if they’re allowed ..leader
moammar gadhafi says he doesn’t want an interna-
tional confrontation over the suspects in the..

In this work, we aim to find methods by which to
cluster or group names in ASR text. We evaluate
a variety of techniques that range from a simple
string-edit distance model to generative models
using both intrinsic and extrinsic evaluations. We
get statistically significant improvements in results
for ad-hoc retrieval when the query is just the name
of a person. We also explain why the problem
of misspelled proper names in ASR has not been
an issue in the TREC spoken document retrieval
(SDR) track or in topic detection and tracking
(TDT). We demonstrate how the problem would be
of significance when the query is short, containing
mainly names with little or no context.

1http:///www.ldc.upenn.edu/projects/tdt3/

451

2 Related Work
That names can be spelled differently is a prob-
lem that has been addressed by the database com-
munity in great detail. They found that the prob-
lem was rising in significance with the increasing
interest in reconciling different databases. Differ-
ences in names due to spelling errors, spelling vari-
ants and transliteration errors have been dealt with
by different kinds of approximate string matching
techniques like Soundex, Phonix, and String Edit
distance (James C. French, 1997; Zobel and Dart,
1996). The nature of the problem is identical when
the domain consists of databases of documents but
in order to apply techniques that were developed for
names by the database community one would have
to first detect names in the corpus, and then normal-
ize them to some canonical form. This is the ap-
proach taken by Raghavan and Allan (Raghavan and
Allan, 2004) who showed that normalizing names
using Soundex codes resulted in a 10% improvement
on the TDT3 Story Link Detection Task. They tested
their method on newswire stories only. Their diffi-
culty in applying Soundex to the ASR documents
was that detecting names in ASR is too error prone
for their methods to be useful (Miller et al., 2000).

Spoken document retrieval was a track at the
TREC-6,7 and 8 (Voorhees and Harman, 1997;
Voorhees and Harman, 1998; Voorhees and Harman,
1999) conferences. At the TREC-8 SDR track the
conclusion was that ASR is not really an issue for
ad hoc retrieval. However, the queries in those tracks
were not centered on any entity. The TREC-8 pro-
ceedings also acknowledge that mean average preci-
sion dropped as named entity word error rate (NE-
WER) increased. A typical speech recognizer has a
lexicon of about 60K and for this size of a lexicon,
about 10% of the person names are out of vocabu-
lary (OOV).

The problem of alternate spellings of names has
also been explored by the cross lingual information
retrieval community (Virga and Khudanpur, 2003;
AbdulJaleel and Larkey, 2003). The problem with
names in machine translated text is quite similar to
the problem with names in ASR text, except that the
errors caused by a speech recognizer are often pho-
netic confusions, which is not necessarily the case
for machine translation errors. Spelling errors of
names in machine translated text are typically con-

sistent. A given word in the source language always
translates to the same word in the target language for
a given machine translation system. As seen earlier,
ASR systems do not exhibit such consistency.

Another problem that resembles the one we are
addressing in this paper is that of spelling correc-
tion. Spelling correction has been tackled in several
different ways (Durham et al., 1983), in some cases
with the use of contextual cues (Golding and Roth,
1999) and in some cases it has been modeled as a
“noisy channel problem” (Kernighan et al., 1990).
The latter approach is similar to ours because we
also approach the problem of spelling variations due
to speech recognizer errors as analogous to the er-
rors caused by a noisy channel. However, spelling
correction methods must rectify human errors (ty-
pographic errors and common confusions) whereas
speech recognizer errors are different.

Additionally, the argument that Jon Smith and
John Smythe may genuinely be different people and
should not be considered to be the same entity is
more of a cross-document co-reference problem.
The problem we are attempting to solve in this
paper is one of grouping names that “sound like”
each other together, without considering the prob-
lem of cross document co-reference. For example,
the name Lewinsky has 199 occurrences in the TDT3
corpus, and also appears as Lewinski (1324 times),
and Lewenskey (171 times). Most of these occur-
rences refer to Monica Lewinsky. The aim is to
group all these variants together, without taking into
consideration which ones refer to the same person.
We then measure the effectiveness of our methods
on various retrieval tasks.

