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Abstract

We identify a set of prosodic cues for parsing con-

versational speech and show how such features can

be effectively incorporated into a statistical parsing

model. On the Switchboard corpus of conversa-

tional speech, the system achieves improved parse

accuracy over a state-of-the-art system which uses

only lexical and syntactic features. Since removal

of edit regions is known to improve downstream

parse accuracy, we explore alternatives for edit de-

tection and show that PCFGs are not competitive

with more specialized techniques.

1 Introduction

For more than a decade, the Penn Treebank’s Wall
Street Journal corpus has served as a benchmark for
developing and evaluating statistical parsing tech-
niques (Collins, 2000; Charniak and Johnson, 2005).
While this common benchmark has served as a valu-
able shared task for focusing community effort, it
has unfortunately led to the relative neglect of other
genres, particularly speech. Parsed speech stands to
benefit from practically every application envisioned
for parsed text, including machine translation, infor-
mation extraction, and language modeling. In con-
trast to text, however, speech (in particular, conver-
sational speech) presents a distinct set of opportu-
nities and challenges. While new obstacles arise
from the presence of speech repairs, the possibility
of word errors, and the absence of punctuation and
sentence boundaries, speech also presents a tremen-
dous opportunity to leverage multi-modal input, in
the form of acoustic or even visual cues.

As a step in this direction, this paper identifies a
set of useful prosodic features and describes how

they can be effectively incorporated into a statisti-
cal parsing model, ignoring for now the problem
of word errors. Evaluated on the Switchboard cor-
pus of conversational telephone speech (Graff and
Bird, 2000), our prosody-aware parser out-performs
a state-of-the-art system that uses lexical and syntac-
tic features only. While we are not the first to employ
prosodic cues in a statistical parsing model, previous
efforts (Gregory et al., 2004; Kahn et al., 2004) in-
corporated these features as word tokens and thereby
suffered from the side-effect of displacing words in
the n-gram models by the parser. To avoid this prob-
lem, we generate a set of candidate parses using an
off-the-shelf, k-best parser, and use prosodic (and
other) features to rescore the candidate parses.

Our system architecture combines earlier models
proposed for parse reranking (Collins, 2000) and
filtering out edit regions (Charniak and Johnson,
2001). Detecting and removing edits prior to parsing
is motivated by the claim that probabilistic context-
free grammars (PCFGs) perform poorly at detect-
ing edit regions. We validate this claim empirically:
two state-of-the-art PCFGs (Bikel, 2004; Charniak
and Johnson, 2005) are both shown to perform sig-
nificantly below a state-of-the-art edit detection sys-
tem (Johnson et al., 2004).

2 Previous Work

As mentioned earlier, conversational speech
presents a different set of challenges and opportu-
nities than encountered in parsing text. This paper
focuses on the challenges associated with disfluen-
cies (Sec. 2.1) and the opportunity of leveraging
acoustic-prosodic cues at the sub-sentence level
(Sec. 2.2). Here, sentence segmentation is assumed
to be known (though punctuation is not available);
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. . . while I think,

︸ ︷︷ ︸

Reparandum

+ uh, I mean,

︸ ︷︷ ︸

Editing phrase

I know

︸ ︷︷ ︸

Repair

that. . .

Figure 1: The structure of a typical repair, with “+” indicating the interruption point.

the impact of automatic segmentation is addressed
in other work (Kahn et al., 2004).

2.1 Speech Repairs and Parsing

Spontaneous speech abounds with disfluencies such
as partial words, filled pauses (e.g., “uh”, “um”),
conversational fillers (e.g., “you know”), and par-
enthetical asides. One type of disfluency that has
proven particularly problematic for parsing is speech
repairs: when a speaker amends what he is saying
mid-sentence (see Figure 1). Following the analy-
sis of (Shriberg, 1994), a speech repair can be un-
derstood as consisting of three parts: the reparan-
dum (the material repaired), the editing phrase (that
is typically either empty or consists of a filler), and
the repair. The point between the reparandum and
the editing phrase is referred to as the interruption
point (IP), and it is the point that may be acousti-
cally marked. We refer to the reparandum and edit-
ing phrase together as an edit or edit region. Speech
repairs are difficult to model with HMM or PCFG
models, because these models can induce only linear
or tree-structured dependencies between words. The
relationship between reparandum and repair is quite
different: the repair is often a “rough copy” of the
reparandum, using the same or very similar words
in roughly the same order. A language model char-
acterizing this dependency with hidden stack opera-
tions is proposed in (Heeman and Allen, 1999).

