
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 153–160, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Discretization Based Learning Approach to Information Retrieval
Dmitri Roussinov Weiguo Fan

Department of Information Systems
W.P. Carey School of Business

Department of Information Systems and
Computer Science

Arizona State University Virginia Polytechnic Institute and State
University

Tempe, AZ, 85287 Blacksburg, VA 24061
dmitri.roussinov@asu.edu wfan@vt.edu

Abstract

We approached the problem as learning
how to order documents by estimated
relevance with respect to a user query. Our
support vector machines based classifier
learns from the relevance judgments
available with the standard test collections
and generalizes to new, previously unseen
queries. For this, we have designed a
representation scheme, which is based on
the discrete representation of the local (lw)
and global (gw) weighting functions, thus
is capable of reproducing and enhancing
the properties of such popular ranking
functions as tf.idf, BM25 or those based on
language models. Our tests with the
standard test collections have demonstrated
the capability of our approach to achieve
the performance of the best known scoring
functions solely from the labeled examples
and without taking advantage of knowing
those functions or their important
properties or parameters.

1. Introduction
Our work is motivated by the objective to bring
closer numerous achievements in the domains of
machine learning and classification to the classical
task of ad-hoc information retrieval (IR), which is
ordering documents by the estimated degree of
relevance to a given query. Although used with
striking success for text categorization,
classification-based approaches (e.g. those based on
support vector machines, Joachims, 2001) have been
relatively abandoned when trying to improve ad hoc
retrieval in favor of empirical (e.g. vector space,
Salton & McGill, 1983) or generative (e.g. language
models; Zhai & Lafferty 2001; Song & Croft; 1999),
which produce a ranking function that gives each
document a score, rather than trying to learn a
classifier that would help to discriminate between
relevant and irrelevant documents and order them
accordingly. A generative model needs to make
assumptions that the query and document words are
sampled from the same underlying distributions and
that the distributions have certain forms, which entail
specific smoothing techniques (e.g. popular
Dirichlet-prior). A discriminative (classifier-based)
model, on the other side, does not need to make any

assumptions about the forms of the underlying
distributions or the criteria for the relevance but
instead, learns to predict to which class a certain
pattern (document) belongs to based on the labeled
training examples. Thus, an important advantage of a
discriminative approach for the information retrieval
task, is its ability to explicitly utilize the relevance
judgments existing with standard test collections in
order to train the IR algorithms and possibly enhance
retrieval accuracy for the new (unseen) queries.
Cohen, Shapire and Singer (1999) noted the
differences between ordering and classification and
presented a two-stage model to learn ordering. The
first stage learns a classifier for preference relations
between objects using any suitable learning
mechanism (e.g. support vector machines; Vapnik,
1998). The second stage converts preference
relations into a rank order. Although the conversion
may be NP complete in a general case, they
presented efficient approximations. We limited our
first study reported here to linear classifiers, in which
conversion can be performed by simple ordering
according to the score of each document. However,
approaching the problem as “learning how to order
things” allowed us to design our sampling and
training mechanisms in a novel and, we believe,
more powerful way.
Our classifier learns how to compare every pair of
documents with respect to a given query, based on
the relevance indicating features that the documents
may have. As it is commonly done in information
retrieval, the features are derived from the word
overlap between the query and documents.
According to Nallapati (2004), the earliest
formulation of the classic IR problem as a
classification (discrimination) problem was
suggested by Robertson and Sparck Jones (1976),
however performed well only when the relevance
judgments were available for the same query but not
generalizing well to new queries. Fuhr and Buckley
(1991) used polynomial regression to estimate the
coefficients in a linear scoring function combining
such well-known features as a weighted term
frequency, document length and query length. They
tested their “description-oriented” approach on the
standard small-scale collections (Cranfield, NPL,
INSPEC, CISI, CACM) to achieve the relative
change in the average precision ranging from -17%

