
Proceedings of Human Language Technology Conference and Conference on Empirical Methods in Natural Language
Processing (HLT/EMNLP), pages 145–152, Vancouver, October 2005. c©2005 Association for Computational Linguistics

Kernel-based Approach for Automatic Evaluation of Natural Language
Generation Technologies: Application to Automatic Summarization

Tsutomu Hirao
NTT Communication ScienceLabs.

NTT Corp.
hirao@cslab.kecl.ntt.co.jp

Manabu Okumura
PrecisionandIntelligenceLabs.
Tokyo Instituteof Technology
oku@pi.titech.ac.jp

Hideki Isozaki
NTT Communication ScienceLabs.

NTT Corp.
isozaki@cslab.kecl.ntt.co.jp

Abstract

In order to promote the study of auto-
matic summarization and translation, we
need an accurate automatic evaluation
method that is close to human evalua-
tion. In this paper, we present an eval-
uation methodthat is based on convolu-
tion kernels that measurethe similarities
betweentexts considering their substruc-
tures. We conducted an experiment us-
ing automatic summarization evaluation
data developed for Text Summarization
Challenge3 (TSC-3).A comparisonwith
conventional techniques shows that our
methodcorrelatesmore closely with hu-
manevaluationsandis morerobust.

1 Introduction

Automaticsummarization, machinetranslation,and
paraphrasinghaveattractedmuchattentionrecently.
Thesetasks include text-to-text language genera-
tion. Evaluation workshops are held in the U.S.
andJapan, e.g.,theDocumentUnderstanding Con-
ference (DUC)1, NIST MachineTranslation Evalu-
ation2 aspart of the TIDES project, the Text Sum-
marization Challenge(TSC)3 of theNTCIR project,
and the International Workshop on Spoken Lan-
guageTranslation (IWSLT)4.

Theseevaluation workshopsemploy humaneval-
uations, which are essential in termsof achieving

1http://duc.nist.gov
2http://www.nist.gov/speech/tests/mt/
3http://www.lr.titech.ac.jp/tsc
4http://www.slt.atr.co.jp/IWSLT2004

high quality evaluations results. However, human
evaluationsrequire ahugeeffort andthecostis con-
siderable. Moreover, we cannot automatically eval-
uatea new systemeven if we usethe corpora built
for theseworkshops, and we cannot conduct re-
evaluation experiments.

To copewith this situation, there is a particular
needto establish a high quality automatic evalua-
tion method. Oncethis is done, we canexpectgreat
progressto bemadeonnatural languagegeneration.

In this paper, we propose a novel automatic
evaluation methodfor natural languagegeneration
technologies. Our method is based on the Ex-
tended String SubsequenceKernel (ESK) (Hirao
et al., 2004b) which is a kind of convolution ker-
nel (Collins and Duffy, 2001). ESK allows us to
calculatethesimilaritiesbetweenapairof texts tak-
ing accountof wordsequences,their wordsensese-
quencesandtheir combinations.

We conductedan experimental evaluation using
automaticsummarizationevaluation datadeveloped
for TSC-3 (Hirao et al., 2004a). The results of the
comparison with ROUGE-N (Lin andHovy, 2003;
Lin, 2004a;Lin, 2004b),ROUGE-S(U)(Lin, 2004b;
Lin and Och, 2004) and ROUGE-L (Lin, 2004a;
Lin, 2004b) show that our methodcorrelatesmore
closely with humanevaluationsandis morerobust.