Perhaps the most similar work from the point of
view of the task is work in word spotting in audio
output (Amir et al., 2001). The queries are single
words and the task is to locate their mention in au-
dio. The starting point in that work is however, a
phonetic transcript of the audio signal and the em-
phasis is not on locating names. Our starting point
is automatic speech recognizer output, and we aim
to locate names in particular.

3 Our Approaches
In this section we explain the techniques by which
we group names together. One method uses string
edit distance to group names that are variants of each

452

other. The other techniques are some of the possible
generative models suitable to this task.

An equivalence class is defined as a group of
names such that any two names in that class are vari-
ants of each other and such that there exist no two
names from different equivalence classes that are
variants of each other. An equivalence class is rep-
resented as a set of names enclosed in curly braces
as {name-1 name-2 ...}

Four of our models are trained on a parallel text
of ASR and manual transcripts (or closed caption
depending on availability) in order to learn a proba-
bilistic model of ASR errors. The parallel text con-
sists of pairs of sentences: sentences from the ASR
output and the corresponding manual transcripts.
This is a common technique in machine translation
for which the IBM translation models are popular
methods (Brown et al., 1993).

As a convention, we use uppercase letters to de-
note ASR output and lowercase for manual tran-
scriptions. Given an input of parallel text of ASR
and manual transcriptions, the model learns a prob-
abilistic dictionary. The dictionary contains pairs
of closed caption and ASR words and the probabil-
ity that the closed caption word is generated from a
given word in ASR. Thus, the model might learn a
high probability for P(CAT|kate).

3.1 Overview of Methods

We generate equivalence classes of names by clus-
tering a list of names. The algorithm draws links be-
tween pairs of words and then clusters the words into
equivalence classes such that if a and b are linked
and b and c are linked then a, b and c are in the same
equivalence class. Links between words are gener-
ated in five different ways described below.

In the first of our methods we align manual tran-
scripts and ASR sentences using the IBM transla-
tion model (Brown et al., 1993) to obtain a proba-
bilistic dictionary. We give details of the translation
model in section 3.2. Names are grouped such that
if P(CAT|kate) is high (above some threshold) then
there is a link between CAT and kate. This is called
the Simple Aligned method. Some sample pairs of
words obtained by this technique are shown in fig-
ure 1.

We can also ask a human to create a list of equiv-
alence classes of names. We describe our method

african AFRICA albania ALBANIAN
alex ALEC cardoso CARDOZO
ann ANNE ching CHIANG

Figure 1: Example of pairs of words obtained by
Simple Aligned

of obtaining such a list in section 4. This method is
called the Supervised method.

Given a list of equivalence classes, pairs of names
that go together can easily be generated such that for
each pair, both words are obtained from the same
equivalence class. In this way equivalence classes
of names obtained from the Simple Aligned and Su-
pervised methods can be used to create a list of pairs
of names that form parallel text to train a charac-
ter level machine translation model. We would ex-
pect this model to learn a high probability for simi-
lar sounding alphabets, e.g., a high probability for
P (C|k). Depending on where the training set of
pairs of names for this method comes from, we get
two possible systems. These are called the Gener-
ative Unsupervised method and Generative Super-
vised method respectively. Note that the Genera-
tive Unsupervised method is not completely unsu-
pervised; we still need the parallel text of ASR and
manual transcripts, but we don’t need a human to
do the added grouping of names into equivalence
classes. A character level translation model helps
us generalize better to unseen words.

