
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 225–232, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Error Handling in the RavenClaw Dialog Management Framework

Dan Bohus
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, 15213

dbohus@cs.cmu.edu

Alexander I. Rudnicky
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA, 15213
air@cs.cmu.edu

Abstract

We describe the error handling architect-
ture underlying the RavenClaw dialog
management framework. The architecture
provides a robust basis for current and fu-
ture research in error detection and recov-
ery. Several objectives were pursued in its
development: task-independence, ease-of-
use, adaptability and scalability. We de-
scribe the key aspects of architectural de-
sign which confer these properties, and
discuss the deployment of this architect-
ture in a number of spoken dialog systems
spanning several domains and interaction
types. Finally, we outline current research
projects supported by this architecture.

1 Introduction

Over the last decade, improvements in speech rec-
ognition and other component technologies have
paved the way for the emergence of complex task-
oriented spoken dialog systems. While traditionally
the research community has focused on building
information-access and command-and-control
systems, recent efforts aim towards building more
sophisticated language-enabled agents, such as
personal assistants, interactive tutors, open-domain
question answering systems, etc. At the other end
of the complexity spectrum, simpler systems have
already transitioned into day-to-day use and are
becoming the norm in the phone-based customer-
service industry.

Nevertheless, a number of problems remain in
need of better solutions. One of the most important
limitations in today’s spoken language interfaces is

their lack of robustness when faced with under-
standing errors. This problem appears across all
domains and interaction types, and stems primarily
from the inherent unreliability of the speech recog-
nition process. The recognition difficulties are
further exacerbated by the conditions under which
these systems typically operate: spontaneous spe-
ech, large vocabularies and user populations, and
large variability in input line quality. In these set-
tings, average word-error-rates of 20-30% (and up
to 50% for non-native speakers) are quite common.

Left unchecked, speech recognition errors can
lead to two types of problems in a spoken dialog
system: misunderstandings and non-understand-
ings. In a misunderstanding, the system obtains an
incorrect semantic interpretation of the user’s turn.
In the absence of robust mechanisms for assessing
the reliability of the decoded inputs, the system
will take the misunderstanding as fact and will act
based on invalid information. In contrast, in a non-
understanding the system fails to obtain an inter-
pretation of the input altogether. Although no false
information is incorporated in this case, the situa-
tion is not much better: without an appropriate set
of recovery strategies and a mechanism for diag-
nosing the problem, the system’s follow-up options
are limited and uninformed. In general, unless
mitigated by accurate error awareness and robust
recovery mechanisms, speech recognition errors
exert a strong negative impact on the quality and
ultimately on the success of the interactions (Sand-
ers et al, 2002).

Two pathways towards increased robustness
can be easily envisioned. One is to improve the
accuracy of the speech recognition process. The
second is to create mechanisms for detecting and
gracefully handling potential errors at the conver-
sation level. Clearly, these two approaches do not

225

stand in opposition and a combined effort would
lead to the best results. The error handling archi-
tecture we describe in this paper embodies the sec-
ond approach: it aims to provide the mechanisms
for robust error handling at the dialog management
level of a spoken dialog system.

The idea of handling errors through conversa-
tion has already received a large amount of atten-
tion from the research community. On the theore-
tical side, several models of grounding in commu-
nication have been proposed (Clark and Schaefer,
1989; Traum, 1998). While these models provide
useful insights into the grounding process as it
happens in human-human communication, they
lack the decision-making aspects required to drive
the interaction in a real-life spoken dialog system.
In the Conversational Architectures project, Paek
and Horvitz (2000) address this challenge by de-
veloping a computational implementation of the
grounding process using Bayesian belief networks.
However, questions still remain: the structure and
parameters of the belief networks are handcrafted,
as are the utilities for the various grounding ac-
tions; due to scalability and task-representation
issues, it is not known yet how the proposed ap-
proach would transfer and scale to other domains.

