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Abstract 

We approached the problem as learning 
how to order documents by estimated 
relevance with respect to a user query. Our 
support vector machines based classifier 
learns from the relevance judgments 
available with the standard test collections 
and generalizes to new, previously unseen 
queries.  For this, we have designed a 
representation scheme, which is based on 
the  discrete representation of the local (lw) 
and global (gw) weighting functions, thus 
is capable of reproducing and enhancing 
the properties of such popular ranking 
functions as tf.idf, BM25 or those based on 
language models. Our tests with the 
standard test collections have demonstrated 
the capability of our approach to achieve 
the performance of the best known scoring 
functions solely from the labeled examples 
and without taking advantage of knowing 
those functions or their important 
properties or parameters.    

1. Introduction 
Our work is motivated by the objective to bring 
closer numerous achievements in the domains of 
machine learning and classification to the classical 
task of ad-hoc information retrieval (IR), which is 
ordering documents by the estimated degree of 
relevance to a given query. Although used with 
striking success for text categorization, 
classification-based approaches (e.g. those based on 
support vector machines, Joachims, 2001 ) have been 
relatively abandoned when trying to improve ad hoc 
retrieval in favor of empirical (e.g. vector space, 
Salton & McGill, 1983) or generative (e.g. language 
models; Zhai & Lafferty 2001; Song & Croft; 1999), 
which produce a ranking function that gives each 
document a score, rather than trying to learn a 
classifier that would help to discriminate between 
relevant and irrelevant documents and order them 
accordingly. A generative model needs to make 
assumptions that the query and document words are 
sampled from the same underlying distributions and 
that the distributions have certain forms, which entail 
specific smoothing techniques (e.g. popular 
Dirichlet-prior). A discriminative (classifier-based) 
model, on the other side, does not need to make any 

assumptions about the forms of the underlying 
distributions or the criteria for the relevance but 
instead, learns to predict to which class a certain 
pattern (document) belongs to based on the labeled 
training examples. Thus, an important advantage of a 
discriminative approach for the information retrieval 
task, is its ability to explicitly utilize the relevance 
judgments existing with standard test collections in 
order to train the IR algorithms and possibly enhance 
retrieval accuracy for the new (unseen) queries. 
Cohen, Shapire and Singer (1999) noted the 
differences between ordering and classification and 
presented a two-stage model to learn ordering. The 
first stage learns a classifier for preference relations 
between objects using any suitable learning 
mechanism (e.g. support vector machines; Vapnik, 
1998). The second stage converts preference 
relations into a rank order. Although the conversion 
may be NP complete in a general case, they 
presented efficient approximations. We limited our 
first study reported here to linear classifiers, in which 
conversion can be performed by simple ordering 
according to the score of each document. However, 
approaching the problem as “learning how to order 
things” allowed us to design our sampling and 
training mechanisms in a novel and, we believe, 
more powerful way. 
Our classifier learns how to compare every pair of 
documents with respect to a given query, based on 
the relevance indicating features that the documents 
may have. As it is commonly done in information 
retrieval, the features are derived from the word 
overlap between the query and documents.  
According to Nallapati (2004), the earliest 
formulation of the classic IR problem as a 
classification (discrimination) problem was 
suggested by Robertson and Sparck Jones (1976), 
however performed well only when the relevance 
judgments were available for the same query but not 
generalizing well to new queries. Fuhr and Buckley 
(1991) used polynomial regression to estimate the 
coefficients in a linear scoring function combining 
such well-known features as a weighted term 
frequency, document length and query length. They 
tested their “description-oriented” approach on the 
standard small-scale collections (Cranfield, NPL, 
INSPEC, CISI, CACM) to achieve the relative 
change in the average precision ranging from -17% 
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to + 33% depending on the collection tested and the 
implementation parameters. Gey (1994) applied 
logistic regression in a similar setting with the 
following results: Cranfield +12%, CACM +7.9%, 
CISI -4.4%, however he did not test them on new 
(unseen by the algorithm) queries, hypothesizing that 
splitting documents into training and testing 
collections would not be possible since “a large 
number of queries is necessary in order to train for a 
decent logistic regression approach to document 
retrieval.” Instead, he applied a regression trained on 
Cranfield to CISI collection but with a negative 
effect. 
Recently, the approaches based on learning have 
reported several important breakthroughs. Fan et al. 
(2004) applied genetic programming in order to learn 
how to combine various terms into the optimal 
ranking function that outperformed the popular 
Okapi formula on robust retrieval test collection. 
Nallapati (2004) made a strong argument in favor of 
discriminative models and trained an SVM-based 
classifier to combine 6 different components (terms) 
from the popular ranking functions (such as tf.idf 
and language models) to achieve better than the 
language model performance in 2 out of 16 test cases 
(figure 3 in Nallapati, 2004), not statistically 
distinguishable in 8 cases and only 80% of the best 
performance in 6 cases. There have been studies 
using past relevance judgements to optimize 
retrieval. For example, Joachims (2002) applied 
Support Vector Machines to learn linear ranking 
function from user click-throughs while interfacing 
with a search engine.   
In this study, we have developed a representation 
scheme, which is based on the discretization of the 
global (corpus statistics) and local (document 
statistics) weighting of term overlaps between 
queries and documents.  We have empirically shown 
that this representation is flexible enough to learn the 
properties of the popular ranking functions: tf.idf, 
BM25 and the language models.  The major 
difference of our work from Fan et al. (2004) or 
Nallapati (2004) or works on fusion (e.g. Vogt & 
Cottrell, 1999) is that we did not try to combine 
several known ranking functions (or their separate 
terms) into one, but rather we learn the weighting 
functions directly through discretization.  
Discretization allows representing a continuous 
function by a set of values at certain points. These 
values are learned by a machine learning technique 
to optimize certain criteria, e.g. average precision.   
Another important motivation behind using 
discretization was to design a representation with 
high dimensionality of features in order to combine 
our representation scheme with Support Vector 
Machines (SVM) (Vapnik, 1998), which are known 
to work well with a large number of features. SVM 
contains a large class of neural nets, radial margin 
separation (RBF) nets, and polynomial classifiers as 
special cases. They have been delivering superior 
performance in classification tasks in general 
domains, e.g. in face recognition (Hearst, 1998), and 
in text categorization (Joachims, 2001). 