We also grouped together names that differ by a
string edit distance of one, giving a fifth system. In
particular, we use the Levenshtein distance (Lev-
enshtein, 1966), that is the number of insertions,
deletions and substitutions needed to convert one
string to the other. Many methods employed by the
database community build on string edit distance.
The method works well but has some disadvantages.
Consider a user who types in a query containing a
name such that the spelling, as typed by the user,
never occurs in the corpus. To employ string edit
distance, one would have to compare the query name
against all the words in the vocabulary of the cor-
pus to find the most similar strings. With a gener-
ative model, only the query needs to be expanded
using the translation model, thereby speeding up the
search process. The string edit distance model on the

453

other hand, is completely unsupervised and needs no
training in the form of parallel text. Both methods
have their advantages and disadvantages, and the use
of one method over the other is situation dependent.

3.2 Details

To learn alignments, translation probabilities, etc in
the first method we used work that has been done in
statistical machine translation (Brown et al., 1993),
where the translation process is considered to be
equivalent to a corruption of the source language text
to the target language text due to a noisy channel.
We can similarly consider that an ASR system cor-
rupts the spelling of a name as a result of a noisy
channel. To obtain the closed caption word c, of an
ASR word a, we want to find the string for which
the probability P (c|a) is highest. This is modeled as

P (c|a) =
P (c)P (a|c)

P (a)
(1)

For a given name a, since P (a) is constant, the
problem reduces to one of maximizing P (c)P (a|c).
P (c) is called the language model. We need
to model P (a|c) as opposed to directly modeling
P (c|a) so that our model assigns more probability
to well formed English names.

Given a pair of sentences (c, a), an alignment
A(c, a) is defined as the mapping from the words
in c to the words in a. If there are l closed caption
words and m ASR words, there are 2lm alignments
in A(c, a). l ∈ A(c, a) can be denoted as a series
lm
1

= l1, l2...lm where lj = i means that a word in
position j of the ASR string is aligned with a word in
position i of the closed caption string. Then P (a|c)
is computed as follows:

P (a|c) =
∑

l

P (a, l|c)

P (a, l|c) = P (m|c)
m∏

j

P (lj |l
j−1

1
, a

j−1

1
, m, e)

×P (aj |l
j
1
, a

j−1

1
, m, c) (2)

where aj is a word in position j of the string a, and
a

j
1

is the series a1...aj . The model is generative in
the following way: we first choose for each word in
the closed caption string the number of ASR words
that will be connected to it, then we pick the identity

of those ASR words and finally we pick the actual
positions that these words will occupy. There are
five different IBM translation models (Brown et al.,
1993). Models 3 and 4 build on the above equations,
and also incorporate the notion of fertility. Fertility
takes into account that a given word in closed cap-
tion may be omitted by an ASR system, or one word
may result in two or more, like Iraq → I ROCK (This
is a true example). The models are trained using Ex-
pectation Maximization. Further details are in the
original paper (Brown et al., 1993).

The IBM models have shown good performance
in machine translation, and especially so within cer-
tain families of languages, for example in translating
between French and English or between Sinhalese
and Tamil (Brown et al., 1993; Weerasinghe, 2004).
Pairs of closed caption and ASR sentences or words
(as the case may be) are akin to a pair of closely re-
lated languages.

For the Generative Unsupervised and Generative
Supervised methods, we use the same models, but in
this case the training set consists of pairs of words
obtained from the ASR and closed caption text as
opposed to sentences. In other words, the place of
words in the previous case is taken by characters.
Modeling fertility, etc, again fits very well in this
case. For example the terminal character e is often
dropped in ASR, and a single o in closed caption
may result in a double o in ASR or vice versa.

4 Experimental Set Up

4.1 Corpora

For experiments in this paper we used the TREC-6
and TREC-7 SDR track data (Voorhees and Harman,
1998). We also used the TDT2 and TDT3 corpora.
For TREC-6 we had the ASR output provided by
NIST (WER 34%). The TREC-7 corpus consists of
the output of the Dragon systems speech recognizer
(WER 29.5%). For the TDT sources we had the
ASR output of the BBN Byblos Speech recognizer
provided by the LDC. NIST provides human gener-
ated transcripts for the TREC corpora and LDC pro-
vides closed caption quality transcripts with a WER
of 14.5% for the TDT corpora. There are 3943,
23282, 1819 and 2866 ASR documents in the TDT2
TDT3, TREC-6 and TREC-7 corpora respectively.