Three ingredients are required for robust error
handling: (1) the ability to detect the errors, (2) a
set of error recovery strategies, and (3) a
mechanism for engaging these strategies at the
appropriate time. For some of these issues, various
solutions have emerged in the community. For
instance, systems generally rely on recognition
confidence scores to detect potential misunder-
standings (e.g. Krahmer et al., 1999; Walker et al.,
2000) and use explicit and implicit confirmation
strategies for recovery. The decision to engage
these strategies is typically based on comparing the
confidence score against manually preset thresh-
olds (e.g. Kawahara and Komatani, 2000). For
non-understandings, detection is less of a problem
(systems know by definition when non-understand-
ings occur). Strategies such as asking the user to
repeat or rephrase, providing help, are usually en-
gaged via simple heuristic rules.

At the same time, a number of issues remain
unsolved: can we endow systems with better error
awareness by integrating existing confidence an-
notation schemes with correction detection mecha-
nisms? Can we diagnose the non-understanding
errors on-line? What are the tradeoffs between the

various non-understanding recovery strategies?
Can we construct a richer set of such strategies?
Can we build systems which automatically tune
their error handling behaviors to the characteristics
of the domains in which they operate?

We have recently engaged in a research pro-
gram aimed at addressing such issues. More gener-
ally, our goal is to develop a task-independent,
easy-to-use, adaptive and scalable approach for
error handling in task-oriented spoken dialog sys-
tems. As a first step in this program, we have
developed a modular error handling architecture,
within the larger confines of the RavenClaw dialog
management framework (Bohus and Rudnicky,
2003). The proposed architecture provides the in-
frastructure for our current and future research on
error handling. In this paper we describe the pro-
posed architecture and discuss the key aspects of
architectural design which confer the desired prop-
erties. Subsequently, we discuss the deployment of
this architecture in a number of spoken dialog sys-
tems which operate across different domains and
interaction types, and we outline current research
projects supported by the proposed architecture.

2 RavenClaw Dialog Management

We begin with a brief overview of the RavenClaw
dialog management framework, as it provides the
larger context for the error handling architecture.

RavenClaw is a dialog management framework
for task-oriented spoken dialog systems. To date, it
has been used to construct a large number of sys-
tems spanning multiple domains and interaction
types (Bohus and Rudnicky, 2003): information
access (RoomLine, the Let’s Go Bus Information
System), guidance through procedures (LARRI),
command-and-control (TeamTalk), taskable agents
(Vera). Together with these systems, RavenClaw
provides the larger context as well as a test-bed for
evaluating the proposed error handling architec-
ture. More generally, RavenClaw provides a robust
basis for research in various other aspects of dialog
management, such as learning at the task and dis-
course levels, multi-participant dialog, timing and
turn-taking, etc.

A key characteristic of the RavenClaw frame-
work is the separation it enforces between the do-
main-specific and domain-independent aspects of
dialog control. The domain-specific dialog control
logic is described by a Dialog Task Specification,

226

essentially a hierarchical dialog plan provided by
the system author. A fixed, domain-independent
Dialog Engine manages the conversation by exe-
cuting the given Dialog Task Specification. In the
process, the Dialog Engine also contributes a set of
domain-independent conversational skills, such as
error handling (discussed extensively in Section 4),
timing and turn-taking, etc. The system authoring
effort is therefore minimized and focused entirely
on the domain-specific aspects of dialog control.

2.1 The Dialog Task Specification

A Dialog Task Specification consists of a tree of
dialog agents, where each agent manages a sub-
part of the interaction. Figure 1 illustrates a portion
of the dialog task specification from RoomLine, a
spoken dialog system which can assist users in
making conference room reservations. The root
node subsumes several children: Welcome, which
produces an introductory prompt, GetQuery which
obtains the time and room constraints from the
user, DoQuery which performs the database query,
and DiscussResults which handles the follow-up
negotiation dialog. Going one level deeper in the
tree, GetQuery contains GetDate which requests the
date for the reservation, GetStartTime and GetEnd-
Time which request the times, and so on. This type
of hierarchical task representation has a number of
advantages: it scales up gracefully, it can be
dynamically extended at runtime, and it implicitly
captures a notion of context in dialog.

