
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 379–386, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Detection of Entity Mentions Occurring in English and Chinese Text

Kadri Hacioglu, Benjamin Douglas and Ying Chen
Center for Spoken Language Research

University of Colorado at Boulder
{hacioglu,benjamin.douglas,yc}@colorado.edu

Abstract

In this paper, we describe an integrated
approach to entity mention detection that
yields a monolithic, almost language in-
dependent system. It is optimal in the
sense that all categorical constraints are si-
multaneously considered. The system is
compact and easy to develop and main-
tain, since only a single set of features and
classifiers are needed to be designed and
optimized. It is implemented using one-
versus-all support vector machine (SVM)
classifiers and a number of feature extrac-
tors at several linguistic levels. SVMs
are well known for their ability to han-
dle a large set of overlapping features with
theoretically sound generalization proper-
ties. Data sparsity might be an impor-
tant issue as a result of a large number
of classes and relatively moderate train-
ing data size. However, we report re-
sults that the integrated system performs
as good as a pipelined system that decom-
poses the problem into a few smaller sub-
tasks. We conduct all our experiments us-
ing ACE 2004 data, evaluate the systems
using ACE metrics and report competitive
performance.

1 Introduction
The entity-relation (ER) model (Chen, 1976) views
the physical world as a collection of entities with

complex relationships. Automatic extraction of
this model from raw text is important for creat-
ing a knowledge base (such as relational databases,
marked-up text etc.) that can be used to achieve bet-
ter end-to-end performances in several natural lan-
guage processing (NLP) applications including in-
formation retrieval, question answering and machine
translation. For example, in a typical QA system this
knowledge base can be used to facilitate extraction
of answers and retrieval of relevant documents.

Entities and relations in a document can be men-
tioned in several different ways. For example, a per-
son entity, e.g. Bill Clinton, can be expressed in
many different ways such as The President, Presi-
dent Clinton, Mr. Clinton, he, him etc. Similarly,
one can express a geo-political entity, e.g. United
States, as his country or another person entity, e.g.
Hillary Clinton, as his wife, and their relation to the
entity Bill Clinton as “president-of” and “family”,
respectively. It is clear that the detection of these
mentions is the first crucial step for the extraction of
the ER model to populate a database or an ontology.

Extraction of entities and their relationships is
usually done in a pipelined system that first iden-
tifies entity mentions, next resolves mentions into
unique entities (co-reference) and finally finds rela-
tions among them (Florian et al., 2004; Kambhatla,
2004). In that architecture, the errors in the first
stage propagate and reduce the performance of sub-
sequent stages; namely, co-reference resolver, that
clusters all different mentions of an entity into a
unique entity, and relation finder, that links entities
according to their relationships. In fact, the subtask
of entity mention detection itself is a very challeng-

379

Table 1: Categorical structure of entities in ACE program

Entity Mention
Entity Mention

Type Sub-Type Class Type Role

ing subtask since respective expressions can have
relatively complex syntactic and categorical (“se-
mantic”) structures. That is, entity mentions in a
body of text can occur in relatively complex embed-
ded constructs with many attributes. Table 1 illus-
trates the categorical structure of an entity mention
as specified in the Automatic Content Extraction
(ACE) program run by NIST (ACE, 2004). Com-
pared to the previous years the number of entity
types and subtypes is greater.

The following segment of a sentence provides a
typical example of the annotation:

[The [[Jordanian] military] spokesman] added ...

For simplicity, the entity mention attributes are
excluded. The annotation clearly shows the em-
bedded structure of entity mentions. We identify
three entity mentions as The Jordanian military
spokesman, Jordanian military and Jordanian.

Due to its complex nature, it is not uncommon that
the mention detection task itself is also divided into
a number of smaller sub-tasks. However, in this pa-
per, we adopt an integrated classification approach
to this problem that yields a monolithic structure.
This allows all attributes, which define the categori-
cal (“semantic”) structure of a mention, to be jointly
considered. The system has the ability to achieve
better performance in principle provided that there
is “enough” data to train, is easier to maintain and
develop, and has a single set of features and classi-
fiers to be engineered. All possible class labels are
obtained by filling in the values of each attribute in
the label etype subtype class mtype role, where,
to avoid confusion, etype and mtype are used to de-
note entity and mention types, respectively.