Another important distinction of this work from the 
prior research is that we train our classifier not to 
predict the absolute relevance of a document d with 
respect to a query q, but rather to predict which of 
the two documents d1, d2 is more relevant to the 
query q.  The motivation for this distinction was that 
all the popular evaluation metrics in information 
retrieval (e.g. average precision) are based on 
document ranking rather than classification 
accuracy. This affected our specially designed 
sampling procedure which we empirically 
discovered to be crucial for successful learning. 
We have also empirically established that our 
combination of the representation scheme, learning 
mechanism and sampling allows learning from the 
past relevance judgments in order to successfully 
generalize to the new (unseen) queries. When the 
representation was created without any knowledge of 
the top ranking functions and their parameters, our 
approach reached the known top performance solely 
through the learning process.  When our 
representation was taking advantage of functions that 
are known to perform well and their parameters, the 
resulting combination was able to slightly exceed the 
top performance on large test collections. The next 
section formalizes our Discretization Based Learning 
(DBL) approach to Information Retrieval, followed 
by empirical results and conclusions. 
2. Formalization Of Our Approach 
2.1 Query and Document Representation 
We limit our representation to the so called lw.gw 

class: ∑
⊂

=
q t 

)()),,(( d)R(q, tGddttfL ,  

where L, local weighting, is the function of the 
number of occurrences of the term in the document 
tf, possibly combined with the other document 
statistics, e.g. word length. G(t), global weighting, 
can be any collection level statistic of the term. For 
example, in the classical tf.idf formula L(tf, d) = tf / 
|d|, where tf is the number of occurrences of the term 
t in the document, |d| is the length of the document 
vector and G(t) = log (N / df(t)), where df(t) is the 
total number of documents in the collection that have 
term t and N is the total number of documents.  
Without loss of generality it may also be extended to 
handle a number of occurrences of the term in the 
query, but we omit it here in our formalization for 
simplicity. Lw.gw class includes the BM25 Okapi 
ranking function which performs well on TREC 
collections (Robertson et al., 1996).  It can be shown 
that many of the recently introduced language 
models fall into that category as well, specifically the 
best performing in TREC ad hoc tests Dirichlet 
smoothing, Jelinek Mercer smoothing, and Absolute 
Discounting approaches can be represented that way 
(see equation 6 and table I in Zhai & Lafferty, 2001). 
An lw.gw representation of Jelinek Mercer 
smoothing was used in Nallapati (2004).  It has been 
known for a long time that the shapes of the global 
and local weighting functions can dramatically affect 
the precision in standard test collections because it in 
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fact determines the difference between such formulas 
as tf.idf, bm25 and language models. However, we 
are not aware of any attempts to learn those shapes 
directly from the labeled examples, which we 
performed in this study.  
2.2 Intuition behind the discretization-based 
learning 
The intuition behind discretization approach is to 
represent a function by values at the finite number of 
points. Then, the optimal shape of the function can 
be learned by using one of the machine learning 
techniques. Our discretization based learning (DBL) 
approach to information retrieval learns how 
important each class of an occurrence of a query 
term in a document. For example, in some very 
“primitive” DBL approach, we can define two 
classes:  Class S (“strong”), containing all multiple 
occurrences of a rare query term (e.g. 
“discretization”) in a document and Class W 
(“weak”), containing all single occurrences of a 
frequent term (e.g. “information”). Then, the 
machine learning technique should discover that the 
occurrences of Class S are much stronger indicators 