2 Related Work

Automatic evaluation methods for automatic sum-
marization andmachinetranslationaregroupedinto
two classes. One is the longest commonsubse-
quence (LCS) basedapproach (Hori et al., 2003;
Lin, 2004a; Lin, 2004b; Lin andOch, 2004). The
other is theN-grambasedapproach(Papineni et al.,
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Table1: Componentsof vectorscorresponding to S1andS2.Bold subsequencesarecommonto S1andS2.�
subsequence S1 S2

�
subsequence S1 S2

�
subsequence S1 S2

Becoming 1 1 Becoming-is � � � � astronaut-DREAM 0 � �
DREAM 1 1 Becoming-my ������� astronaut-ambition 0 � �
SPACEMAN 1 1 SPACEMAN-DREAM ����� � astronaut-is 0 1
a 1 0 SPACEMAN-ambition 0 � � astronaut-my 0 �
ambition 0 1 SPACEMAN-dream � � 0 cosmonaut-DREAM � � 0

1
an 0 1 SPACEMAN-great � � 0 cosmonaut-dream � � 0
astronaut 0 1 SPACEMAN-is 1 1 cosmonaut-great � � 0
cosmonaut 1 0 SPACEMAN-my ��� cosmonaut-is 1 0
dream 1 0 a-DREAM � � 0 cosmonaut-my � 0
great 1 0 a-SPACEMAN 1 0 great-DREAM 1 0
is 1 1 2 a-cosmonaut 1 0 2 great-dream 1 0
my 1 1 a-dream � � 0 is-DREAM � � �
Becoming-DREAM ����� � a-great � � 0 is-ambition 0 �
Becoming-SPACEMAN ��� a-is � 0 is-dream � � 0
Becoming-a 1 0 a-my � � 0 is-great � 0
Becoming-ambition 0 � � an-DREAM 0 � � is-my 1 1

2 Becoming-an 0 1 an-SPACEMAN 0 1 my-DREAM � 1
Becoming-astronaut 0 � an-ambition 0 � � my-ambition 0 1
Becoming-cosmonaut � 0 an-astronaut 0 1 my-dream � 0
Becoming-dream ��� 0 an-is 0 � my-great 1 0
Becoming-great � � 0 an-my 0 � �

2002; Lin andHovy, 2003; Lin, 2004a; Lin, 2004b;
SoricutandBrill, 2004).

Hori et. al (2003) proposedan automatic eval-
uation method for speech summarization based on
word recognition accuracy. They reportedthat their
methodis superior to BLEU (Papineni et al., 2002)
in termsof the correlation between humanassess-
mentandautomatic evaluation. Lin (2004a; 2004b)
andLin andOch(2004)proposedanLCS-basedau-
tomaticevaluation measurecalledROUGE-L. They
applied ROUGE-L to theevaluation of summariza-
tion and machinetranslation. The results showed
that the LCS-based measure is comparable to N-
gram-basedautomatic evaluation methods. How-
ever, thesemethods tend to be strongly influenced
by wordorder.

Various N-gram-based methods have beenpro-
posedsinceBLEU, whichisnow widelyusedfor the
evaluation of machinetranslation. Lin et al. (2003)
proposed a recall-oriented measure, ROUGE-N,
whereasBLEU is precision-oriented.They reported
thatROUGE-Nperformedwell asregardsautomatic
summarization. In particular, ROUGE-1, i.e., uni-
gram matching, provides the bestcorrelation with
humanevaluation. Soricut et. al (2004) proposed
a unified measure. They integrated a precision-
orientedmeasure with a recall-orientedmeasure by
using anextension of theharmonicmeanformula.It
performswell in evaluationsof machine translation,
automatic summarization, andquestion answering.

However, N-gram basedmethods have a critical
problem; they cannot consider co-occurrenceswith
gaps,althoughtheLCS-basedmethod candealwith
them. Therefore, Lin and Och (2004) introduced
skip-bigram statistics for theevaluation of machine
translation. However, they did not consider longer
skip-n-gramssuch asskip-trigrams.Moreover, their
methoddoes not distinguish betweenbigramsand
skip-bigrams.

3 Kernel-based Automatic Evaluation

The above N-gram-based methods correlated
closely with human evaluations. However, we
think someskip-n-grams(n	�
 ) areuseful. In this
paper, we employ theExtendedStringSubsequence
Kernel (ESK), which considers both n-grams and
skip-n-grams. In addition, theESK allows usto add
word sensesto eachword. The useof word senses
enables flexible matching even when paraphrasing
is used.

TheESK is a kind of convolution kernel (Collins
andDuffy, 2001). Convolutionkernelshaverecently
attractedattention asa novel similarity measurein
natural languageprocessing.