Our data representation requires segmenting doc-
uments into sentences and then tokenizing sentences
into words and punctuation. Each word is then as-
signed a label depending on its role in the mention.
This data representation reduces the problem to a
tagging task. For each token in focus, we create a

number of features at lexical, syntactic and semantic
levels. Additionally, we augment those features us-
ing features from external resources (e.g. named en-
tity taggers, gazetteers, wordnet). We train a number
of one-versus-all classifiers (Allwein et. al, 2000)
using SVMs (Vapnik, 1995; Burges, 1998). During
testing, classification of each token is performed in
a greedy left-to-right manner using a finite-size slid-
ing context window centered at the token in focus
(Kudo and Matsumato, 2000).

This approach yields a large number of classes
and a large number of overlapping features. We used
a machine learning framework based on SVM clas-
sification since a large number of classes (in a one-
versus-all set-up) and a large number of overlapping
features can be easily handled with good general-
ization properties. We argue that data sparsity and
computational complexity is not as severe as it might
be expected in the other machine learning methods
that are based on maximum likelihood parameter es-
timation. In other words, we claim that the large set
of classification labels and training data sparseness
are not major drawbacks. To provide evidence for
this we also consider an approach that divides the
task into relatively simpler tasks with considerably
smaller numbers of labels. The approach yields a
pipelined structure in which the decisions in earlier
stages are used in later stages. We report results that
the integrated approach performs similar to, and in
some cases, even slightly better than the pipelined
structure.

We also implement a novel post-processing
scheme based on an entity base (EB) created from
the tagged test data. This is motivated by the fact
that an entity is identically referenced several times
in a document. However, depending on the capital-
ization information of the entity mention and context
in which it occurs, the entity can be missed at several
positions in the document. A simple postprocess-
ing algorithm that checks untagged tokens with low
confidence against the EB is implemented. In doing
so, it is highly likely that some of those missed en-
tities could be identified. This is expected to reduce
misses at the expense of false alarms. We report re-
sults that support our expectation.

The paper is organized as follows. Section 2 de-
scribes the ACE 2004 data used for training and
evaluation. In Section 3, the problem is explained

380

Table 2: ACE 2004 corpus statistics for English and Chinese
text.

Language Train Test
English ˜ 150K words ˜ 50K words
Chinese ˜ 150K words ˜ 50K words

and its data representation is introduced. Section 4
describes the general system architecture, that con-
sists of a number of feature extractors, a (machine-
learned) classifier and a simple post processor. In
section 5, the features used for both English and
Chinese systems are described. In section 6, we de-
scribe an alternative pipelined system. A novel post
processing algorithm is introduced in section 7. Sec-
tion 8 reports experimental results. Concluding re-
marks are made in the final section.

2 ACE Data

The ACE 2004 corpus consists of various text an-
notated for entities and relations. This corpus was
created by the Linguistic Data Consortiom (LDC)
in three languages: English, Chinese and Arabic
(with support from the ACE program that began in
1999). Resources for data are newswire reports and
broadcast news programs. Table 2 gives train and
test statistics of this corpus for English and Chinese
languages. Both languages have almost the same
amount of data for both training and evaluation.

3 Problem Description and Data
Representation

As shown in Table 1, an entity mention is charac-
terized along 5 dimensions; namely etype, sub-type
class, mtype and role. The ACE program speci-
fies seven entity types; person, organization, geo-
political, location, facility, vehicle, weapon. All en-
tity types except person are further divided into sev-
eral sub-types. For example, organization has gov-
ernment, commercial, educational, non-profit and
other as its sub-types. The class attribute describes
the kind of reference the entity mention makes to
the entity in the world by taking one of the values
{generic, specific, negative, under-specified} . En-
tity mentions are further characterized according to
linguistic types of references as name (proper noun),

nominal (common noun), pronominal (pronoun) and
premodifier. The role of entity mention applies only
to geo-political entities indicating the role of the en-
tity in the context of the mention as one of person,
location, organization and geo-political. For further
details the reader is referred to (ACE, 2004)

All entity mentions in the original data are
XML tagged with their respective attributes. In
addition to the full extent of mentions, mention
heads are also tagged. Referring to the previous
example, the entity mention ”The Jordanian military
spokesman” which refers to a PERSON has the
word ”spokesman” as its head. Similarly, the entity
mention ”Jordanian military” which refers to an
ORGANIZATION has the word ”military” as its
head. If one reduces the problem of entity mention
detection to the detection of its head, the nature
of the problem changes and the annotation of data
becomes flat;