454

4.2 Intrinsic Evaluation

The Paice evaluation (Paice, 1996) for stemming al-
gorithms (algorithms that reduce a word to its mor-
phological root), attempts to compare the equiva-
lence classes generated by our methods with human
judgments.

The Paice evaluation measures the performance
of a stemmer based on its understemming and over-
stemming indices (UI and OI respectively). UI
measures the total number of missed links between
words and OI measures the total number of false
alarm links. A perfect stemmer would have a UI and
OI value of zero.

We obtained a list of names to be grouped into
equivalence classes in the following way. We did
not use a named entity tagger on the corpus because
named entity taggers typically have very high word
error rates for ASR text (Bikel et al., 1999). Instead
we ran the Unix spell command on the corpus and
used the list of rejected words as the list of names
for the annotators to group into equivalence classes.
These 296 OOV words are taken to correspond to
the names in the corpus. We then obtained the set of
ground-truth equivalence classes by a method simi-
lar to Paice.

A group of undergraduate students was hired. The
list of names was provided to each student in a text
editor in alphabetical order. The purpose as ex-
plained to them was to group together names that
were alternate spellings of similar sounding names
together. The student was instructed to go through
the list systematically, and for each word to look
at the previous 10 words, as well as the following
10 words to see if there were any other variants. If
there was a word or a group where the current word
was likely to fit in, they were asked to cut the word
and paste it into the appropriate group. In this way,
groups were created such that no word could belong
to more than one group. The annotators were also
asked to mark the words that were indeed names. Of
the 296 OOV words, 292 were found to be actual
names.

4.3 Extrinsic evaluation

In addition to the Paice evaluation we propose two
extrinsic or task based evaluations for our methods.
In the first task, given a name as a query, we aim to

Query Equivalence class
1: {christy christie}
2: {christina christine}
3: {toney toni}
4: {michelle michel mitchell}
5: {columbia colombia colombian}

Figure 2: Some sample query equivalence classes

find all documents that have a mention of that name
or any of its variants. In order to obtain queries
and relevance judgments for this task we arbitrar-
ily chose 35 groups of names from the ground-truth
set of equivalence classes. The TDT3 corpus was
chosen to be the test corpus for this task. Hence we
eliminated those words that had no occurrence in the
TDT3 corpus from the 35 groups of names giving a
total of 76 names. Each of the 76 words formed a
query. For each name query we consider all docu-
ments that contain a mention of any of the names in
the equivalence class of the query as relevant to that
query. In this way we obtained relevance judgments
for the name query task. Some sample queries are
shown in figure 2. We use F1 (harmonic mean of the
precision and recall) as a measure of performance.

Our extrinsic evaluation is spoken document re-
trieval. The queries on the TREC-6 and TREC-7
corpora are standard TREC spoken document re-
trieval track queries. For the TDT2 corpus we use
one randomly chosen document from each topic as
the query. This document is like a long query with
plenty of entities and plenty of contextual informa-
tion. For the TDT3 corpus we use the topic de-
scriptions as provided by the LDC as the queries.
The LDC topic descriptions discuss the events that
describe a topic and the key entities and locations
involved in the event. These are representative of
shorter queries, rich in entities. LDC has provided
relevance judgments for both the TDT2 and TDT3
corpora. Mean average precision was used as the
measure of evaluation.

4.4 Implementation Details

We use GIZA++ (Och and Ney, 2003) to train the
machine translation system and the ISI ReWrite
Decoder (ISI, 2001) to do the actual translations.
The decoder takes as input the models learned by

455

GIZA++ and a sentence from the foreign language.
It can output the top n translations of the input sen-
tence. The ReWrite decoder can translate using IBM
Model-3 or Model-4. We found Model 3 to have
lower perplexity and hence chose it for our experi-
ments. In order to build the language model P (c),
we used the CMU Language Modeling toolkit 2.
All retrieval experiments were performed using the
LEMUR 3 toolkit, and using the traditional vector
space model. In the traditional vector space model
queries and documents are represented as vectors of
words. Each word in the vector is weighted using
a product of term frequency and inverse document
frequency. The similarity between a query and a
document is measured using the cosine of the angle
between the query and document vectors.