153

to + 33% depending on the collection tested and the
implementation parameters. Gey (1994) applied
logistic regression in a similar setting with the
following results: Cranfield +12%, CACM +7.9%,
CISI -4.4%, however he did not test them on new
(unseen by the algorithm) queries, hypothesizing that
splitting documents into training and testing
collections would not be possible since “a large
number of queries is necessary in order to train for a
decent logistic regression approach to document
retrieval.” Instead, he applied a regression trained on
Cranfield to CISI collection but with a negative
effect.
Recently, the approaches based on learning have
reported several important breakthroughs. Fan et al.
(2004) applied genetic programming in order to learn
how to combine various terms into the optimal
ranking function that outperformed the popular
Okapi formula on robust retrieval test collection.
Nallapati (2004) made a strong argument in favor of
discriminative models and trained an SVM-based
classifier to combine 6 different components (terms)
from the popular ranking functions (such as tf.idf
and language models) to achieve better than the
language model performance in 2 out of 16 test cases
(figure 3 in Nallapati, 2004), not statistically
distinguishable in 8 cases and only 80% of the best
performance in 6 cases. There have been studies
using past relevance judgements to optimize
retrieval. For example, Joachims (2002) applied
Support Vector Machines to learn linear ranking
function from user click-throughs while interfacing
with a search engine.
In this study, we have developed a representation
scheme, which is based on the discretization of the
global (corpus statistics) and local (document
statistics) weighting of term overlaps between
queries and documents. We have empirically shown
that this representation is flexible enough to learn the
properties of the popular ranking functions: tf.idf,
BM25 and the language models. The major
difference of our work from Fan et al. (2004) or
Nallapati (2004) or works on fusion (e.g. Vogt &
Cottrell, 1999) is that we did not try to combine
several known ranking functions (or their separate
terms) into one, but rather we learn the weighting
functions directly through discretization.
Discretization allows representing a continuous
function by a set of values at certain points. These
values are learned by a machine learning technique
to optimize certain criteria, e.g. average precision.
Another important motivation behind using
discretization was to design a representation with
high dimensionality of features in order to combine
our representation scheme with Support Vector
Machines (SVM) (Vapnik, 1998), which are known
to work well with a large number of features. SVM
contains a large class of neural nets, radial margin
separation (RBF) nets, and polynomial classifiers as
special cases. They have been delivering superior
performance in classification tasks in general
domains, e.g. in face recognition (Hearst, 1998), and
in text categorization (Joachims, 2001).

Another important distinction of this work from the
prior research is that we train our classifier not to
predict the absolute relevance of a document d with
respect to a query q, but rather to predict which of
the two documents d1, d2 is more relevant to the
query q. The motivation for this distinction was that
all the popular evaluation metrics in information
retrieval (e.g. average precision) are based on
document ranking rather than classification
accuracy. This affected our specially designed
sampling procedure which we empirically
discovered to be crucial for successful learning.
We have also empirically established that our
combination of the representation scheme, learning
mechanism and sampling allows learning from the
past relevance judgments in order to successfully
generalize to the new (unseen) queries. When the
representation was created without any knowledge of
the top ranking functions and their parameters, our
approach reached the known top performance solely
through the learning process. When our
representation was taking advantage of functions that
are known to perform well and their parameters, the
resulting combination was able to slightly exceed the
top performance on large test collections. The next
section formalizes our Discretization Based Learning
(DBL) approach to Information Retrieval, followed
by empirical results and conclusions.
2. Formalization Of Our Approach
2.1 Query and Document Representation
We limit our representation to the so called lw.gw