3.1 ESK

TheESK is anextensionof theStringSubsequence
Kernel(SSK)(Lodhi et al., 2002) andtheWord Se-
quenceKernel(WSK) (Canceddaetal., 2003).

The ESK receivestwo node sequencesasinputs
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andmapseachof theminto ahigh-dimensionalvec-
tor space. The kernel’s value is simply the inner
product of the two vectors in the vectorspace. In
order to discount long-skip-n-grams,the decay pa-
rameter� is introduced.

We explain the computation of the ESK’s value
whoseinputs are the sentences(S1 andS2) shown
below. In the example, word senses are shownin
braces.

S1 Becoming a cosmonaut: SPACEMAN� is my great
dream: DREAM�

S2 Becoming an astronaut: SPACEMAN � is my ambi-
tion:  DREAM�

In this case, “cosmonaut”and “astronaut” share
the samesense � SPACEMAN� and“ambition” and
“dream” alsosharethesamesense � DREAM � . We
canuseWordNetfor English andGoitaikei (Ikehara
etal., 1997) for Japanese.

Table1 shows thesubsequencesderivedfrom S1
andS2 andits weights. Note that the subsequence
length is two or less. From the table, there arefif-
teensubsequences5 thatarecommonto S1 andS2.
Therefore, �����������������! "��#%$'&)(�*+�,*-#%� � *+�/.�*
�/01*)�321*4�351*6�37 . For reference,therearethree
unigrams,onebigram, zerotrigramsandthreeskip-
bigramscommonto S1andS2.

Formally, theESK is definedasfollows. 8 and 9
arenodesequences.

ESK:�;=<?>�@BADC :
EGFIH JLKNMPO QSRSMUT

V E ;=WYXZ>Z[/\SA (1)

V E ;=W]XZ>Z[/\^ADC _"`
a ;=WYXb>Z[/\�A if cdCfeVhgEji�H ;=W]XZ>Z[3\�A/k _"`

a ;=W]XZ>Z[3\�A otherwise
(2)

Here,l is theupperboundof thesubsequencelength
and monp �Nq�r] ]sutv$ is definedasfollows. q^r is the w -th
nodeof 8 . sxt is the y -th nodeof 9 . The functionzx{�| ��}� ]q"$ returnsthenumberof attributescommonto
givennodes } andq .
V gE ;=W]XZ>Z[3\SADC

~
if �UC'e

� V gE ;=W X >b[ \ i/H A3� V g gE ;=W X >Z[ \ i�H A otherwise
(3)

mon np �Nq^r] ]sxt�$ is definedasfollows:

V g gE ;=W]XZ>Z[3\SADC
~

if ��Cfe
� Vhg gE ;=W]X i�H >Z[/\SA3� V E ;=W]X i�H >b[/\SA�� (4)

5Bold subsequencesin Table1.

Finally, wedefinethesimilarity measurebetween
8 and 9 by normalizing ESK.Thissimilarity canbe
regarded asanextension of thecosinemeasure.

Sim:�Z��� ;=<?>^@BADC ESK: ;=<�>]@BA
ESK: ;=<?>Z<�A ESK: ;�@�>^@BA � (5)

3.2 Automatic Evaluation based on ESK

Suppose, � is a system output, which consistsof�
sentences, and � is a humanwritten reference,

which consists of � sentences. �^r is a sentencein
� , and� t is a sentencein � . We definetwo scoring
functions for automaticevaluation. First, we define
aprecision-orientedmeasureasfollows:

� :�Z��� ;=��>Z�1ADC e�
�
X FIH��1���HD� \ ��E Sim:�b�=� ;=� X >Z� \ A (6)

Symmetrically, we definea recall-orientedmea-
sureasfollows:

� :�b�=� ;=��>b�1ADC ec
E
\ FIH �1���HD� X � � Sim:�Z��� ;=��XN>b��\�A (7)

Finally, we define a unified measure, i.e., F-
measure,asfollows:

  :�b�=� ;=��>Z�1ADC ;De¡�h¢
� Au£ � �Z��� ;=��>Z�1Au£ � �Z��� ;=��>¤�1A� �b�=� ;=��>¤�1A/�1¢ � £ � �b�=� ;=��>¤�1A (8)¥

is a costparameter for ¦¨§�©Nª and «�§�©Nª . ¥ ’s value
is selecteddependingon theevaluation task. Since
summary should not miss important information
given in thehumanreference,recall is moreimpor-
tant than precision. Therefore,a large

¥
will yield

goodresults.