The agents located at the leaves of the tree are
called basic dialog agents, and each of them im-
plements an atomic dialog action (dialog move).
There are four types of basic dialog agents: Inform
– conveys information to the user (e.g. Welcome),
Request – asks a question and expects an answer
(e.g. GetDate), Expect – expects information with-
out explicitly asking for it, and EXecute – imple-
ments a domain specific operation (e.g. DoQuery).
The agents located at non-terminal positions in the
tree are called dialog agencies (e.g. RoomLine,
GetQuery). Their role is to plan for and control the
execution of their sub-agents. For each agent in the
tree, the system author may specify preconditions,
completion criteria, effects and triggers; various
other functional aspects of the dialog agents (e.g.
state-specific language models for request-agents,
help-prompts) are controlled through parameters.

The information the system acquires and ma-
nipulates in conversation is captured in concepts,
associated with various agents in the tree (e.g. date,
start_time). Each concept maintains a history of
previous values, information about current candi-
date hypotheses and their associated confidence
scores, information about when the concept was
last updated, as well as an extended set of flags
which describe whether or not the concept has
been conveyed to the user, whether or not the con-
cept has been grounded, etc. This rich representa-
tion provides the necessary support for concept-
level error handling.

Dialog Stack

Dialog Engine

Dialog Task
Specification

Expectation Agenda

start_time: [start_time] [time]
date: [date]
start_time: [start_time] [time]
end_time: [end_time] [time]
date: [date]
start_time: [start_time] [time]
end_time: [end_time] [time]
location: [location]
network: [with_network]->true,
 [without_network]->false
… … …

System: For when do you need the room?
User: let’s try two to four p.m.
Parse: [time](two) [end_time](to four pm)

User Input

RoomLine

GetQuery

GetStartTime

date

end_time start_time

RoomLine

I: Welcome GetQuery

R: GetDate

Start-Over

R: GetStartTime R: GetEndTime

DiscussResults X: DoQuery

Figure 1: RavenClaw architecture

227

2.2 The Dialog Engine

The Dialog Engine is the core domain-independent
component which manages the interaction by exe-
cuting a given Dialog Task Specification. The con-
trol algorithms are centered on two data-structures:
a dialog stack, which captures the dialog structure
at runtime, and an expectation agenda, which cap-
tures the system’s expectations for the user input at
each turn in the dialog. The dialog is controlled by
interleaving Execution Phases with Input Phases.

During an Execution Phase, dialog agents from
the tree are placed on, and executed from the dia-
log stack. At the beginning of the dialog, the root
agent is placed on the stack. Subsequently, the en-
gine repeatedly takes the agent on the top of the
stack and executes it. When dialog agencies are
executed, they typically schedule one of their sub-
agents for execution by placing it on the stack. The
dialog stack will therefore track the nested struc-
ture of the dialog at runtime. Ultimately, the execu-
tion of the basic dialog agents on the leaves of the
tree generates the system’s responses and actions.

During an Input Phase, the system assembles
the expectation agenda, which captures what the
system expects to hear from the user in a given
turn. The agenda subsequently mediates the trans-
fer of semantic information from the user’s input
into the various concepts in the task tree. For the
interested reader, these mechanisms are described
in more detail in (Bohus and Rudnicky, 2003)

Additionally, the Dialog Engine automatically
provides a number of conversational strategies,
such as the ability to handle various requests for
help, repeating the last utterance, suspending and
resuming the dialog, starting over, reestablishing
the context, etc. These strategies are implemented
as library dialog agencies. Their corresponding
sub-trees are automatically added to the Dialog
Task Specification provided by the system author
(e.g. the Start-Over agency in Figure 1.) The auto-
matic availability of these strategies lessens devel-
opment efforts and ensures a certain uniformity of
behavior both within and across tasks.

3 The Error Handling Architecture

The error handling architecture in the RavenClaw
dialog management framework subsumes two
main components: (1) a set of error handling
strategies (e.g. explicit and implicit confirmation,

asking the user to repeat, etc.) and (2) an error
handling process which engages these strategies.

The error handling strategies are implemented
as library dialog agents. The decision process
which engages these strategies is part of the Dialog
Engine. This design, in which both the strategies
and the decision process are decoupled from the
dialog task, as well as from each other, provides a
number of advantages. First, it ensures that the er-
ror handling mechanisms are reusable across dif-
ferent dialog systems. Second, the approach
guarantees a certain uniformity and consistency in
error handling behaviors both within and across
systems. Third, as new error handling strategies are
developed, they can be easily plugged into any ex-
isting system. Last, but not least, the approach sig-
nificantly lessens the system authoring effort by
allowing developers to focus exclusively on de-
scribing the dialog control logic.