class: ∑
⊂

=
q t

)()),,((d)R(q, tGddttfL ,

where L, local weighting, is the function of the
number of occurrences of the term in the document
tf, possibly combined with the other document
statistics, e.g. word length. G(t), global weighting,
can be any collection level statistic of the term. For
example, in the classical tf.idf formula L(tf, d) = tf /
|d|, where tf is the number of occurrences of the term
t in the document, |d| is the length of the document
vector and G(t) = log (N / df(t)), where df(t) is the
total number of documents in the collection that have
term t and N is the total number of documents.
Without loss of generality it may also be extended to
handle a number of occurrences of the term in the
query, but we omit it here in our formalization for
simplicity. Lw.gw class includes the BM25 Okapi
ranking function which performs well on TREC
collections (Robertson et al., 1996). It can be shown
that many of the recently introduced language
models fall into that category as well, specifically the
best performing in TREC ad hoc tests Dirichlet
smoothing, Jelinek Mercer smoothing, and Absolute
Discounting approaches can be represented that way
(see equation 6 and table I in Zhai & Lafferty, 2001).
An lw.gw representation of Jelinek Mercer
smoothing was used in Nallapati (2004). It has been
known for a long time that the shapes of the global
and local weighting functions can dramatically affect
the precision in standard test collections because it in

154

fact determines the difference between such formulas
as tf.idf, bm25 and language models. However, we
are not aware of any attempts to learn those shapes
directly from the labeled examples, which we
performed in this study.
2.2 Intuition behind the discretization-based
learning
The intuition behind discretization approach is to
represent a function by values at the finite number of
points. Then, the optimal shape of the function can
be learned by using one of the machine learning
techniques. Our discretization based learning (DBL)
approach to information retrieval learns how
important each class of an occurrence of a query
term in a document. For example, in some very
“primitive” DBL approach, we can define two
classes: Class S (“strong”), containing all multiple
occurrences of a rare query term (e.g.
“discretization”) in a document and Class W
(“weak”), containing all single occurrences of a
frequent term (e.g. “information”). Then, the
machine learning technique should discover that the
occurrences of Class S are much stronger indicators
of relevance than the occurrences of Class W. In the
DBL implementation presented in this paper, each
occurrence of a query term is assigned to a class
(called bin) based on the term document frequency
in the collection (df) and the number of occurrences
within the document (tf). The bin determines the
weight of the contribution of each occurrence of the
query term in the ranking score. Thus, the relevance
score is just the weighted sum of the numbers of
occurrences within each bin. The other way of
looking at it is that the score is produced by a linear
classifier, where the total number of occurrences
within each bin serves as the feature value. By
learning the optimal weights, a linear classifier
effectively learns the optimal shapes of the global
(gw) and local (lw) weighting functions. By learning
the discrimination properties of each bin, rather
than separate word terms, DBL method allows
generalization to new queries.
2.3 Discretizing global weighting
We discretized the shape of the G(t) function by
assigning each term to its global weighting bin g,
which is an integer number in the [1, |B|] range, |B|
is the total number of global weighting bins. The
assignment of the term t to its global weighting bin
g(t) is performed on the log linear scale according to
the document frequency df of the term:

)}
log(N)

 (df(t)) log - (1|B{| g(t) = (1)

where N is the total number of documents, {.} stands
for rounding down to the nearest integer. The
logarithmic scale allows more even term distribution
among bins than simple linear assignment, which is
desirable for more efficient learning. It is motivated
by a typical histogram of df(t) distribution, which
looks much more uniform in a logarithmic scale. It is
important to note that it does not have anything to do
with the log function in the classical idf weighting

and that the formula for g(t) does not produce any
weights but only assigns each term occurrence to a
specific bin based on the term document frequency.
The weights are later trained and effectively define
any shape of global weighting, including such simple
functions tried in the prior heuristic explorations as
logarithm, square root, reciprocal and others.
2.4 Discretizing local weighting
Similarly to the global weighting, we assigned each
occurrence of a term to its local weighting bin l, but
this time by simply capping tf at the total number of
local weighting bins |L|:
 l (tf(t, d), d) = min(tf (t, d), |L|)) (1a)
Let’s note that this particular representation does not
really need rounding since tf is already a positive
integer. However, in a more general case, tf can be
normalized by document length (as is done in BM25
and language models) and thus local weighting
would become a continuous function. It is important
to note that our discrete representation does not
ignore the occurrences above |L| but simply treats
them the same way as tf = |L|. The intuition behind
capping is that increasing tf above certain value (|L|)
would not typically indicate the higher relevance of
the document. Typically, a certain number of
occurrences is enough to indicate the presence of the
relevant passage. Please note again that this bin
assignment does not assign any heuristic weights to
the term occurrences.
2.5 Final discretized ranking function
The bin assignments based on tf and df specified in
sections 2.3 and 2.4 are straightforward and do not
involve any significant “feature engineering.” Each
occurrence of a query term in a document
corresponds to a local/global bin combination (g, l).
Each (g,l) combination determines a feature in a
vector representing a document-query pair f(d, q)
and is denoted below as f(d, q) [g , l] . The
dimensionality of the feature space is |L| x |B|. E.g.
for 8 local weighting bins and 10 global weighting
bins we would deal with the vector size of 80. A
feature vector f(d, q) represents each document d
with respect to query q. The value of each feature in
the vector is just the number of the term occurrences
assigned to the pair of bins (g, l):