Several parsing models have been proposed which
accord special treatment to speech repairs. Most
prior work has focused on handling disfluencies
and continued to rely on hand-annotated transcripts
that include punctuation, case, and known sentence
boundaries (Hindle, 1983; Core and Schubert, 1999;
Charniak and Johnson, 2001; Engel et al., 2002).

Of particular mention is the analysis of the rela-
tionship between speech repairs and parsing accu-
racy presented by Charniak and Johnson (2001), as
this directly influenced our work. They presented

evidence that improved edit detection (i.e. detect-
ing the reparandum and edit phrase) leads to better
parsing accuracy, showing a relative reduction in F -
score error of 14% (2% absolute) between oracle and
automatic edit removal. Thus, this work adopts their
edit detection preprocessing approach. They have
subsequently presented an improved model for de-
tecting edits (Johnson et al., 2004), and our results
here complement their analysis of the edit detection
and parsing relationship, particularly with respect to
the limitations of PCFGs in edit detection.

2.2 Prosody and parsing

While spontaneous speech poses problems for pars-
ing due to the presence of disfluencies and lack of
punctuation, there is information in speech associ-
ated with prosodic cues that can be taken advantage
of in parsing. Certainly, prosodic cues are useful
for sentence segmentation (Liu et al., 2004), and
the quality of automatic segmentation can have a
significant impact on parser performance (Kahn et
al., 2004). There is also perceptual evidence that
prosody provides cues to human listeners that aid
in syntactic disambiguation (Price et al., 1991), and
the most important of these cues seems to be the
prosodic phrases (perceived groupings of words) or
the boundary events marking them. However, the
utility of sentence-internal prosody in parsing con-
versational speech is not well established.

Most early work on integrating prosody in parsing
was in the context of human-computer dialog sys-
tems, where parsers typically operated on isolated
utterances. The primary use of prosody was to rule
out candidate parses (Bear and Price, 1990; Batliner
et al., 1996). Since then, parsing has advanced con-
siderably, and the use of statistical parsers makes the
candidate pruning benefits of prosody less impor-
tant. This raises the question of whether prosody
is useful for improving parsing accuracy for con-
versational speech, apart from its use in sentence
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Figure 2: System architecture

boundary detection. Extensions of Charniak and
Johnson (2001) look at using quantized combina-
tions of prosodic features as additional “words”,
similar to the use of punctuation in parsing written
text (Gregory et al., 2004), but do not find that the
prosodic features are useful. It may be that with the
short “sentences” in spontaneous speech, sentence-
internal prosody is rarely of use in parsing. How-
ever, in edit detection using a parsing model (John-
son et al., 2004), posterior probabilities of automati-
cally detected IPs based on prosodic cues (Liu et al.,
2004) are found to be useful. The seeming discrep-
ancy between results could be explained if prosodic
cues to IPs are useful but not other sub-sentence
prosodic constituents. Alternatively, it could be that
including a representation of prosodic features as
terminals in (Gregory et al., 2004) displaces words
in the parser n-gram model history. Here, prosodic
event posteriors are used, with the goal of providing
a more effective way of incorporating prosody than
a word-like representation.

3 Approach

3.1 Overall architecture

Our architecture, shown in Figure 2, combines the
parse reranking framework of (Collins, 2000) with
the edit detection and parsing approach of (Charniak
and Johnson, 2001). The system operates as follows:

1. Edit words are identified and removed.

2. Each resulting string is parsed to produce a set
of k candidate parses.

3. Edit words reinserted into the candidates with

a new part-of-speech tag EW. Consecutive se-
quences of edit words are inserted as single, flat
EDITED constituents.

4. Features (syntactic and/or prosodic) are ex-
tracted for each candidate, i.e. candidates are
converted to feature vector representation.

5. The candidates are rescored by the reranker to
identify the best parse.

Use of Collins’ parse reranking model has several
advantages for our work. In addition to allowing us
to incorporate prosody without blocking lexical de-
pendencies, the discriminative model makes it rela-
tively easy to experiment with a variety of prosodic
features, something which is considerably more dif-
ficult to do directly with a typical PCFG parser.

Our use of the Charniak-Johnson approach of sep-
arately detecting disfluencies is motivated by their
result that edit detection error degrades parser accu-
racy, but we also include experiments that omit this
step (forcing the PCFG to model the edits) and con-
firm the practical benefit of separating responsibili-
ties between the edit detection and parsing tasks.