The responsibility for handling potential under-
standing errors1 is delegated to the Error Handling
Process which runs in the Dialog Engine (see Fig-
ure 2). At each system turn, this process collects
evidence and makes a decision with respect to en-
gaging any of the error handling strategies. When
necessary, it will insert an error handling strategy
on the dialog stack (e.g. the ExplicitConfirm
(start_time) strategy in Figure 2), thus modifying
on-the-fly the task originally specified by the sys-
tem author. The strategy executes and, once com-
pleted, it is removed from the stack and the dialog
resumes from where it was left off.

1 Note that the proposed framework aims to handle
understanding errors. The corresponding strategies are generic
and can be applied in any domain. Treatment of domain or
task-specific errors (e.g. database access error, etc) still needs
to be implemented as part of the dialog task specification.

Error Handling
Strategies

Error Handling
Process

Explicit
Confirm

RoomLine

GetQuery

GetStartTime

ExplicitConfirm
(start_time)

Dialog Stack

Evidence

Figure 2: Error Handling – Block Diagram

Dialog Task Specification

Dialog Engine

228

3.1 Error Handling Strategies

The error handling strategies can be divided into
two groups: strategies for handling potential mis-
understandings and strategies for handling non-
understandings.

For handling potential misunderstandings, three
strategies are currently available: Explicit Confir-
mation, Implicit Confirmation and Rejection.

For non-understandings, a larger number of er-
ror recovery strategies are currently available:
AskRepeat – the system asks the user to repeat;
AskRephrase – the system asks the user to re-
phrase; Reprompt – the system repeats the previous
prompt; DetailedReprompt – the system repeats a
more verbose version of the previous prompt,
Notify – the system simply notifies the user that a
non-understanding has occurred; Yield – the sys-
tem remains silent, and thus implicitly notifies the
user that a non-understanding has occurred;
MoveOn – the system tries to advance the task by
giving up on the current question and moving on
with an alternative dialog plan (note that this strat-
egy is only available at certain points in the dia-
log); YouCanSay – the system gives an example of
what the user could say at this point in the dialog;
FullHelp – the system provides a longer help mes-
sage which includes an explanation of the current
state of the system, as well as what the user could
say at this point. An in-depth analysis of these
strategies and their relative tradeoffs is available in
(Bohus and Rudnicky, 2005a). Several sample
dialogs illustrating these strategies are available
on-line (RoomLine, 2003).

3.2 Error Handling Process

The error handling decision process is imple-
mented in a distributed fashion, as a collection of
local decision processes. The Dialog Engine auto-
matically associates a local error handling process
with each concept, and with each request agent in
the dialog task tree, as illustrated in Figure 3. The
error handling processes running on individual
concepts are in charge of recovering from misun-
derstandings on those concepts. The error handling
processes running on individual request agents are
in charge or recovering from non-understandings
on the corresponding requests.

At every system turn, each concept- and
request-agent error handling process computes and
forwards its decision to a gating mechanism, which
queues up the actions (if necessary) and executes
them one at a time. For instance, in the example in
Figure 3, the error handling decision process for
the start_time concept decides to engage an explicit
confirmation on that concept, while the other deci-
sion processes do not take any action. In this case
the gating mechanism creates a new instance of an
explicit confirmation agency, passes it the pointer
to the concept to be confirmed (start_time), and
places it on the dialog stack. On completion, the
strategy updates the confidence score of the con-
firmed hypothesis in light of the user response, and
the dialog resumes from where it was left off.