f (d, q) [g , l] = ∑
==⊂ ldtlgtg),(,)(q,t

1 (2)

Since our features capture local (tf) and global (df)
term occurrence information, in order to represent a
ranking function, we can simply use the dot product
between the feature vector and the vector of learned
optimal weights w:
R(q, d) = w * f (d, q).
Ideally, the learning mechanism should assign higher
weights to the more important bin combinations (e.g.
multiple occurrence of a rare term) and low weights
to the less important combinations (e.g. single
occurrence of a common term). The exact learned
values determine the optimal shape of global and
local weighting.

155

We still can make the representation more powerful
by considering the learned weights w[g, l] not the
replacements but rather the adjustments to some
other chosen global G (t) and local L (t, d) weighting
functions:

f (d, q) [g , l] = ∑
==⊂ lddttflgtg

tGdtL
)),,((,)(q,t

)(),((2a)

We define the specific choice of global G() and local
L() weighting functions as starting ranking function
(SRF). When all the bin weights w[g, l] are set to 1,
our ranking function is the same as its SRF. The
learning process finds the optimal values for w[g, l]
for the collection of training queries and their
relevance judgments, thus adjusting the important
shapes of the global and local weighting to achieve
better accuracy. SRF can be chosen from one of the
known to perform well ranking functions (e.g. tf.idf
or BM25 or based on language models) to take
advantage of the fact that those formulas and their
optimal parameters on the standard test collections
are known for the researchers. Alternatively, we can
set SRF to the constant value (e.g. 1 in formula 2),
thus not taking advantage of any of the prior
empirical investigations and to see if our framework
is able to learn reasonable (or even top-notch)
performance purely from labeled examples. Below,
we describe our experiments with each approach.
Since the score is linear with respect to the feature
values, we can train the weights w as a linear
classifier that predicts the preference relation
between pairs of documents with respect to the given
query. Document d1 is more likely to be relevant
(has a higher score) than document d2 iff f(d1, q) *
w > f(d1, q) * w. An important advantage of using a
linear classifier is that rank ordering of documents
according to the learned pairwise preferences can be
simply performed by ordering according to the linear
score. Please refer to Cohen et al. (1999) for the
ordering algorithms in a more general non linear
case.
We chose support vector machines (SVM) for
training the classifier weights w[g, l] since they are
known to work well with large numbers of features,
ranging in our experiments from 8 to 512, depending
on the number of bins. For our empirical tests, we
used the SVMLight package freely available for
academic research from Joachims (2001). We
preserved the default parameters coming with
version V6.01. Although SVMLight package allows
learning ranking, we opted for training it as a
classifier to retain more control over sampling,
which we found crucial for successful learning, as
described in the section below.
2.6 Sampling
Since we were training a classifier to predict
preference relations, but not the absolute value of
relevance, we trained on the differences between
feature vectors. Thus, for each selected (sampled)
pair of documents (dr, di), such that dr is a relevant
document and di is irrelevant, the classifier was