The Simple Aligned and Generative Unsuper-
vised methods require a parallel corpus of ASR and
closed caption for training. For the name query task
we used TDT2, TREC-6 and TREC-7 to train these
methods and TDT3 as the test corpus.

The Supervised and Generative Supervised meth-
ods require a human to provide pairs of words that
are variants of each other. We filtered out those
words from the human generated list of equivalence
classes that occurred exclusively in the test corpus
and in no other corpus. This is equivalent to asking
a human to group words in the training corpus. Sim-
ilarly we trained the Simple Aligned and Generative
Unsupervised models using ASR and closed caption
text from all other sources except those in the test
set.

The models were trained similarly for the SDR
experiments. The models were tested on each of
the four corpora in turn, and in each case they were
trained on everything but the test corpus.

5 Results
5.1 Intrinsic Experiments

Table 1 shows how the different methods perform on
the intrinsic evaluation. We also show the UI and OI
values for methods that use string edit distances of
2, 3, 4 and 5. Note that the Supervised method is the
ground truth for this evaluation, and hence it has a UI
and OI value of zero. A string edit distance of 1 has

2http://mi.eng.cam.ac.uk/prc14/toolkit documentation.html
3http://www.cs.cmu.edu/lemur

Method UI OI
Simple Aligned 0.236 0.004
Supervised 0 0
Gen Sup 0.393 0.023
Gen Uns 0.351 0.003
Str. Ed. (1) 0.229 0.000
Str. Ed. (2) 0.083 0.003
Str. Ed. (3) 0.039 0.001
Str. Ed. (4) 0.031 0.124
Str. Ed. (5) 0.023 0.336

Table 1: Understemming and Overstemming indices
for each of the methods (lower is better)

the lowest OI value, meaning there are very few false
alarms. Higher string edit distances have lower UI
values, with an increase in OI. We will interpret the
UI and OI values again after observing performance
on the retrieval tasks, so as to interpret the impact of
missed links and false alarm links for retrieval.

5.2 Name Query Retrieval experiments

The results of our experiments on the name query
task are given in table 2. We report both Macro
and Micro averaged (averaged over the equivalence
classes of the queries) F1 measures. They do not dif-
fer much since the equivalence classes have almost
the same number (2-3) of names.

From table 2, all methods improve the baseline
F1 score significantly (statistical significance mea-
sured using a two tailed t-test with a confidence of
95%). In general, the Simple Aligned, Generative
Unsupervised and string edit distance methods are
the best performing for this task. The string edit
distance improves the baseline by over 60%. The
Supervised method is also not as good as the other
four of our methods as it does not generalize well to
names that occur exclusively in the test set.

String edit distance performs very well on cer-
tain equivalence classes of names. For example, on
the equivalence class {Seigal, Segal, Siegal, Siegel}
the precision and recall are 100% each since all of
the words in the equivalence class differ from each
other by a string edit distance of one. In the case of
the equivalence class {Lewenskey Lewinski Lewin-
sky}, the term Lewenskey has a string edit distance
of 2 (greater than one) from the other two members,

456

Method Micro avg Micro avg Micro Macro avg Macro avg Macro
Recall Precision F1 Recall Precision F1

Baseline 0.401 1 0.573 0.400 1 0.571
Simple Aligned 0.632 0.933 0.754 0.608 0.925 0.734
Sup 0.477 0.961 0.638 0.463 0.960 0.625
Gen Sup 0.530 0.937 0.677 0.517 0.938 0.667
Gen Uns 0.590 0.921 0.720 0.576 0.913 0.706
Str. Ed 0.752 0.867 0.806 0.751 0.871 0.807

Table 2: Results on the Name Query Retrieval task

Lewinsky and Lewinski. The equivalence class of
{John Jon Joan} has very low precision and recall.
This is because both John and Jon differ by a string
edit distance of one from so many other names in the
corpus, such as Jong, resulting in lowered precision.