The specific implementation of the local deci-
sion processes constitutes an active research issue.
Currently, they are modeled as Markov Decision
Processes (MDP). The error handling processes
running on individual concepts (concept-MDPs in

end_time

date

start_time

Explicit Confirm

No Action

Figure 3: A Distributed Error Handling Process

ExplicitConfirm
(start_time)

Gating
Mechanism

Error Handling
Decision Proc.
[Concept-MDP]

No Action
No Action

GetQuery

R: GetDate

R: GetStartTime
R: GetEndTime

RoomLine

Error Handling
Decision Proc.
[Concept-MDP]

Error Handling
Decision Proc.
[Request-MDP]

Error Handling
Decision Proc.
[Concept-MDP]

229

Figure 3) are partially-observable MDPs, with 3
underlying hidden states: correct, incorrect and
empty. The belief state is constructed at each time
step from the confidence score of the top-hypothe-
sis for the concept. For instance, if the top
hypothesis for the start_time concept is 10 a.m. with
confidence 0.76, then the belief state for the
POMDP corresponding to this concept is:
{P(correct)=0.76, P(incorrect)=0.24, P(empty)=0}.
The action-space for these models contains the
three error recovery strategies for handling poten-
tial misunderstandings, and no-action. The third
ingredient in the model is the policy. A policy de-
fines which action the system should take in each
state, and is indirectly described by specifying the
utility of each strategy in each state. Currently, a
number of predefined policies (e.g. always-
explicit-confirm, pessimistic, and optimistic) are
available in the framework. Alternatively, system
authors can specify and use their own policies.

The error handling processes running on re-
quest agents (request-MDPs in Figure 3) are in
charge of handling non-understandings on those
requests. Currently, two types of models are avail-
able for this purpose. The simplest model has three
states: non-understanding, understanding and
inactive. A second model also includes information
about the number of consecutive non-understand-
ings that have already happened. In the future, we
plan to identify more features which carry useful
information about the likelihood of success of in-
dividual recovery strategies and use them to create
more complex models. The action-space is defined
by the set of non-understanding recovery strategies
presented in the previous subsection, and no-
action. Similar to the concept-MDPs, a number of
default policies are available; alternatively, system
authors can specify their own policy for engaging
the strategies.

While the MDP implementation allows us to
encode various expert-designed policies, our ulti-
mate goal is to learn such policies from collected
data using reinforcement learning. Reinforcement
learning has been previously used to derive dialog
control policies in systems operating with small
tasks (Scheffler and Young, 2002; Singh et al,
2000). The approaches proposed to date suffer
however from one important shortcoming, which
has so far prevented their use in large, practical
spoken dialog systems. The problem is lack of
scalability: the size of the state space grows very

fast with the size of the dialog task, and this ren-
ders the approach unfeasible in complex domains.
A second important limitation of reinforcement
learning techniques proposed to date is that the
learned policies cannot be reused across tasks. For
each new system, a new MDP has to be con-
structed, new data has to be collected, and a new
training phase is necessary. This requires a signifi-
cant amount of expertise and effort from the sys-
tem author.

We believe that the error handling architecture
we have described addresses these issues in several
ways. The central idea behind the distributed na-
ture of the approach is to keep the learning prob-
lem tractable by leveraging independence relation-
ships between different parts of the dialog. First,
the state and action-spaces can be maintained rela-
tively small since we are only focusing on making
error handling decisions (as opposed to other dia-
log control decisions). A more complex task
translates into a larger number of MDP instantia-
tions rather than a more complex model structure.
Second, both the model structure and parameters
(i.e. the transition probabilities) can be tied across
models: for instance the MDP for grounding the
start_time concept can be identical to the one for
grounding the end_time concept; all models for
grounding Yes/No concepts could be tied together,
etc. Model tying has the potential to greatly im-
prove scalability since data is polled together and
the total number of model parameters to be learned
grows sub-linearly with the size of the task. Third,
since the individual MDPs are decoupled from the
actual system task, the policies learned in a par-
ticular system can potentially be reused in other
systems (e.g. we expect that grounding yes/no con-
cepts functions similarly at different locations in
the dialog, and across domains). Last but not least,
the approach can easily accommodate dynamic
task generation. In traditional reinforcement
learning approaches the state and action-spaces of
the underlying MDP are task-specific. The task
therefore has to be fixed, known in advance: for
instance the slots that the system queries the user
about (in a slot-filling system) are fixed. In con-
trast, in the RavenClaw architecture, the dialog
task tree (e.g. the dialog plan) can be dynamically
expanded at runtime with new questions and con-
cepts, and the corresponding request- and concept-
MDPs are automatically created by the Dialog En-
gine.