presented with a positive example created from the
vector of differences of features fp = f(q, dr) – f(q,
di), and also with the negative example as the
inverse of it: fn= f(q, di) – f(q, dr). This approach
also balances positive and negative examples.
We also informally experimented with training on
absolute relevance judgments, similar to the prior
work mentioned in the Introduction but obtained
much worse results. We explain it by the fact that
relative judgments (pairwise comparisons) are more
generalizable to new queries than absolute
judgments (relevant/irrelevant). This may explain
prior difficulties with applying discriminative
approaches mentioned in our Introduction.
Since presenting all pairs to the training mechanism
would be overwhelming, we performed pseudo-
random sampling of documents by the following
intuitive consideration. Since it is more efficient to
present the classifier with the pairs from the
documents that are likely to more strongly affect the
performance metric (average precision), we first pre-
ordered the retrieved documents by any of the
reasonably well-performing scoring function (e.g.
tf.idf) and limited the sample of documents to the top
1000. Then, for each query, each known relevant
document dr from that subset was selected and
“paired” with a certain number of randomly selected
irrelevant documents. This number was linearly
decreasing with the position of the relevant
document in the pre-order. Thus, the higher the
document was positioned in the pre-order, the more
times it was selected for pairing (training). This
placed more emphasis at correctly classifying the
more important document pairs in the average
precision computation. Again, without the correct
emphasis during sampling the obtained results were
much weaker. However, the choice of the ranking
function to perform pre-order was found to be not
important: virtually the same results were obtained
using tf.idf or bm25 or language models.
3. Empirical Evaluation
3.1 Empirical setup
We used the TREC, Disks 1 and 2, collections to test
our framework. We used topics 101-150 for training
and 151-200 for testing and vice-versa. For indexing,
we used the Lemur package (Kraaij et al., 2003),
with the default set of parameters, and no stop word
removal or stemming. Although those procedures are
generally beneficial for accuracy, it is also known
that they do not significantly interfere with testing
various ranking functions and thus are omitted in
many studies to allow easier replication.
We used only topic titles for queries, as it is
commonly done in experiments, e.g. in Nallapati
(2004). We used the most popular average (non-
interpolated) precision as our performance metric,
computed by the script included with the Lemur
toolkit (later verified by trec_eval). The
characteristics of the collection after indexing are
shown in Table 1. We also reproduced results similar
to the reported below on the Disk 3 collection and

156

topics 101-150, but did not include them in this
paper due to size limitations.

Collection
Number of documents
Number of terms
Number of unique terms
Average doc. length
Topics

TREC Disks 1 and 2
741,863
325,059,876
697,610
438
101-200

Table 1. The characteristics of the test collection:
TREC Disks 1,2

3.2 The baseline
In this study, we were interested exclusively in the
improvements due to learning, thus still staying
within the “bag of words” paradigm. Although many
enhancements can be easily combined within our
framework, we limited our search for the baseline
performance to “bag of words” techniques to avoid
unfair comparison. We used the results reported in
Nallapati (2004) as guidance and verified that the
best performing language model on this test
collection was the one based on the Dirichlet
smoothing with µ = 1900. Our average precision was
lower (0.205 vs. 0.256), most likely due to the
different indexing parameters, stemming or using a
different stopword list. By experimenting with the
other ranking functions and their parameters, we
noticed that the implementation of BM25, available
in Lemur, provided almost identical performance
(0.204). Its ranking function is
BM25 (tf, df) = tf / (tf + K* (1 – b + b * |d| / |d|a) *
log (N / (df + .5)), where |d| is the document word
length and |d|a is its average across all documents.
The optimal parameter values were close to the
default K = 1.0 and b = .5. We noticed that the query
term frequency components could be ignored
without any noticeable loss of precision. This may be
because the TREC topic titles are short and the
words are very rarely repeated in the queries. Since
the difference between this ranking function and the
optimal from the available language models was
negligible we selected the former as both our
baseline and also as the starting ranking function
(SRF) in our experiments. For simplicity, we call it
simply BM25 throughout our paper.
3.3 Discretization accuracy
Before testing the learning mechanism, we verified
that the loss due to discretization is minimal and thus
the approach is capable of capturing global and local
weighting. For this, we discretized our baseline
BM25 formula replacing each score contribution of
the occurrence of a term G(t)L(t,d) = BM25(t, d)
with its average across all other occurrences within