The [GPE Jordanian] [ORG military] [PER

spokesman]

This allows us to consider the problem as a
tagging/chunking problem and describe each word
as beginning (B) an entity mention, inside (I) an
entity mention or outside (O) an entity mention
(Ramhsaw and Marcus, 1995; Sang and Veenstra,
1999). However, we believe that the information
regarding the embedded structure in which the
heads of entities occur is also useful for subse-
quent stages of an IE system including inference
of relations among heads occurring in the same
embedded construct. So, in addition to the IOB tags
we introduce bracketing tags that might partially
recover the embedded structure surrounding the
heads. We refer to the following simple example

[Javier Trevino] was [the campaign manager for
[the [ruling party] candidate [Fox] beat]].

to illustrate our tokenwise vertical representa-
tion:

#SNT BEG#
Javier B-PER NAM
Trevino I-PER NAM
was O

381

Lexical
Analysis

Syntactic
Analysis

Semantic
Analysis

External
Taggers Lookup

Resource

Feature Combiner

Documents Preprocessor

SVM
Models

Tagged
Documents

PostprocessorClassifier

WordNet

Gazetteers

Figure 1: System Architecture

the (*
campaign *
manager B-PER NOM
for *
the (*
ruling *
party B-ORG NOM
candidate B-PER NOM
Fox B-PER NAM
beat *))
. O
#SNT END#

If one does not use the bracketing representation, all
non-head tokens will be labeled as ”Outside”. We
believe that it is useful to discriminate the tokens that
take part in mentions from those that do not occur in
mentions.

4 General System Architecture
The general system block diagram is illustrated in
Figure 1. It consists of a pre-processor, several fea-
ture extractors, a classifier and a post-processing
module. Although the architecture is language in-
dependent, there are some minor language specific
differences in some modules depending on the na-
ture of the language and availability of resources for
that language. In the following, we briefly describe
both English and Chinese systems and indicate dif-
ferences between them.

In the English system, the pre-processor segments
the documents into sentences. It also includes a
caser that restores the capitalization information of
text without case (e.g. broadcast news) and a to-

kenizer that separates contractions and punctuation
from words. Tokenized sentences are then processed
at different linguistic levels to create features. At
this stage, we employ a lexical pattern analyzer,
part-of-speech tagger, a base phrase chunker, a syn-
tactic parser, a dependency analyzer, look-up inter-
faces to external knowledge sources, and external
small scale named entity taggers trained on different
genres of text with different machine learning algo-
rithms. All features are combined and then input to
a classifier based on one-versus-all SVM classifiers.
Finally, we perform simple post-processing to make
sure that the final bracketing information is consis-
tent.

The POS tagger and BP chunker are trained
in-house using the Penn TreeBank. The syntac-
tic parser is the Charniak parser which has mod-
els trained on the Penn TreeBank. The depen-
dency analyzer performs dependency analysis using
a set of head rules. The software was generously
made available to us by the University of Maryland.
The look-up interface to external knowledge sources
such as WordNet or gazetteers is implemented using
simple pattern matching.

In the Chinese system, the pre-processor is
slightly different from that of the English system.
It (obviously) does not need a caser and consid-
ers single Chinese characters as the minimal units
of processing. It jointly segments a document
into sentences and words. Then, it passes both
word and sentence segmentation information to the
subsequent stages along with Chinese characters.
The SVM-based joint sentence/word segmenter is
trained using the Chinese TreeBank (CTB). Linguis-

382

tic analysis at different levels is performed in a man-
ner similar to the analysis in the English system.
In the Chinese system, the CTB is used to train
a SVM-based POS tagger and BP chunker. The
syntactic parser is trained on the CTB using Dan
Bikel’s parser. Dependency analysis is performed
as in the English system using a set of Chinese head
rules. Several in-house external taggers are trained
using SVMs and different corpora. We have used
only gazetteers for chinese as external knowledge
sources.

5 Features
The following features are used in the English sys-
tem:

• tokens: words in their original and all lower-
cased forms

• n-grams: token prefixes and suffixes of length
less than and equal to four

• lexical patterns: indicate case information
(all lower-case, mixed case, first letter capital,
all upper-case), is hyphen, type (numeral, al-
phanumeral, alpha, other)

• Part of Speech tags

• BP Positions: The position of a token in a BP
using the IOB representation (e.g. B-NP, I-NP,
O etc.)