230

4 Deployment and Current Research

While a quantitative evaluation of design charac-
teristics such as task-independence, scalability, and
ease-of-use is hard to perform, a first-order empiri-
cal evaluation of the proposed error handling ar-
chitecture can be accomplished by using it in
different systems and monitoring the system au-
thoring process and the system’s operation.

To date, the architecture has been successfully
deployed in three different spoken dialog systems.
A first system, RoomLine (2003), is a phone-based
mixed-initiative system that assists users in making
conference room reservations on campus. A sec-
ond system, the Let’s Go! Bus Information System
(Raux et al, 2005), provides information about bus
routes and schedules in the greater Pittsburgh area
(the system is available to the larger public). Fi-
nally, Vera is a phone-based taskable agent that
can be instructed to deliver messages to a third
party, make wake-up calls, etc. Vera actually con-
sists of two dialog systems, one which handles in-
coming requests (Vera In) and one which performs
message delivery (Vera Out). In each of these sys-
tems, the authoring effort with respect to error
handling consisted of: (1) specifying which models
and policies should be used for the concepts and
request-agents in the dialog task tree, and (2)
writing the language generation prompts for ex-
plicit and implicit confirmations for each concept.

Even though the first two systems operate in
similar domains (information access), they have
very different user populations: students and fac-
ulty on campus in the first case versus the entire

Pittsburgh community in the second case. As a
result, the two systems were configured with dif-
ferent error handling strategies and policies (see
Table 1). RoomLine uses explicit and implicit con-
firmations with an optimistic policy to handle po-
tential misunderstandings. In contrast, the Let’s Go
Public Bus Information System always uses ex-
plicit confirmations, in an effort to increase robust-
ness (at the expense of potentially longer dialogs).
For non-understandings, RoomLine uses the full
set of non-understanding recovery strategies pre-
sented in section 3.1. The Let’s Go Bus Informa-
tion system uses the YouCanSay and FullHelp
strategies. Additionally a new GoToAQuieterPlace
strategy was developed for this system (and is now
available for use into any other RavenClaw-based
system). This last strategy asks the user to move to
a quieter place, and was prompted by the observa-
tion that a large number of users were calling the
system from noisy environments.

While the first two systems were developed by
authors who had good knowledge of the Raven-
Claw dialog management framework, the third sys-
tem, Vera, was developed as part of a class project,
by a team of six students who had no prior experi-
ence with RavenClaw. Modulo an initial lack of
documentation, no major problems were encoun-
tered in configuring the system for automatic error
handling. Overall, the proposed error handling ar-
chitecture adapted easily and provided the desired
functionality in each of these domains: while new
strategies and recovery policies were developed for
some of the systems, no structural changes were
required in the error handling architecture.

Table 1: Spoken dialog systems using the RavenClaw error handling architecture

 RoomLine Let’s Go Public Vera In / Out
Domain room reservations bus route information task-able agent
Initiative type mixed system mixed / mixed
Task size: #agents ; #concepts 110 ; 25 57 ; 19 29 ; 4 / 31 ; 13
Strategies for misunderstandings explicit and implicit explicit explicit and implicit /

explicit only
Policy for misunderstandings optimistic always-explicit optimistic /

always-explicit
Strategies for non-understandings all strategies

(see Section 3.1)
go-to-quieter-place,
you-can-say, help

all strategies /
repeat prompt

Policy for non-understandings choose-random author-specified
heuristic policy

choose-random /
always-repeat-prompt

Sessions collected so far 1393 2836 72 / 131
Avg. task success rate 75% 52% (unknown)
% Misunderstandings 17% 28% (unknown)
% Non-understandings 13% 27% (unknown)
% turns when strategies engage 41% 53% 36% / 44%

231

5 Conclusion and Future Work

We have described the error handling architecture
underlying the RavenClaw dialog management
framework. Its design is modular: the error han-
dling strategies as well as the mechanisms for en-
gaging them are decoupled from the actual dialog
task specification. This significantly lessens the
development effort: system authors focus exclu-
sively on the domain-specific dialog control logic,
and the error handling behaviors are generated
transparently by the error handling process running
in the core dialog engine. Furthermore, we have
argued that the distributed nature of the error han-
dling process leads to good scalability properties
and facilitates the reuse of policies within and
across systems and domains.