The Simple Aligned method fails on names it has
not seen in the training set. However, for cases
like {Greensborough Greensboro} the link between
these two names is detected using the simple aligned
method and by no other. The generative methods can
detect variations in spelling due to similar sounding
alphabets. For example it can detect the link be-
tween Sydney and Sidney. The generative models
were also able to learn that c and k are substitutable
for each other. Therefore these models could detect
the links between the words in the equivalence class
{Katherine Kathryn Catherine}.

The Simple Aligned model performs well on the
extrinsic evaluations although it has a high OI value.
The intrinsic evaluations use judgments by humans.
The Simple Aligned method would conflate Kofi and
Copy into one class if that was a genuine ASR error
and the alignment was correct, but these two words
would not be conflated into the same equivalence
class by our annotators and would actually count
as a false alarm on the intrinsic evaluations. There-
fore, although the OI is high for the Simple Aligned
Method, on closer examination we found that some
of the false alarms were actually representative of
ASR errors.

5.3 Spoken Document Retrieval

We now move on to discuss results on the SDR task.
For TDT3 we got statistically significant improve-
ments (an improvement in mean average precision
from 0.715 to 0.757) over the baseline using string

edit distance. On the remaining corpora we got little
or no improvement by our methods. We proceed to
explain why this is the case for each of the corpora.

The TREC-7 corpus has only 5 queries with a
mention of a name resulting in hardly any gains
overall. Similar was the case for TREC-6. Again
in the case of the TDT2 corpus, since we used en-
tire documents as stories, there are enough words in
the query that a few recognition errors can be toler-
ated and therefore traditional retrieval is good for the
task. There is evidence from previous TREC tracks
(Voorhees and Harman, 1999) that shorter queries
result in a decrease in retrieval performance and
hence we see some improvements for TDT3. Be-
sides, the TDT3 queries were rich in names.

We wanted to check how our methods performed
on outputs of different ASR systems. Spoken doc-
ument retrieval on the TREC-7 data with the out-
put of Dragon systems, which has a word error rate
of 29.5%, results in an improvement of 6% using
the Simple Aligned method. The NIST-B2 system
with a higher WER (46.6%) has an improvement in
Mean Average Precision of 6.5%. Similarly with the
CUHTK (WER 35.6%) and NIST-B1 (WER 33.8%)
and Sheffield (WER 24.6 %) systems we obtained
improvements of 1.6%, 0.39% and 0.05% respec-
tively using the Simple Aligned method. Thus, with
increasing WER, the named entity word error rate
increases significantly, and therefore the benefits of
our method are more apparent in such situations.

6 Discussion and Conclusions
We showed (both intrinsically and extrinsically) that
string edit distance is an effective technique for lo-
cating name variants. We also developed a set of
generative models and showed that they are almost

457

as effective at name finding and document retrieval,
but are probably more efficient than string edit dis-
tance. The generative models need to be trained on
parallel text and therefore require human effort for
training the models. The advantage of one method
over the other is dependent on the size of the corpus
and the availability of resources.

The problem has not been of significance in previ-
ous TREC tasks or in TDT, because we have always
escaped the problem of misspelled names by virtue
of the nature of those tasks. In the TREC tasks very
few queries are centered on an entity. In all the TDT
tasks, one is usually required to compare entire sto-
ries with each other. A story is long enough that
there are enough words that are in the vocabulary
(just like a very long query) or that are correctly rec-
ognized, that the ASR errors do not really matter.
Therefore, the TDT tasks also do not suffer as a re-
sult of these ASR errors.

We can improve and apply our methods to other
domains like Switchboard data (Godfrey et al.,
1992). Our methods also generalize well across lan-
guages since there are no language specific tech-
niques employed.