• Clause tags: The tags that mark token posi-
tions in a sentence with respect to clauses. (e.g
*S)*S) marks a position that two clauses end)

• Named entities-1: The IOB tags of named en-
tities. There are four categories; LOC, ORG,
PERSON and MISC. A SVM-based tagger
which is trained on CoNLL 2003 shared task
data is used.

• Named entities-2: IOB tags of named enti-
ties found by the Identifinder (Bikel et. al,
1999); a HMM-based named entity tagger with
29 classes

• Named entities-3: IOB tags from a named en-
tity tagger trained on MUC-6 and MUC-7 data
using only the entity classes PERSON, LOCA-
TION and ORGANIZATION.

• Gazetteer labels: indicate the name of the list
to which the token belongs. Simple pattern
matching is employed here.

• WordNet categories: concepts or class names
in the WordNet 2.0 hypernym hierarchy rooted
at ”entity” concept. We trace hypernym hier-
archies of the two most frequent senses of to-
kens that are tagged as nouns (NN, NNS, NNP
etc.) to the top concepts. We count the num-
ber of concepts (that match to ACE entity types
and subtypes) that occur in the hypernym hier-
archy indicating that token is a (kind of) con-
cept. The concepts (i.e entity/types/subtypes)
with the maximum counts in the top two senses
are selected as features (can also be considered
as “maybe” labels)

• Syntactic tags: patterns of non-terminals and
brackets that indicate the position of tokens in
syntactic trees.

• Head words: words that the tokens depend

• POS of Head words:

• main verb: the verb at which the dependency
parse tree is rooted.

• Relations: the grammatical and semantic rela-
tions between tokens and their heads.

• Head word flag: indicates whether the token
plays a role of head in the sentence.

The features used in the Chinese system are

• tokens: Chinese characters

• token positions: IOB tags that indicate posi-
tion of characters in words

• Part of Speech tags: POS tags of words to
which tokens (characters) belong

• BP Positions: The position of a token in a BP
using the IOB representation (e.g. B-NP, I-NP,
O etc.)

• Named entities-1: IOB tags of two type of en-
tities; location and person. A SVM based tag-
ger trained on part of the Sinica corpus from
Taiwan is used to generate these features.

383

• Named entities-2: IOB tags of named enti-
ties: person, location, organization etc. An-
other SVM based tagger trained on the People
Daily data from mainland of China.

• Gazetteer labels: indicate the name of the list
to which the token belongs. Simple pattern
matching is employed here. Examples are la-
bels that indicate Chinese last name, foreign
person last name, first name etc.

• Syntactic labels: base phrase chunk labels and
paths in syntactic trees

• Head words: as determined by Chinese depen-
dency analysis

• POS of Head words:

• Relations: the grammatical and semantic rela-
tions between tokens and their heads.

6 A Pipelined System
As mentioned earlier the structure of entity men-
tion categories is very complex. Considering all at-
tributes together yields a large number of classes.
One can argue that the large number of classes and
data sparsity is an important issue here that it might
have significant effect on performance. However,
several attempts to divide the task into simpler sub-
tasks have failed to yield a system with a better per-
formance than that of the integrated system. In this
section, we describe one such system.

The system consists of three stages in cascade: (i)
entity mention extent detector, , (ii) mention type de-
tector and (iii) entity type, subtype and mention role
detector. Referring to the earlier example, the data
representation in terms of class labels at each level
is as follows:
#SNT BEG#
Javier (* B-NAM PER
Trevino *) I-NAM PER
was O O O
the (* O O
campaign * O O
manager * B-NOM PER
for * O O
the (* O O
ruling (* O O

party *) B-NOM ORG
candidate *) B-NOM PER
Fox * B-NAM PER
beat *)) O O
. O O O
#SNT END#

where the second column is for the extent labels of
mentions in bracketed representation, the third col-
umn is for the mention type labels in IOB represen-
tation and the last column is for the type labels (sub-
type and role labels are omitted for the sake of sim-
plicity) of entity mentions in plain representation.

The pipelined system operates as follows. First it
detects embedding structure of mention extents. Us-
ing that information the second stage identifies the
type of mentions. In the final stage, the system iden-
tifies entity types, subtypes and mention roles using
information (as features within context) from previ-
ous stages. Finally we combine all information into
entity mention attributes and resolve inconsistencies
by simple postprocessing.