3.3 Extension for Multiple References

Whenmultiple humanreferences(correct answers)
areavailable,we definea simplefunction for multi-
ple referencesasfollows:

 �¬ �ZD®�b�=� ;=��> � ADC e¯
°
X FIH

  �Z�=� ;=��>Z� X A�> (9)

Here,equation (9) givestheaveragescore. ¦ in-
dicatesasetof references; ¦±&6���³²P "´"´"´U ]�¶µ�� .
4 Experimental Evaluation

To confirm and discuss the effectiveness of our
method, we conducted an experimental evalua-
tion usingTSC-3multiple document summarization
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evaluation dataandouradditionaldata.

4.1 Task and Evaluation Metrics in TSC-3

Thetaskof TSC-3is multiple documentsummariza-
tion. Participants were given a set of documents
about a certain event and required to generatetwo
different length summariesfor the entire document
set.Thelengthswereabout 5%and10%of thetotal
numberof characters in the documentset, respec-
tively. Thirty documentsetswereprovided for the
official run evaluation. Therewere ten participant
systems; oneprovided by the TSC organizersasa
baseline system.

The evaluation metric follows DUC’s SEEeval-
uation scheme(HarmanandOver, 2004). For each
documentset,onehumansubjectmakesa reference
summaryand usesit as a basisfor evaluating ten
system outputs. This humanevaluation procedure
consistsof thefollowing steps:

Step 1 For eachreferencesentence�·tU��¸¹�³$ , repeat
Steps2 and3.

Step 2 For ��t , the humanassessor finds the most
relevant sentenceset º from thesystem output.

Step 3 The assessor assigns a score, »v�N�·t� "º'$ ,¼  ¼%½ �% "´"´"´· "� ½L¼%½ 1.0 meansperfect. in termsof
how much of the content of ��t can be repro-
ducedby using only sentencesin º .

Step 4 Finally, the evaluation score of
output � for reference � is defined¾ �N�¿ ]�f$�& t »��N� t  "º'$�À�Á �-Á .

The final score of a system is calculated by
applying the above procedure and normalized by
the number of topics, i.e., .�ÂÃ � ²

¾ �N� Ã  ]� Ã $�À%
 ¼ .
When multiple references ¦���&1���¿�% "´"´"´· ]�oµ��%$
are available, the scores are given as follows:¾�Ä §�Å�Æ ��¦� ]�f$�& Ç ¾ �N� Ç  ]�f$�À�Á ¦�Á .
4.2 Variation of Human Assessors

In TSC-3’s official run evaluation, system outputs
were compared with one humanwritten reference
summaryfor eachtopic. Therewerefive topic sets
andfive humanassessors(A-E in Table2) for each
topic set.

Before we usethe one humanwritten reference
summaryas the gold-standard-reference, to exam-
ine variationsamonghumanassessors, we prepared
two additionalhumansummariesfor eachtopicsets.

Table2: Therelationship between topics andrefer-
encesummarycreators,i.e., humanassessors.º'��ÈÉ$
indicatesa subject A’s evaluation scorefor all sys-
temsfor corresponding topics.

topic-ID Ê H Ê � Ê � Ê�ËYÌ]Í
1 - 6 Î (A) Î (E) Î (C) mean(Î (A), Î (E),Î (C))

7 - 12 Î (B) Î (A) Î (D) mean(Î (B), Î (A), Î (D))
13 - 18 Î (C) Î (B) Î (E) mean(Î (C),Î (B), Î (E))
19 - 24 Î (D) Î (C) Î (A) mean(Î (D), Î (C),Î (A))
25 - 30 Î (E) Î (D) Î (B) mean(Î (E),Î (D), Î (B))