the same bin combination [g, l], which is determined
by the formulas 1 and 1a. We discovered that for the
|B| x |L| = 8 x 8 configuration, the loss in average
precision did not exceed 2% (relatively). This
demonstrates that the G(t)L(t,d) ranking functions
can be discretized (replaced by values at certain
points) at this level of granularity without losing
much accuracy. We also verified that the weights
w[g, l] can affect the performance significantly:
when we set them to random numbers in the [0,1]
range, the performance dropped by 50% relatively to
the baseline.
3.4 Ability to achieve top performance from
scratch
First, we were curious to see if our framework can
learn reasonable performance without taking
advantage of our knowledge of the top ranking
functions and their parameters. For this, we set our
starting ranking function (SRF) to a constant value,
thus using only the minimum out of the empirical
knowledge and theoretical models developed by
information retrieval researchers during several
decades: specifically only the fact that relevance can
be predicted by tf and df
Table 2 shows performance for the 16 x 8
combination of bins. It can be seen that our
approach has reached 90-100% of the top
performance (baseline) solely through the learning
process. The original performance is the one
obtained by assigning all the classifier weights to 1.
It can be seen that the topics 151-200 are more
amenable for the technique that is why they show
better recovery when used as a test set even when the
training set 101-150 recovers only 90%. In order to
evaluate if more training data can help, we also ran
tests using 90 topics for training and the remaining
10 for testing. We ran 10 tests each time using 10
different sequential topics for testing and averaged
our results. In this case, the averaged performance
was completely restored to the baseline level with
the mean difference in precision across test queries
+0.5% and 1% standard deviation of the mean.

Figure 1. Learning local weighting for various

Testing:

101-150

151-200

Training: Original Learned Baseline Original Learned Baseline
101-150 .119 .165 .174 .135 .180 .204
151-200 .119 .175 .174 .135 .206 .204

Table 2. Learning without any knowledge of ranking functions. 16 x 8 bin design.

157

numbers of bins. Learning on 101-150 and testing on
151-200.

Figure 2. Learning global weighting for various
numbers of bins. Learning on 101-150 and testing on
151-200.
We believe this is a remarkable result considering
the difficulties that the prior learning based
approaches had with the classical information
retrieval task. We attribute our success to both
higher flexibility and generalizability of our discrete
representation. We also varied the number of bins to
evaluate the effect of granularity of representation.
Figures 1 and 2 demonstrate that 8 bins suffice for
both global and local weighting. Higher numbers did
not result in noticeable improvements.
When the same set was used for training and testing
the result obviously overestimates the learning
capability of the framework. However, it also gives
the upper bound of performance of a discretized
gw.lw combination assuming that the loss due to
discretization is negligible which can be easily
attained by using sufficiently large number of bins.
Thus, the results indicate that gw.lw, which includes
practically all the popular “bag of words” ranking
formulas such as tf.idf, BM25 or language models,
has almost reached its upper limit and other classes
of representations and ranking formulas need to be
explored to attempt greater improvements.
Figure 2. Learning global weighting for various
numbers of bins. Learning on 101-150 and testing on
151-200.
3.5 Ability to surpass top performance
In order to test whether our approach can exceed the
baseline performance we set BM25 to be our starting
ranking function (SRF). Thus, in this case:
G(t) = log (N / (df + .5)) (6)
L(tf, d) = tf / (tf + K * (1 – b + b * |d| / |d|a)
Table 3 shows performance for the 8 by 8 bin design.
Although the improvement is relatively small (2-3%)
it is still statistically significant at the level of alpha
< 0.1, when the paired t-test was performed. The