3.2 Baseline system

We adopt an existing parser-reranker as our base-
line (Charniak and Johnson, 2005). The parser
component supports k-best parse generation, and
the reranker component is used to rescore candi-
date parses proposed by the parser. In detail, the
reranker selects from the set of k candidates T =
{t1, . . . tk} the parse t? ∈ T with the highest bracket
F -score (in comparison with a hand-annotated ref-
erence). To accomplish this, a feature-extractor con-
verts each candidate parse t ∈ T into a vector of
real-valued features f(t) = (f1(t), . . . , fm(t)) (e.g.,
the value fj(t) of the feature fj might be the num-
ber of times a certain syntactic structure appears in
t). The reranker training procedure associates each
feature fj with a real-valued weight λj , and λ′f(t)
(the dot product of the feature vector and the weight
vector λ) is a single scalar weight for each parse can-
didate. The reranker employs a maximum-entropy
estimator that selects the λ that minimizes the log
loss of the highest bracket F -score parse t? condi-
tioned on T (together with a Gaussian regularizer
to prevent overtraining). Informally, λ is chosen to
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make high F -score parses as likely as possible un-
der the (conditional) distribution defined by f and λ.
As in (Collins, 2000), we generate training data for
the reranker by reparsing the training corpus, using
n− 1 folds as training data to parse the n-th fold.

The existing system also includes a feature extrac-
tor that identifies interesting syntactic relationships
not included in the PCFG parsing model (but used
in the reranker). These features are primarily related
to non-local dependencies, including parallelism of
conjunctions, the number of terminals dominated by
coordinated structures, right-branching root-to-leaf
length, lexical/functional head pairs, n-gram style
sibling relationships, etc.

3.3 Prosodic Features

Most theories of prosody have a symbolic represen-
tation for prosodic phrasing, where different combi-
nations of acoustic cues (fundamental frequency, en-
ergy, timing) combine to give categorical perceptual
differences. Our approach to integrating prosody in
parsing is to use such symbolic boundary events, in-
cluding prosodic break labels that build on linguistic
notions of intonational phrases and hesitation phe-
nomena. These events are predicted from a com-
bination of continuous acoustic correlates, rather
than using the acoustic features directly, because
the intermediate representation simplifies training
with high-level (sparse) structures. Just as phone-
based acoustic models are useful in speech recogni-
tion systems as an intermediate level between words
and acoustic features (especially for characterizing
unseen words), the small set of prosodic boundary
events are used here to simplify modeling the inter-
dependent set of continuous-valued acoustic cues re-
lated to prosody. However, also as in speech recog-
nition, we use posterior probabilities of these events
as features rather than making hard decisions about
presence vs. absence of a constituent boundary.

In the past, the idea of using perceptual categories
has been dismissed as impractical due to the high
cost of hand annotation. However, with advances
in weakly supervised learning, it is possible to train
prosodic event classifiers with only a small amount
of hand-labeled data by leveraging information in
syntactic parses of unlabeled data. Our strategy is
similar to that proposed in (Nöth et al., 2000), which
uses categorical labels defined in terms of syntactic

structure and pause duration. However, their sys-
tem’s category definitions are without reference to
human perception, while we leverage learned re-
lations between perceptual events and syntax with
other acoustic cues, without predetermining the re-
lation or requiring a direct coupling to syntax.

More specifically, we represent three classes of
prosodic boundaries (or, breaks): major intonational
phrase, hesitation, and all other word boundaries.1

A small set of hand-labeled data from the treebanked
portion of the Switchboard corpus (Ostendorf et al.,
2001) was used to train initial break prediction mod-
els based on both parse and acoustic cues. Next, the
full set of treebanked Switchboard data is used with
an EM algorithm that iterates between: i) finding
probabilities of prosodic breaks in unlabeled data
based on the current model, again using parse and
acoustic features, and ii) re-estimating the model us-
ing the probabilities as weighted counts. Finally, a
new acoustic-only break prediction model was de-
signed from this larger data set for use in the parsing
experiments.

In each stage, we use decision trees for models, in
part because of an interest in analyzing the prosody-
syntax relationships learned. The baseline system
trained on hand-labeled data has error rates of 9.6%
when all available cues are used (both syntax and
prosody) and 16.7% when just acoustic and part-of-
speech cues are provided (our target environment).
Using weakly supervised (EM) training to incorpo-
rate unannotated data led to a 15% reduction in error
rate to 14.2% for the target trees. The final decision
tree was used to generate posteriors for each of the
three classes, one for each word in a sentence.