7 Acknowledgements

This work was supported in part by the Center
for Intelligent Information Retrieval and in part by
SPAWARSYSCEN-SD grant number N66001-02-1-
8903. Any opinions, findings and conclusions or
recommendations expressed in this material are the
author(s) and do not necessarily reflect those of the
sponsor.

References
Nasreen AbdulJaleel and Leah S. Larkey. 2003. Statistical

transliteration for english-arabic cross language information
retrieval. In Proceedings of the 12th CIKM conference,
pages 139–146. ACM Press.

Arnon Amir, Alon Efrat, and Savitha Srinivasan. 2001. Ad-
vances in phonetic word spotting. In CIKM ’01: Proceed-
ings of the tenth international conference on Information and
knowledge management, pages 580–582, New York, NY,
USA. ACM Press.

Daniel M. Bikel, Richard L. Schwartz, and Ralph M.
Weischedel. 1999. An algorithm that learns what’s in a
name. Machine Learning, 34(1-3):211–231.

P. F. Brown, Steven A. Della Pietra, Vincent J. Della Pietra,
and Robert L. Mercer. 1993. The mathematics of statistical

machine translation: Parameter estimation. Computational
Lingustics, 19(2):263–311.

Ivor Durham, David A. Lamb, and James B. Saxe. 1983.
Spelling correction in user interfaces. Commun. ACM,
26(10):764–773.

J. Godfrey, E. Holiman, and J. McDaniel. 1992. Switchboard:
Telephone speech corpus for research and development. In
Proceedings of the International Conference on Acoustics,
Speech and Signa Processing pp. I-517-520, 1992, pages
517–520.

Andrew R. Golding and Dan Roth. 1999. A winnow-based
approach to context-sensitive spelling correction. Machine
Learning, 34(1-3):107–130.

2001. ISI rewrite decoder, http://www.isi.edu/licensed-
sw/rewrite-decoder/.

Allison L. Powell James C. French. 1997. Applications of ap-
proximate word matching in information retrieval. In Pro-
ceedings of the Sixth CIKM Conference.

Mark D. Kernighan, Kenneth W. Church, , and William A. Gale.
1990. A spelling correction program based on a noisy chan-
nel model. In Proceedings of COLING-90, pages 205–210.

V. I. Levenshtein. 1966. Binary codes capable of correcing
deletions,insertions and reversals. Phs. Dokl., 6:707–710.

David Miller, Richard Schwartz, Ralph Weischedel, and Re-
becca Stone. 2000. Named entity extraction from broadcast
news.

Franz Josef Och and Hermann Ney. 2003. A systematic com-
parison of various statistical alignment models. Computa-
tional Linguistics, 29(1):19–51.

Chris D. Paice. 1996. Method for evaluation of stemming al-
gorithms based on error counting. JASIS, 47(8):632–649.

Hema Raghavan and James Allan. 2004. Using soundex codes
for indexing names in asr documents. In Proceedings of the
HLT NAACL Workshop on Interdisciplinary Approaches to
Speech Indexing and Retrieval.

Paola Virga and Sanjeev Khudanpur. 2003. Transliteration of
proper names in cross-language applications. In Proceed-
ings of the 26th ACM SIGIR conference, pages 365–366.
ACM Press.

E. M. Voorhees and D. K. Harman, editors. 1997. The Sixth
Text REtrieval Conference (TREC 6). NIST.

E. M. Voorhees and D. K. Harman, editors. 1998. The Seventh
Text REtrieval Conference (TREC 7). NIST.

E. M. Voorhees and D. K. Harman, editors. 1999. The Eighth
Text REtrieval Conference (TREC 8). NIST.

Ruvan Weerasinghe. 2004. A statistical machine translation
approach to Sinhala Tamil language translation. In SCALLA
2004.

Justin Zobel and Philip W. Dart. 1996. Phonetic string match-
ing: Lessons from information retrieval. In Proceedings of
the 19th ACM SIGIR Conference,(Special Issue of the SIGIR
Forum), pages 166–172.

458