value in “% change” column shows the mean %
improvement across all the queries and its standard
deviation. It may differ from the % change of the
mean performance since there is wide variability in
the performance across queries but smaller
variability in the improvement.
We believe even such a small improvement is
remarkable considering the amount of attention the
researches have paid to optimizing the ranking
functions for this specific data set which has been
available for more than seven years. A number of
recent studies reported comparable improvements on
the same test collection by using more elaborate
modeling or richer representations. Of course the
improvement due to the techniques such as those
based on n-grams, document structures, natural
language processing or query expansion can possibly
achieve even better results. However in this study we
deliberately limited our focus to the “bags of words.”
3.6 Shape of optimal local weighting
Figure 3 shows the optimal shape of the local
weighting function L(tf) learned on entire set of 100
topics and plotted against their counterparts of
BM25(t, d) = tf / (tf + 1) and tf.idf(t, d) = tf for
comparison. For plotting purposes, we assumed that
the document length was equal to its average. The
values were linearly scaled to meet at the tf = 8
point. It is easy to observe that the behavior of the
optimal function is much closer to BM25 than to
tf.idf, which explains the good performance of the
former on this test set.

Figure 3. Learned optimal shape of local weighting.

3.7 Shape of optimal global weighting
Figure 4 shows the optimal shape of the global
weighting function G(t) learned on the entire set of
100 topics with |B| = 32 plotted in logarithmic scale
against the popular idf weighting used in both tf.idf
and BM25. The lower end of the X-axis (log10 df <
2) corresponds to very infrequent terms, so the
learned weights may not be very informative since

1 2 3 4 5 6 7 8

tf

G
w

(tf
)

TF-IDFDBL (Learned)

BM25

Testing:

101-150 151-200

Training: Learned Baseline % change Learned Baseline
101-150 .180 .174 +2.3 (+/- 0.9) .208 .204 +2.3 (+/- 1.0)
151-200 .179 .174 +1.8 (+/- 1.0) .210 .204 +3.2 (+/- 1.3)

Table 3. Surpassing the baseline performance. 8 x 8 bin design.

158

the classifier encounters fewer occurrences of them
and their impact on the overall accuracy is small. In
the mid range (5,000 – 10,000), the optimal weights
are higher than idf, which indicates that the latter has
an overly steep shape to discount high frequency
terms. A more detailed interpretation of the optimal
shape may require further investigation.

Figure 4. Learned optimal shape of global weighting
G(t).

4. Conclusions
We explored learning how to rank documents with
respect to a given query using linear Support Vector
Machines and discretization-based representation.
Our approach represents a family of discriminative
approaches, currently studied much less than
heuristic (tf.idf, bm25) or generative approaches
(language models). Our experiments indicate that
learning from relevant judgments available with the
standard test collections and generalizing to new
queries is not only feasible but can be a source of
improvement. When tested with a popular standard
collection, our approach achieved the performance of
the best well-known techniques (BM25 and language
models), which have been developed as a result of
extensive past experiments and elaborate theoretical
modeling. When combined with the best performing
ranking functions, our approach added a small (2-
3%), but statistically significant, improvement.
Although practical significance of this study may be
limited at the moment since it does not demonstrate a
dramatic increase in retrieval performance in large
test collections, we believe our findings have
important theoretical contributions since they
indicate that the power of discriminative approach is
comparable to the best known analytical or heuristic
apporaches. This work also lays the foundation for
extending the discriminative approach to “richer”
representations, such as those using word n-grams,
grammatical relations between words, and the
structure of documents.
Our results also indicate that gw.lw family, which
includes practically all the popular “bag of words”
ranking formulas such as tf.idf, BM25 or language
models, has almost reached its upper limit and other
classes of representations and ranking formulas need
to be explored in order to accomplish significant
performance break-troughs.
Of course, using only few test cases (topics sets and
collections) is a limitation of this current study,

which we are going to address in our future research.
We view our approach as a complement, rather than
competitive, to the analytical approaches such as
language models. Our approach can be also used as
an explorative tool in order to identify important
relevance-indicating features, which can be later
modeled analytically. We believe that our work and
the ones referred in this paper may bring many of the
achievements made in a more general area of
classification and machine learning closer to the task
of rank ordered information retrieval, thus making
retrieval engines more helpful in reducing the
information overload and meeting people’s needs.
5. Acknowledgement
Weiguo Fan's work is supported by NSF under the
grant number ITR0325579.