¿From perceptual studies and decision tree analy-
ses, we know that major prosodic breaks tend to co-
occur with major clauses, and that hesitations often
occur in edit regions or at high perplexity points in
the word sequence. To represent the co-occurrence
as a feature for use in parse reranking, we treat
the prosodic break posteriors as weighted counts in
accumulating the number of constituents in parse
t of type i with break type j at their right edge,
which (with some normalization and binning) be-
comes feature fij . Note that the unweighted count

1The intonational phrase corresponds to a break of “4” in the
ToBI labeling system (Pitrelli et al., 1994), and a hesitation is
marked with the “p” diacritic.

236



for constituent i corresponds directly to a feature
in the baseline set, but the baseline set of features
also includes semantic information via association
with specific words. Here, we simply use syntactic
constituents. It is also known that major prosodic
breaks tend to be associated with longer syntactic
constituents, so we used the weighted count strategy
with length-related features as well. In all, the vari-
ous attributes associated with prosodic break counts
were the constituent label of the subtree, its length
(in words), its height (maximal distance from the
constituent root to any leaf), and the depth of the
rightmost word (distance from the right word to the
subtree root). For each type in each of these cate-
gories, there are three prosodic features, correspond-
ing to the three break types.

3.4 Edit detection

To provide a competitive baseline for our parsing
experiments, we used an off-the-shelf, state-of-the-
art TAG-based model as our primary edit detec-
tor (Johnson et al., 2004).2 This also provided us a
competitive benchmark for contrasting the accuracy
of PCFGs on the edit detection task (Section 4.2).

Whereas the crossing-dependencies inherent in
speech repairs makes them difficult to model us-
ing HMM or PCFG approaches (Section 2.1), Tree
Adjoining Grammars (TAGs) are capable of cap-
turing these dependencies. To model both the
crossed-dependencies of speech repairs and the lin-
ear or tree-structured dependencies of non-repaired
speech, Johnson et al.’s system applies the noisy
channel paradigm: a PCFG language model defines
a probability distribution over non-repaired speech,
and a TAG is used to model the optional insertion of
edits. The output of this noisy channel model is a
set of candidate edits which are then reranked using
a max-ent model (similar to what is done here for
parse reranking). This reranking step enables incor-
poration of features based on an earlier word-based
classifier (Charniak and Johnson, 2001) in addition
to output features of the TAG model. Acoustic fea-
tures are not yet incorporated.

2We also evaluated another state-of-the-art edit detection
system (Liu et al., 2004) but found that it suffered from a mis-
match between the current LDC specification of edits (LDC,
2004) and that used in the treebank.

4 Experimental design

4.1 Corpus

Experiments were carried out on conversational
speech using the hand-annotated transcripts associ-
ated with the Switchboard treebank (Graff and Bird,
2000). As was done in (Kahn et al., 2004), we
resegmented the treebank’s sentences into V5-style
sentence-like units (SUs) (LDC, 2004), since our ul-
timate goal was to be able to parse speech given au-
tomatically detected boundaries. Unfortunately, the
original transcription effort did not provide punctu-
ation guidelines, and the Switchboard treebanking
was performed on the transcript unchanged, with-
out reference to the audio. As a result, the sentence
boundaries sometimes do not match human listener
decisions using SU annotation guidelines, with dif-
ferences mainly corresponding to treatment of dis-
course markers and backchannels. In the years since
the original Switchboard annotation was performed,
LDC has iteratively refined guidelines for annotating
SUs, and significant progress has been made in au-
tomatically recovering SU boundaries annotated ac-
cording to this standard (Liu et al., 2004). To even-
tually leverage this work, we have taken the Meteer-
annotated SUs (Meteer et al., 1995), for which there
exists treebanked training data, and automatically
adjusted them to be more like the V5 LDC stan-
dard, and resegmented the Switchboard treebank ac-
cordingly. In cases where the original syntactic con-
stituents span multiple SUs, we discard any con-
stituents violating the SU boundary, and in the event
that an SU spans a treebank sentence boundary, a
new top-level constituent SUGROUP is inserted to
produce a proper tree (and evaluated like any other
constituent in the gold tree).3 While this SU reseg-
mentation makes it difficult to compare our experi-
mental results to past work, we believe this is a nec-
essary step towards developing a more realistic base-
line for fully automated parsing of speech.