Table3: Correlationsbetween humanjudgments.

correlation rankcorrelation
coefficient (� ) coefficient (Ï )

shortÊ H Ê � Ê � Ê bÐYÑ Ê H Ê � Ê � Ê bÐYÑÊ H 1.00 .968 .902 .988 1.00 .976 .697 .988Ê � Ò 1.00 .910 .996 Ò 1.00 .733 .988Ê � Ò Ò 1.00 .914 Ò Ò 1.00 .758Ê bÐYÑ Ò Ò Ò 1.00 Ò Ò Ò 1.00
longÊ H Ê � Ê � Ê bÐYÑ Ê H Ê � Ê � Ê bÐYÑÊ H 1.00 .908 .822 .964 1.00 .964 .939 .964Ê � Ò 1.00 .963 .987 Ò 1.00 .952 1.00Ê � Ò Ò 1.00 .931 Ò Ò 1.00 .932Ê bÐYÑ Ò Ò Ò 1.00 Ò Ò Ò 1.00

Therefore, we obtained threereferencesummaries
andevaluation results for eachtopic sets(Table2).

Moreover, we preparedunifiedevaluation results
of threehumanjudgmentas Ó ÅYÔ�Õ , which is calcu-
latedastheaverageof threehumanscores.

Therelationship between topicsandhumanasses-
sorsis shown in Table 2. For example,subject B
generatessummaries and evaluates all systemsfor
topics 7-12, 13-18 and 25-30 on Ó ² , Ó � , and Ó .
respectively. Note that eachhumansubject, A to
E, wasa retiredprofessional journalist; that is, they
shared acommonbackground.

Table 3 showsthe Pearson’s correlation coeffi-
cient(� ) andSpearman’srankcorrelation coefficientÖ for thehumansubjects. Theresults showthatev-
ery pair hasa high correlation. Therefore,changing
thehumansubjecthaslittl e influenceasregardscre-
ating referencesandevaluating system summaries.
Theevaluation by humansubjectsis stable. This re-
sult agreeswith DUC’sadditional evaluation results
(HarmanandOver, 2004). However, the behavior
of the correlations betweenhumanswith different
backgrounds is uncertain. Thecorrelationmight be
fragile if we introduceahumansubjectwhoseback-
ground is different from theothers.
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4.3 Compared Automatic Evaluation Methods

We compared our method with ROUGE-N and
ROUGE-L describedbelow. We used only content
words to calculate the ROUGE scores because the
correlation coefficient decreasedif we did not re-
move functionalwords.

WSK-based method

WeuseWSK insteadof ESK in equation (6)-(8).

ROUGE-N

ROUGE-N is an N-gram-based evaluation mea-
suredefinedasfollows (Lin, 2004b):

ROUGE-N;=��>Z�1ADC × MSØ ÑDÙ= ¬�Ú M ×
Û�Ü�Ý·ÞUß ¬ NàLá¤â ;�ã�ä ���hå A

× M�Ø ÑDÙL ¬ Ú M ×
Û�Ü�Ý·ÞUß ;�ã�ä ��� å A

(10)

Here, æBç%è�é�êv�Në%ì�í%î�ï¨$ is thenumber of anN-gram
and æBç%è�é�ê Ä Å�ðbñóòô�Në%ì�í%î1ï¨$ denotesthe numberof n-
gramco-occurrencesin asystem output andtheref-
erence.

ROUGE-S

ROUGE-S is an extension of ROUGE-2defined
asfollows (Lin, 2004b):

ROUGE-S;=��>b�1ADC ;De¡�h¢
� A¡£ � �=�]õ ö � ;=��>b�1A¡£ � �=�Yõ ö � ;=��>¤�1A� ���]õ ö � ;=��>Z�1A3�h¢ � � �=�Yõ ö � ;=��>b�1A

(11)

Where ¦¨©Nªø÷úù � and «�©Zª�÷úù � aredefinedasfollows:

û �=�Yõ ö � ;=��>Z�1ADC üøýUþ ÿ � ;=��>Z�1A
# of skipbigram ��� (12)

� ���]õ ö � ;=��>Z�1ADC üSývþ ÿ � ;=��>Z�1A
# of skipbigram � � (13)

Here,function Skip2 returns thenumberof skip-
bi-gramsthatarecommonto � and� .