Here, we have not done any feature selection spe-
cific to each stage. Instead we used the same fea-
tures in all stages. One can argue that this is not the
optimal set up for a cascaded system; separate fea-
ture design and selection should be made for each
stage. Also we acknowledge that there are several
other ways of dividing the task into smaller, simpler
subtasks. Although we have not explored all pos-
sible pipelined architectures with all possible fea-
ture selections , we conjecture that the data sparsity
is not as big an issue in SVMs as expected to be
in the other machine learning algorithms based on
maximum likelihood parameter estimation such as
those based on maximum entropy (ME) or condi-
tional random fields (CRF) frameworks.

7 A Novel Post-Processing Method

In our experiments, we have consistently observed
that the identical mentions of a unique entity are
missed depending on the missing capitalization in-
formation, unseen context and errors in feature ex-
traction. For example, although the name mention
of person “Eminem” is captured at several positions
in the document, the entity mention “eminem” is
missed, probably, due to its missing capitalization.

384

Table 3: Statistics on ACE 2004 data.

Language Train Samples Test Samples # Joint Classes # Pipelined Classes
Extent MType EType-SubTypey-Role

English ˜ 167K ˜ 61K 384 24 9 93
Chinese ˜ 307K ˜ 105K 374 15 7 95

As a solution we propose a post-processing
method that is based on an entity base (EB) cre-
ated from the tagged text. We populate the EB with
all entity mentions (particularly with those that have
name values) identified in the text. After we create
the EB, we tag the text again by case insensitive pat-
tern matching. We determine all tagged tokens that
were initially left untagged or tagged with a differ-
ent label by the SVM classifier. Using the SVM out-
put (distance from separating hyperplane) as a confi-
dence measure, we accept or reject the new tag based
on a preselected threshold.

8 Experiments and Results
In this section, we describe the experiments con-
ducted and results obtained using the ACE 2004
data. The number of training and test examples,
which are words/punctuations in English and char-
acters in Chinese, are summarized in Table 3. The
number of classes in the joint task and in each
pipelined subtask are also included.

In the first set of experiments we evaluated our
integrated system and investigated the performance
with respect to broad classes of features introduced
in section 5, by adding one group of features at a
time. Grouping of features into broad classes were
done as follows:

• baseline features: tokens

• lexical features: POS, lexical patterns

• syntactic features: base phrase chunks, syntac-
tic tree features

• “semantic” features: heads and grammatical re-
lations

• external features: features from external re-
sources; e.g. wordnet, gazetteers, other entity
taggers etc.

Table 4: English system performance with respect to broad
classes of features; lex: lexical features, syn: syntactic fea-
tures, sem: ”semantic” features, ext: external features, Fuw:
unweighted F-score, Fw: weighted F-score, ACE: ACE value.

Feature class Fuw Fw ACE
baseline (tokens) 56.5 54.8 36.1
baseline+lex 76.8 86.7 75.6
baseline+lex+syn 76.9 87.4 76.8
baseline+lex+syn+sem 77.1 87.8 77.6
baseline+lex+syn+sem+ext 82.0 90.7 82.9

The results are summarized in Table 4 and Table
5 for both English and Chinese systems. Both un-
weighted and weighted F-scores, and also ACE val-
ues are reported. It is interesting to note that sig-
nificant gains were achieved by simple lexical and
external features when they are added. The degree
of improvement by using computationally intensive
syntactic and dependency analysis is marginal. This
might partly be due to the type of features derived
from parse trees and partly due to the mismatch of
the genre of text to the text on which the syntactic
chunker and parser is trained. Since the dependency
analysis is based on the syntactic analysis using a
set of head rules, the extracted dependency based
features might also be inaccurate. Although we
observed moderate improvement for English, those
features slightly hurt the performance of the Chinese
system. This is because of the fact that the Chinese
syntactic parser performs relatively worse than the
English syntactic parser.

Table 6 presents the integrated and pipelined sys-
tem performances using all features extracted for
English and Chinese. Post-processing results are
also included. It shows notable performance im-
provement with the recovery of many misses by
post-processing. It should be noted that, in the
pipelined architecture the post-processing is per-
formed twice; at both mention and entity levels.