of relevance than the occurrences of Class W. In the 
DBL implementation presented in this paper, each 
occurrence of a query term is assigned to a class 
(called bin) based on the term document frequency 
in the collection (df) and the number of occurrences 
within the document (tf). The bin determines the 
weight of the contribution of each occurrence of the 
query term in the ranking score. Thus, the relevance 
score is just the weighted sum of the numbers of 
occurrences within each bin. The other way of 
looking at it is that the score is produced by a linear 
classifier, where the total number of occurrences 
within each bin serves as the feature value. By 
learning the optimal weights, a linear classifier 
effectively learns the optimal shapes of the global 
(gw) and local (lw) weighting functions.  By learning 
the discrimination properties of each bin, rather 
than separate word terms, DBL method allows 
generalization to new queries.  
2.3 Discretizing global weighting 
We discretized the shape of the G(t) function by 
assigning each term to its global weighting bin g, 
which is an integer number in the [1, |B|] range, |B| 
is the total number of global weighting bins. The 
assignment of the term t to its global weighting bin 
g(t) is performed on the log linear scale according to 
the document frequency df of the term:   

)}
log(N) 

 (df(t)) log - (1|B{|  g(t) =    (1) 

where N is the total number of documents, {.} stands 
for rounding down to the nearest integer. The 
logarithmic scale allows more even term distribution 
among bins than simple linear assignment, which is 
desirable for more efficient learning. It is motivated 
by a typical histogram of df(t) distribution, which 
looks much more uniform in a logarithmic scale. It is 
important to note that it does not have anything to do 
with the log function in the classical idf weighting 

and that the formula for g(t) does not produce any 
weights but only assigns each term occurrence to a 
specific bin based on the term document frequency. 
The weights are later trained and effectively define 
any shape of global weighting, including such simple 
functions tried in the prior heuristic explorations as 
logarithm, square root, reciprocal and others.  
2.4 Discretizing local weighting 
Similarly to the global weighting, we assigned each 
occurrence of a term to its local weighting bin l, but 
this time by simply capping tf at the total number of 
local weighting bins |L|: 
        l (tf(t, d), d) = min( tf (t, d), |L|) ) (1a) 
Let’s note that this particular representation does not 
really need rounding since tf is already a positive 
integer. However, in a more general case, tf can be 
normalized by document length (as is done in BM25 
and language models) and thus local weighting 
would become a continuous function. It is important 
to note that our discrete representation does not 
ignore the occurrences above |L| but simply treats 
them the same way as tf = |L|. The intuition behind 
capping is that increasing tf above certain value (|L|) 
would not typically indicate the higher relevance of 
the document. Typically, a certain number of 
occurrences is enough to indicate the presence of the 
relevant passage. Please note again that this bin 
assignment does not assign any heuristic weights to 
the term occurrences. 
2.5 Final discretized ranking function 
The bin assignments based on tf and df specified in 
sections 2.3 and 2.4 are straightforward and do not 
involve any significant “feature engineering.”  Each 
occurrence of a query term in a document 
corresponds to a local/global bin combination (g, l). 
Each (g,l) combination determines a feature in a 
vector representing a document-query pair f(d, q) 
and is denoted below as f( d, q) [g , l] . The 
dimensionality of the feature space is  |L| x |B|.  E.g. 
for 8 local weighting bins and 10 global weighting 
bins we would deal with the vector size of 80. A 
feature vector f(d, q) represents each document d 
with respect to query q. The value of each feature in 
the vector is just the number of the term occurrences 
assigned to the pair of bins (g, l): 