In addition to resegmention, we removed all punc-
tuation and case from the corpus to more closely
reflect the form of output available from a speech
recognizer. We retained partial words for consis-

3SU and treebank segments disagree at about 5% in each di-
rection, due mostly to the analysis of discourse markers as con-
junctions (sentences of >1 SU) and the separation of backchan-
nels into separate treebank sentences (SUs of >1 sentence).
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Table 1: Statistics on the Switchboard division used.

Section Sides SUs Words
Train 1,031 87,599 659,437
Tune 126 13,147 103,500
Test 128 8,726 61,313
Total 1,285 109,472 824,250

tency with other work (Liu et al., 2004; Johnson et
al., 2004), although word fragments would not typ-
ically be available from ASR. Finally, of the 1300
total conversation sides, we discarded 15 for which
we did not have prosodic data. Our corpus division
statistics are given in Table 1. During development,
experiments were carried out on the tune section; the
test section was reserved for a final test run.

4.2 Experimental Variables

Our primary goal is to evaluate the extent to which
prosodic cues could augment and/or stand-in for lex-
ical and syntactic features. Correspondingly, we
report on using three flavors of feature extraction:
syntactic and lexical features (Section 3.2), prosodic
features (Section 3.3), and both sets of features com-
bined. For all three conditions, the first-stage score
for each parse (generated by the off-the-shelf k-best
parser) was always included as a feature.

A second parameter varied in the experiments was
the method of upstream edit detection employed
prior to parsing: PCFG, TAG-based, and oracle
knowledge of treebank edit annotations. While it
had been claimed that PCFGs perform poorly as edit
detectors (Charniak and Johnson, 2001), we could
not find empirical evidence in the literature quan-
tifying the severity of the problem. Therefore, we
evaluated two PCFGs (Bikel, 2004; Charniak and
Johnson, 2005) on edit detection and compared their
performance to a state-of-the-art TAG-based edit de-
tection system (Johnson et al., 2004). For this ex-
periment, we evaluated edit detection accuracy on a
per-word basis, where any tree terminal is consid-
ered an edit word if and only if it is dominated by
an EDITED constituent in the gold tree. The PCFGs
were trained on the train section of the treebank data
with the flattened edit regions included4 and then

4Training on flattened EDITED nodes improved detection ac-
curacy for both PCFGs: as much as 15% for Bikel-Collins.

Table 2: Edit word detection performance for two
word-based PCFGs and the TAG-based edit detec-
tor. F -score and error are word-based measures.

Edit Detector Edit F -score Edit Error
Bikel-Collins PCFG 65.3 62.1

Charniak PCFG 65.8 59.9
TAG-based 78.2 42.2

Table 3: Parsing F -score of various feature and edit-
detector combinations.

PCFG TAG Oracle
Edit F (Table 2) 65.8 78.2 100.0

Parser 1-best 84.4 85.0 86.9
Prosodic feats 85.0 85.6 87.6
Syntactic feats 85.9 86.4 88.4

Combined feats 86.0 86.6 88.6
Oracle-rate 92.6 93.2 95.2

used to parse the test data.5 The TAG-based de-
tector was trained on the same conversation sides,
with its channel model trained on the Penn Treebank
disfluency-annotated files and its language model
trained on trees with the EDITED nodes excised. As
shown in Table 2, we did find that both PCFGs per-
formed significantly below the TAG-based detector.

5 Results

In evaluating parse accuracy, we adopt the relaxed
edited revision (Charniak and Johnson, 2001) to the
standard PARSEVAL metric, which penalizes sys-
tems that get EDITED spans wrong, but does not pe-
nalize disagreements in the attachment or internal
structure of edit regions. This metric is based on the
assumption that there is little reason to recover syn-
tactic structure in regions of speech that have been
repaired or restarted by the speaker.

Table 3 shows the F -scores for the top-ranked
parses after reranking, where the first-stage PCFG
parser was run with a beam-size of 50. The first
and last rows show lower and upper bounds, respec-
tively, for reranked parsing accuracy on each edit
condition. As the oracle rate6 shows, there is con-

5For the Charniak parser, edits were detected using only its
PCFG component in 1-best mode, not its 2nd stage reranker.

6Oracle F uses the best parse in the 50-best list.