385

Table 5: Chinese system performance with respect to broad
classes of features; lex: lexical features, syn: syntactic fea-
tures, sem: ”semantic” features, ext: external features, Fuw:
unweighted F-score, Fw: weighted F-score, ACE: ACE value.

Feature class Fuw Fw ACE
baseline (tokens) 77.6 83.5 70.8
baseline+lex 78.3 85.2 73.4
baseline+lex+syn 76.1 83.7 70.8
baseline+lex+syn+sem 74.8 83.6 70.8
baseline+lex+syn+sem+ext 78.4 86.8 76.1

9 Conclusions

We have discussed the significance of the entity
mention detection in ER model extraction from
raw text and presented the complex syntactic and
categorical structure of the entity mentions speci-
fied in the ACE program. We have explored dif-
ferent ways of representing the problem and im-
plemented two architecturally different (supervised)
machine-learning based systems to accomplish the
task; namely, a monolithic system and a cascaded
system. We have described those systems in detail
and empirically compared them. Both systems have
achieved comparable performances on English text.
However, the integrated system has achived moder-
ately better performance on Chinese text. We have
argued that it is easier to develop and maintain the
monolithic system since it has a single set of features
and classifiers to be tuned. We believe that the per-
formance levels achieved at mid 80s (in ACE values)
for English and at upper 70s for Chinese, using only
the ACE data, are competitive. We have introduced
a post-processing algorithm based on an entity base
created during the testing. It has worked very well
for both languages to recover several missed en-
tity mentions and considerably improved the perfor-
mance.

10 Acknowledgement

We extend our special thanks to Wayne Ward,
Steven Bethard, James H. Martin and Dan Juraf-
sky for their useful feedback during this work. This
work is supported by the ARDA Aquaint II Program
via contract NBCHC040040.

Table 6: English and Chinese system performances with all
features and post-processing: Fuw: unweighted F-score, Fw:
weighted F-score, ACE: ACE value.

English System Fuw Fw ACE
Integrated 82.0 90.7 82.9
Pipelined 82.1 90.8 83.1
Integrated+Post 82.2 91.5 84.3
Pipelined+Post 82.3 91.3 84.0

Chinese System
Integrated 78.4 86.8 76.1
Pipelined 76.9 85.7 74.1
Integrated+Post 79.6 87.7 77.5
Pipelined+Post 79.1 86.6 75.6

References
E. L. Allwein, R. E Schapire and Y. Singer. 2000. Re-

ducing multiclass to binary: A unifying approach for
margin classifiers. Journal of Machine Learning Re-
search, 1:113-141,

Dan M. Bikel, Robert L. Schwartz, and Ralph M.
Weischedel. 1999 An algorithm that learns what’s
in a name. Machine Learning, Vol. 34, pp. 211-231.

Chiristopher J. C. Burges 1998. Tutorial on Support Vec-
tor Machines for Pattern Recognition. Data Mining
and Knowledge Discovery, 2(2), pages 1-47.

Peter P. Chen 1976. The Entity-Relationship Model:
Toward a Unified View of Data. ACM Trans. on
Database Systems, Vol. 1, No. 1, pages 1-36.

R. Florian, H. Hassan, A. Ittycheriah, H. Jing, N. Kamb-
hatla, X. Luo, N. Nicolov, and S. Roukos. 2004. A
Statistical Model for Multilingual Entity Detection and
Tracking. Proceedings of HLT-2004.

Nanda Kambhatla. 2004. Combining Lexical Syntactic
and Semantic Features with Maximum Entropy Mod-
els for Extracting Relations. Proceedings of ACL-04.

Taku Kudo and Yuji Matsumato. 2000. Use of support
vector learning for chunk identification. Proc. of the
4th Conference on Very Large corpora, pages 142-144.

Lance E. Ramhsaw and Mitchel P. Marcus. 1995.
Text Chunking Using Transformation Based Learning.
Proceedings of the 3rd ACL Workshop on Very Large
Corpora, pages 82-94.

Erik F. T. J. Sangand and Jorn Veenstra 1999. Repre-
senting text chunks. Proceedings of EACL’99, pages
173-179.

The Automatic Content Extraction (ACE) Evaluation
Plan. 2004. www.nist.gov/speech/tests/ace/

Vladamir Vapnik. 1995. The Nature of Statistical Learn-
ing Theory. Springer Verlag, New York, USA.

386