f ( d, q) [g , l]  =  ∑
==⊂ ldtlgtg ),(,)( q,t 

1  (2) 

Since our features capture local (tf) and global (df) 
term occurrence information, in order to represent a 
ranking function, we can simply use the dot product 
between the feature vector and the vector of learned 
optimal weights w:  
R(q, d) = w * f ( d, q). 
Ideally, the learning mechanism should assign higher 
weights to the more important bin combinations (e.g. 
multiple occurrence of a rare term) and low weights 
to the less important combinations (e.g. single 
occurrence of a common term). The exact learned 
values determine the optimal shape of global and 
local weighting.   
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We still can make the representation more powerful 
by considering the learned weights w[g, l] not the 
replacements but rather the adjustments to some 
other chosen global G (t) and local L (t, d) weighting 
functions: 

f ( d, q) [g , l] = ∑
==⊂ lddttflgtg

tGdtL
)),,((,)( q,t 

)(),(       (2a)  

We define the specific choice of global G() and local 
L() weighting functions as starting ranking function 
(SRF). When all the bin weights w[g, l] are set to 1, 
our ranking function is the same as its SRF. The 
learning process finds the optimal values for w[g, l]  
for the collection of training queries and their 
relevance judgments, thus adjusting the important 
shapes of the global and local weighting to achieve 
better accuracy. SRF can be chosen from one of the 
known to perform well ranking functions (e.g. tf.idf 
or BM25 or based on language models) to take 
advantage of the fact that those formulas and their 
optimal parameters on the standard test collections 
are known for the researchers. Alternatively, we can 
set SRF to the constant value (e.g. 1 in formula 2), 
thus not taking advantage of any of the prior 
empirical investigations and to see if our framework 
is able to learn reasonable (or even top-notch) 
performance purely from labeled examples. Below, 
we describe our experiments with each approach. 
Since the score is linear with respect to the feature 
values, we can train the weights w as a linear 
classifier that predicts the preference relation 
between pairs of documents with respect to the given 
query. Document d1 is more likely to be relevant 
(has a higher score) than document d2 iff  f(d1, q) * 
w > f(d1, q) * w. An important advantage of using a 
linear classifier is that rank ordering of documents 
according to the learned pairwise preferences can be 
simply performed by ordering according to the linear 
score.  Please refer to Cohen et al. (1999) for the 
ordering algorithms in a more general non linear 
case. 
We chose support vector machines (SVM) for 
training the classifier weights w[g, l] since they are 
known to work well with large numbers of features, 
ranging in our experiments from 8 to 512, depending 
on the number of bins. For our empirical tests, we 
used the SVMLight package freely available for 
academic research from Joachims (2001).  We 
preserved the default parameters coming with 
version V6.01. Although SVMLight package allows 
learning ranking, we opted for training it as a 
classifier to retain more control over sampling, 
which we found crucial for successful learning, as 
described in the section below. 
2.6 Sampling 
Since we were training a classifier to predict 
preference relations, but not the absolute value of 
relevance, we trained on the differences between 
feature vectors. Thus, for each selected (sampled) 
pair of documents (dr, di ), such that dr is a relevant 
document and di is irrelevant, the classifier was 