238



siderable room for improvement. Statistical signif-
icance was computed using a non-parametric shuf-
fle test similar to that in (Bikel, 2004). For TAG
and oracle edit detection conditions, the improve-
ment from using the combined features over either
prosodic or syntactic features in isolation was sig-
nificant (p < 0.005). (For PCFG edit detection,
p < 0.04.) Similarly, for all three feature extraction
conditions, the improvement from using the TAG-
based edit detector instead of the PCFG edit detector
was also significant (p < 0.001). Interestingly, the
TAG’s 34% reduction in edit detection error relative
to the PCFG yielded only about 23% of the parse
accuracy differential between the PCFG and oracle
conditions. Nevertheless, there remains a promising
2.0% difference in parse F -score between the TAG
and oracle detection conditions to be realized by fur-
ther improvements in edit detection. Training for
the syntactic feature condition resulted in a learned
weight λ with approximately 50K features, while
the prosodic features used only about 1300 features.
Despite this difference in the length of the λ vectors,
the prosodic feature condition achieved 40–50% of
the improvement of the syntactic features.

In some situations, e.g. for language modeling,
improving the ordering and weights of the entire
parse set (an not just the top ranked parse) is im-
portant. To illustrate the overall improvement of the
reranked order, in Table 4 we report the reranked-
oracle rate over the top s parses, varying the beam s.
The error for each feature condition, relative to using
the PCFG parser in isolation, is shown in Figure 3.
Both the table and figure show that the reranked
beam achieves a consistent trend in parse accuracy
improvement relative to the PCFG beam, similar to
what is demonstrated by the 1-best scores (Table 3).

Table 4: Reranked-oracle rate parse F -score for the
top s parses with reference edit detection.

s 1 2 3 5 10 25
PCFG 86.9 89.8 91.0 92.2 93.4 94.6
Pros. 87.6 90.3 91.5 92.7 93.9 94.8
Syn. 88.4 91.3 92.4 93.4 94.3 95.0

Comb. 88.6 91.5 92.5 93.5 94.4 95.0

Figure 3: Reduction in error (Error = 1−F ) for the
s-best reranked-oracle relative to the parser-only or-
acle, for different feature rerankings (reference edit
detection).

6 Conclusion

This study shows that incorporating prosodic infor-
mation into the parse selection process, along with
non-local syntactic information, leads to improved
parsing accuracy on accurate transcripts of conver-
sational speech. Gains are shown to be robust to dif-
ficulties introduced by automatic edit detection and,
in addition to improving the one-best performance,
the overall ordering of the parse candidates is im-
proved. While the gains from combining prosodic
and syntactic features are not additive, since the
prosodic features incorporates some constituent-
structure information, the combined gains are sig-
nificant. These results are consistent with related ex-
periments with a different type of prosodically cued
event, which showed that automatically detected IPs
based on prosodic cues (Liu et al., 2004) are useful
in the reranking stage of a TAG-based speech repair
detection system (Johnson et al., 2004).

The experiments described here used automat-
ically extracted prosodic features in combination
with human-produced transcripts. It is an open ques-
tion as to whether the conclusions will hold for er-
rorful ASR transcripts and automatically detected
SU boundaries. However, there is reason to believe
that relative gains from using prosody may be larger
than those observed here for reference transcripts
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(though overall performance will degrade), based on
prior work combining prosody and lexical cues to
detect other language structures (Shriberg and Stol-
cke, 2004). While the prosody feature extraction de-
pends on timing of the hypothesized word sequence,
the acoustic cues are relatively robust to word errors
and the break model can be retrained on recognizer
output to automatically learn to discount the lexical
evidence. Furthermore, if parse reranking operates
on the top N ASR hypotheses, the reranking pro-
cedure can improve recognition outputs, as demon-
strated in (Kahn, 2005) for syntactic features alone.
Allowing for alternative SU hypotheses in reranking
may also lead to improved SU segmentation.

In addition to assessing the impact of prosody
in a fully automatic system, other avenues for fu-
ture work include improving feature extraction. One
could combine IP and prosodic break features (so
far explored separately), find new combinations of
prosody and syntactic structure, and/or incorporate
other prosodic events. Finally, it may also be use-
ful to integrate the prosodic events directly into the
PCFG, in addition to their use in reranking.

This work was supported by the NSF under grants DMS-

0074276, IIS-0085940, IIS-0112432, IIS-0326276, and LIS-

9721276. Conclusions are those of the authors and do not nec-

essarily reflect the views of the NSF.
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