The proposed architecture represents only the
first (but an essential step) in our larger research
program in error handling. Together with the sys-
tems described above, it sets the stage for a number
of current and future planned investigations in er-
ror detection and recovery. For instance, we have
recently conducted an extensive investigation of
non-understanding errors and the ten recovery
strategies currently available in the RavenClaw
framework. The results of that study fall beyond
the scope of this paper and are presented separately
in (Bohus and Rudnicky, 2005a). In another pro-
ject supported by this architecture, we have devel-
oped a model for updating system beliefs over
concept values in light of initial recognition confi-
dence scores and subsequent user responses to
system actions. Initially, our confirmation strate-
gies used simple heuristics to update the system’s
confidence score for a concept in light of the user
response to the verification question. We have
showed that a machine learning based approach
which integrates confidence information with cor-
rection detection information can be used to con-
struct significantly more accurate system beliefs
(Bohus and Rudnicky, 2005b). Our next efforts
will focus on using reinforcement learning to
automatically derive the error recovery policies.

References
Bohus, D., Rudnicky, A., 2003 – RavenClaw: Dialogue

Management Using Hierarchical Task Decomposi-
tion and an Expectation Agenda, in Proceedings of
Eurospeech-2003, Geneva, Switzerland

Bohus, D., Rudnicky, A., 2005a – Sorry, I didn’ t Catch
That! An Investigation into Non-understandings and
Recovery Strategies, to appear in SIGDial-2005, Lis-
bon, Portugal

Bohus, D., Rudnicky, A., 2005b – Constructing Accu-
rate Beliefs in Spoken Dialog Systems, submitted to
ASRU-2005, Cancun, Mexico

Clark, H.H., Schaefer, E.F., 1989 – Contributing to Dis-
course, in Cognitive Science, vol 13, 1989.

Kawahara, T., Komatani, K., 2000 – Flexible mixed-
initiative dialogue management using concept-level
confidence measures of speech recognizer output, in
Proc. of COLING, Saarbrucken, Germany, 2000.

Krahmer, E., Swerts, M., Theune, M., Weegels, M.,
1999 - Error Detection in Human-Machine Interac-
tion, Speaking. From Intention to Articulation, MIT
Press, Cambridge, Massachusetts, 1999

Paek, T., Horvitz, E., 2000 – Conversation as Action
Under Uncertainty, in Proceedings of the Sixteenth
Conference on Uncertainty and Artificial Intelli-
gence, Stanford, CA, June 2000.

Raux, A., Langner, B., Bohus, D., Black, A., Eskenazi,
M., 2005 – Let’s Go Public! Taking a Spoken Dialog
System to the Real World, submitted to Interspeech-
2005, Lisbon, Portugal

RoomLine web site, as of June 2005 –
www.cs.cmu.edu/~dbohus/RoomLine

Sanders, G., Le, A., Garofolo, J., 2002 – Effects of Word
Error Rate in the DARPA Communicator Data Dur-
ing 2000 and 2001, in Proceedings of ICSLP’02,
Denver, Colorado, 2002.

Scheffler, K., Young, S., 2002 – Automatic learning of
dialogue strategy using dialogue simulation and re-
inforcement learning, in Proceedings of HLT-2002.

Singh, S., Litman, D., Kearns, M., Walker, M., 2000 –
Optimizing Dialogue Management with Reinforce-
ment Learning: Experiments with the NJFun System,
in Journal of Artificial Intelligence Research, vol. 16,
pp 105-133, 2000.

Traum, D., 1998 – On Clark and Schaefer’s Contribu-
tion Model and its Applicability to Human-Computer
Collaboration, in Proceedings of the COOP’98, May
1998.

Walker, M., Wright, J., Langkilde, I., 2000 – Using
Natural Language Processing and Discourse Fea-
tures to Identify Understanding Errors in a Spoken
Dialogue System, in Proc. of the 17’th International
Conference of Machine Learning, pp 1111-1118.

232