presented with a positive example created from the 
vector of differences of features fp = f(q, dr) –  f(q, 
di), and also with the negative example as the 
inverse of it:   fn= f(q, di) – f(q, dr). This approach 
also balances positive and negative examples.  
We also informally experimented with training on 
absolute relevance judgments, similar to the prior 
work mentioned in the Introduction but obtained 
much worse results. We explain it by the fact that 
relative judgments (pairwise comparisons) are more 
generalizable to new queries than absolute 
judgments (relevant/irrelevant). This may explain 
prior difficulties with applying discriminative 
approaches mentioned in our Introduction. 
Since presenting all pairs to the training mechanism 
would be overwhelming, we performed pseudo-
random sampling of documents by the following 
intuitive consideration. Since it is more efficient to 
present the classifier with the pairs from the 
documents that are likely to more strongly affect the 
performance metric (average precision), we first pre-
ordered the retrieved documents by any of the 
reasonably well-performing scoring function (e.g. 
tf.idf) and limited the sample of documents to the top 
1000. Then, for each query, each known relevant 
document dr from that subset was selected and 
“paired” with a certain number of randomly selected 
irrelevant documents. This number was linearly 
decreasing with the position of the relevant 
document in the pre-order. Thus, the higher the 
document was positioned in the pre-order, the more 
times it was selected for pairing (training). This 
placed more emphasis at correctly classifying the 
more important document pairs in the average 
precision computation. Again, without the correct 
emphasis during sampling the obtained results were 
much weaker. However, the choice of the ranking 
function to perform pre-order was found to be not 
important: virtually the same results were obtained 
using tf.idf or bm25 or language models. 
3. Empirical Evaluation 
3.1 Empirical setup 
We used the TREC, Disks 1 and 2, collections to test 
our framework. We used topics 101-150 for training 
and 151-200 for testing and vice-versa. For indexing, 
we used the Lemur package (Kraaij et al., 2003), 
with the default set of parameters, and no stop word 
removal or stemming. Although those procedures are 
generally beneficial for accuracy, it is also known 
that they do not significantly interfere with testing 
various ranking functions and thus are omitted in 
many studies to allow easier replication. 
We used only topic titles for queries, as it is 
commonly done in experiments, e.g. in Nallapati 
(2004). We used the most popular average (non-
interpolated) precision as our performance metric, 
computed by the script included with the Lemur 
toolkit (later verified by trec_eval). The 
characteristics of the collection after indexing are 
shown in Table 1. We also reproduced results similar 
to the reported below on the Disk 3 collection and 

156



topics 101-150, but did not include them in this 
paper due to size limitations. 
 

Collection 
Number of documents 
Number of terms 
Number of unique terms 
Average doc. length 
Topics 

TREC Disks 1 and 2
741,863 
325,059,876 
697,610 
438 
101-200 

Table 1. The characteristics of the test collection: 
TREC Disks 1,2   
 

3.2 The baseline 
In this study, we were interested exclusively in the 
improvements due to learning, thus still staying 
within the “bag of words” paradigm. Although many 
enhancements can be easily combined within our 
framework, we limited our search for the baseline 
performance to “bag of words” techniques to avoid 
unfair comparison. We used the results reported in 
Nallapati (2004) as guidance and verified that the 
best performing language model on this test 
collection was the one based on the Dirichlet 
smoothing with µ = 1900. Our average precision was 
lower (0.205 vs. 0.256), most likely due to the 
different indexing parameters, stemming or using a 
different stopword list.  By experimenting with the 
other ranking functions and their parameters, we 
noticed that the implementation of BM25, available 
in Lemur, provided almost identical performance 
(0.204). Its ranking function is  
BM25 (tf, df) =  tf / (tf + K* (1 – b + b * |d| / |d|a) * 
log ( N /  (df + .5)), where |d| is the document word 
length and |d|a is its average across all documents. 
The optimal parameter values were close to the 
default K = 1.0 and b = .5. We noticed that the query 
term frequency components could be ignored 
without any noticeable loss of precision. This may be 
because the TREC topic titles are short and the 
words are very rarely repeated in the queries. Since 
the difference between this ranking function and the 
optimal from the available language models was 
negligible we selected the former as both our 
baseline and also as the starting ranking function 
(SRF) in our experiments. For simplicity, we call it 
simply BM25 throughout our paper. 
3.3 Discretization accuracy 
Before testing the learning mechanism, we verified 
that the loss due to discretization is minimal and thus 
the approach is capable of capturing global and local 
weighting. For this, we discretized our baseline 
BM25 formula replacing each score contribution of 
the occurrence of a term G(t)L(t,d) = BM25(t, d) 
with its average across all other occurrences within 