References

Bartell, B., Cottrell, G., and Belew, R.(1994).
Optimizing Parameters in a Ranked Retrieval
System Using Multi-Query Relevance
Feedback. Symposium on Document Analysis
and Information Retrieval (SDAIR).

Chengxiang Zhai and John Lafferty (2001). A
study of smoothing methods for language
models applied to Ad Hoc information retrieval.
Proceedings of the Conference on Research and
Development in Information Retrieval (SIGIR),
pp. 334 – 342, 2001.

Cohen, W., Shapire, R., and Singer, Y. (1999).
Learning to order things. Journal of Artificial
Intelligence Research, 10, 243-270, 1999.

Dougherty, J., Kohavi, R., & Sahami, M. (1995).
Supervised and unsupervised discretization of
continuous features. Proceedings of the Twelfth
International Conference on Machine Learning
(pp. 194--202). Tahoe City, CA: Morgan
Kaufmann.

Fan, W., Luo, M., Wang, L., Xi, W., and Fox, A.
(2004). Tuning Before Feedback: Combining
Ranking Discovery and Blind Feedback for
Robust Retrieval. Proceedings of the
Conference on Research and Development in
Information Retrieval (SIGIR), 2004.

Fuhr, N. and C. Buckley (1991). A probabilistic
learning approach for document indexing. ACM
Transactions on Information Systems, 9, 223–
248.

Fuhr, N. and C. Buckley (1991). A probabilistic
learning approach for document indexing. ACM
Transactions on Information Systems, 9, 223–
248.

Gey, F. C. (1994). Inferring probability of
relevance using the method of logistic
regression. In Proceedings of the 17th ACM

1 2 3 4 5 6 7

log10 (df)

G
w

(t)

IDF

Learned

159

Conference on Research and Development in
Information Retrieval (SIGIR’94), pp. 222–231.

Hearst, M. (1998). Support Vector Machines.
IEEE Intelligent Systems Magazine, Trends and
Controversies, Marti Hearst, ed., 13(4),
July/August 1998.

Hun-Nan Hsu, Hung-Ju Huang and Tzu-Tsung
Wong (2000). Why Discretization Works for
Naive Bayesian Classifiers, In Proceedings of
the 17th International Conference on Machine
Learning (ICML-2000), Stanford, CA, USA.
Page 399-406.

Joachims, T. (2001). A Statistical Learning Model
of Text Classification with Support Vector
Machines. Proceedings of the Conference on
Research and Development in Information
Retrieval (SIGIR), 2001.

Joachims, T. (2002). Optimizing Search Engines
Using Clickthrough Data, Proceedings of the
ACM Conference on Knowledge Discovery and
Data Mining (KDD), ACM, 2002.

Kraaij, W., Westerveld T. and Hiemstra, D.
(2003)., The Lemur Toolkit for Language
Modeling and Information Retrieval,
http://www-2.cs.cmu.edu/~lemur

Nallapati, R. (2004). Discriminative models for
information retrieval. Proceedings of the
Conference on Research and Development in
Information Retrieval (SIGIR), 2004, pp. 64-71.

Robertson S. E. and Sparck Jones, K. (1976).
Relevance weighting of search terms, Journal of
American Society for Information Sciences,
27(3), pp. 129-146, 1976.

Robertson, S. E., Walker, S., Jones S., Hancock-
Beaulieu M.M., and Gatford, M. (1996)., Okapi
at TREC-4, in D. K. Harman, editor,
Proceedings of the Fourth Text Retrieval
Conference, pp. 73–97. NIST Special
Publication 500-236, 1996.

Salton, G. and McGill, M.J. (1983). Introduction to
Modern Information Retrieval. New York.
McGraw-Hill.

Song, F. and W.B. Croft. (1999) A general
language model for information retrieval. In
Proceedings of Eighth International Conference
on Information and Knowledge Management
(CIKM’99).

Vapnik, V. N. (1998).. Statistical Learning Theory.
John Wiley and Sons Inc., New York, 1998.

Vogt, C., G. Cottrell, G. (1999). Fusion Via a
Linear Combination of Scores. Information
Retrieval, 1(3), pp. 151—173.

160