the same bin combination [g, l], which is determined 
by the formulas 1 and 1a. We discovered that for the 
|B| x |L| = 8 x 8 configuration, the loss in average 
precision did not exceed 2% (relatively). This 
demonstrates that the G(t)L(t,d) ranking functions 
can be discretized (replaced by values at certain 
points) at this level of granularity without losing 
much accuracy. We also verified that the weights 
w[g, l] can affect the performance significantly: 
when we set them to random numbers in the [0,1] 
range, the performance dropped by 50% relatively to 
the baseline. 
3.4 Ability to achieve top performance from 
scratch 
First, we were curious to see if our framework can 
learn reasonable performance without taking 
advantage of our knowledge of the top ranking 
functions and their parameters. For this, we set our 
starting ranking function (SRF) to a constant value, 
thus using only the minimum out of the empirical 
knowledge and theoretical models developed by 
information retrieval researchers during several 
decades: specifically only the fact that relevance can 
be predicted by tf and df 
Table 2 shows performance for the 16 x 8 
combination of bins. It can be  seen that our 
approach has reached 90-100% of the top 
performance (baseline) solely through the learning 
process. The original performance is the one 
obtained by assigning all the classifier weights to 1. 
It can be seen that the topics 151-200 are more 
amenable for the technique that is why they show 
better recovery when used as a test set even when the 
training set 101-150 recovers only 90%. In order to 
evaluate if more training data can help, we also ran 
tests using 90 topics for training and the remaining 
10 for testing. We ran 10 tests each time using 10 
different sequential topics for testing and averaged 
our results. In this case, the averaged performance 
was completely restored to the baseline level with 
the mean difference in precision across test queries 
+0.5% and 1% standard deviation of the mean.  
 
 
 
 
 
 
 
 
 
 

 
Figure 1. Learning local weighting for various 

                          
Testing: 

 
101-150 

 
151-200 

Training: Original Learned Baseline Original Learned Baseline 
101-150 .119  .165 .174 .135 .180 .204 
151-200 .119 .175 .174 .135 .206 .204 

Table 2. Learning without any knowledge of ranking functions. 16 x 8 bin design.       
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numbers of bins. Learning on 101-150 and testing on 
151-200.  
 
 
 
 
 
 
 
 
 
 
 

 
Figure 2. Learning global weighting for various 
numbers of bins. Learning on 101-150 and testing on 
151-200.   
We believe this is a remarkable result considering 
the difficulties that the prior learning based 
approaches had with the classical information 
retrieval task. We attribute our success to both 
higher flexibility and generalizability of our discrete 
representation. We also varied the number of bins to 
evaluate the effect of granularity of representation. 
Figures 1 and 2 demonstrate that 8 bins suffice for 
both global and local weighting. Higher numbers did 
not result in noticeable improvements. 
When the same set was used for training and testing 
the result obviously overestimates the learning 
capability of the framework. However, it also gives 
the upper bound of performance of a discretized 
gw.lw combination assuming that the loss due to 
discretization is negligible which can be easily 
attained by using sufficiently large number of bins. 
Thus, the results indicate that gw.lw, which includes 
practically all the popular “bag of words” ranking 
formulas such as tf.idf, BM25 or language models, 
has almost reached its upper limit and other classes 
of representations and ranking formulas need to be 
explored to attempt greater improvements. 
Figure 2. Learning global weighting for various 
numbers of bins. Learning on 101-150 and testing on 
151-200. 
3.5 Ability to surpass top performance 
In order to test whether our approach can exceed the 
baseline performance we set BM25 to be our starting 
ranking function (SRF). Thus, in this case: 
G(t) = log ( N /  (df + .5))  (6) 
L(tf, d) = tf / (tf + K  * (1 – b + b * |d| / |d|a)  
Table 3 shows performance for the 8 by 8 bin design. 
Although the improvement is relatively small (2-3%) 
it is still statistically significant at the level of alpha 
< 0.1, when the paired t-test was performed. The 

value in “% change” column shows the mean % 
improvement across all the queries and its standard 
deviation. It may differ from the % change of the 
mean performance since there is wide variability in 
the performance across queries but smaller 
variability in the improvement.  
We believe even such a small improvement is 
remarkable considering the amount of attention the 
researches have paid to optimizing the ranking 
functions for this specific data set which has been 
available for more than seven years. A number of 
recent studies reported comparable improvements on 
the same test collection by using more elaborate 
modeling or richer representations.  Of course the 
improvement due to the techniques such as those 
based on n-grams, document structures, natural 
language processing or query expansion can possibly 
achieve even better results. However in this study we 
deliberately limited our focus to the “bags of words.”  
3.6 Shape of optimal local weighting 
Figure 3 shows the optimal shape of the local 
weighting function L(tf) learned on entire set of 100 
topics and plotted against their counterparts of 
BM25(t, d) = tf / (tf + 1) and tf.idf(t, d) = tf for 
comparison.  For plotting purposes, we assumed that 
the document length was equal to its average. The 
values were linearly scaled to meet at the  tf = 8 
point. It is easy to observe that the behavior of the 
optimal function is much closer to BM25 than to 
tf.idf, which explains the good performance of the 
former on this test set. 
 
 
 
 
 
 
 
 
 
 

 
Figure 3. Learned optimal shape of local weighting. 
 
3.7 Shape of optimal global weighting 
Figure 4 shows the optimal shape of the global 
weighting function G(t) learned on the entire set of 
100 topics with |B| = 32 plotted in logarithmic scale 
against the popular idf weighting used in both tf.idf 
and BM25. The lower end of the X-axis (log10 df < 
2) corresponds to very infrequent terms, so the 
learned weights may not be very informative since 

1 2 3 4 5 6 7 8

tf

G
w

(tf
)

TF-IDFDBL (Learned)
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Testing: 

101-150 151-200 

Training: Learned Baseline % change Learned Baseline  
101-150 .180 .174 +2.3 (+/- 0.9) .208 .204 +2.3 (+/- 1.0) 
151-200 .179 .174 +1.8 (+/- 1.0) .210 .204 +3.2 (+/- 1.3) 

Table 3. Surpassing the baseline performance. 8 x 8 bin design. 
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the classifier encounters fewer occurrences of them 
and their impact on the overall accuracy is small. In 
the mid range (5,000 – 10,000), the optimal weights 
are higher than idf, which indicates that the latter has 
an overly steep shape to discount high frequency 
terms. A more detailed interpretation of the optimal 
shape may require further investigation. 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4. Learned optimal shape of global weighting 
G(t). 
 
4. Conclusions 
We explored learning how to rank documents with 
respect to a given query using linear Support Vector 
Machines and discretization-based representation. 
Our approach represents a family of discriminative 
approaches, currently studied much less than 
heuristic (tf.idf, bm25) or generative approaches 
(language models). Our experiments indicate that 
learning from relevant judgments available with the 
standard test collections and generalizing to new 
queries is not only feasible but can be a source of 
improvement. When tested with a popular standard 
collection, our approach achieved the performance of 
the best well-known techniques (BM25 and language 
models), which have been developed as a result of 
extensive past experiments and elaborate theoretical 
modeling. When combined with the best performing 
ranking functions, our approach added a small (2-
3%), but statistically significant, improvement. 
Although practical significance of this study may be 
limited at the moment since it does not demonstrate a 
dramatic increase in retrieval performance in large 
test collections, we believe our findings have 
important theoretical contributions since they 
indicate that the power of discriminative approach is 
comparable to the best known analytical or heuristic 
apporaches. This work also lays the foundation for 
extending the discriminative approach to “richer” 
representations, such as those using word n-grams, 
grammatical relations between words, and the 
structure of documents. 
Our results also indicate that gw.lw family, which 
includes practically all the popular “bag of words” 
ranking formulas such as tf.idf, BM25 or language 
models, has almost reached its upper limit and other 
classes of representations and ranking formulas need 
to be explored in order to accomplish significant 
performance break-troughs. 
Of course, using only few test cases (topics sets and 
collections) is a limitation of this current study, 

which we are going to address in our future research. 
We view our approach as a complement, rather than 
competitive, to the analytical approaches such as 
language models. Our approach can be also used as 
an explorative tool in order to identify important 
relevance-indicating features, which can be later 
modeled analytically. We believe that our work and 
the ones referred in this paper may bring many of the 
achievements made in a more general area of 
classification and machine learning closer to the task 
of rank ordered information retrieval, thus making 
retrieval engines more helpful in reducing the 
information overload and meeting people’s needs. 
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