ROUGE-SU

ROUGE-SU is anextension of ROUGE-S,which
includes unigrams as a feature defined as fol-
lows (Lin, 2004b):

ROUGE-SU ;=��>Z�1ADC ;De¡�1¢
� Au£ � ��� ;=��>b�1AG£ � ��� ;=��>b�1A� ��� ;=��>Z�1A/�1¢ � � ��� ;=��>¤�1A

(14)

Where ¦ ©�� and « ©�� aredefinedasfollows:

û ��� ;=��>b�1ADC ü 	 ;=��>Z�1A
(# of skipbigrams+ # of unigrams)� � (15)

� ��� ;=��>Z�1ADC ü 	 ;=��>Z�1A
(# of skipbigrams+ # of unigrams)� � (16)

Here,function SU returns thenumber of skip-bi-
gramsandunigramsthatarecommonto � and� .

ROUGE-L

ROUGE-L is an LCS-basedevaluation measure
definedasfollows (Lin, 2004b):

ROUGE-L;=��>Z�1ADC ;De¡�1¢
� A¡£ ��
 áZ� ;=��>Z�1A¡£ ��
 áZ� ;=��>b�1A��
 áZ� ;=��>Z�1A/�1¢ � ��
 áb� ;=��>Z�1A

(17)

where ¦�úñ�© and «�úñ�© aredefinedasfollows:

��
 áb� ;=��>b�1ADC e[ � K M�Ø LCS�ô;=� X >Z��A (18)

��
 áb� ;=��>b�1ADC e
_ � KNMSØ

LCS� ;=�"XN>b��A (19)

Here,LCS�ô�N�·r] ]�f$ is theLCS scoreof theunion
longest common subsequence betweenreference
sentences��r and� . s andz arethenumber of words
containedin � , and� , respectively.

The multiple referenceversion of ROUGE-N S,
SU or L, RN

Ä §�Å�Æ  RS
Ä §�Å�Æ  RSU

Ä §�Å�Æ  RL
Ä §�Å�Æ can

bedefinedin accordancewith equation(9).

4.4 Evaluation Measures

We evaluate automatic evaluation methods by
using Pearson’s correlation coefficient (� )
and Spearman’s rank correlation coefficient
(Ö ). Since we have ten systems, we make a
vector �B&1���f²P �� �  "´"´"´v ��ur^ "´"´"´U ��B² Â $ from the
results of an automatic evaluation. Here,
�xr]&1�%À%
 ¼ .�ÂÃ � ²

� �N� Ã  ]�ôr�� Ã $ . � Ã indicates a ref-
erence for the q -th topic.

�
indicatesan automatic

evaluation function suchas ��§�©Zª , ����©Nª , ROUGE-N,
ROUGE-S, ROUGE-SU andROUGE-L. Next, we
make another vector �'&h��� ²  �� �  "´"´"´U �� r  "´"´"´v �� ² Â $
from the human evaluation results. Here,
�3r]&��%À%
 ¼ .�ÂÃ � ²

¾ �N� Ã  ]�Ir�� Ã $ . Finally, we com-
pute� andÖ between � and � 6.

4.5 Evaluation Results and Discussions

Table 4 shows the evaluation results obtained by
using Pearson’s correlation coefficient � . Table 5
shows the evaluation results obtainedwith Spear-
man’s rank correlation coefficient Ö . The ta-

6When using multiple references,functions � and � for
makingvectors and ! aresubstitutedfor � ¬ �ZD® and � ¬ �ND® ,
respectively.
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Table4: Results obtainedwith Pearson’s correlationcoefficient.“stop” indicateswith stop word exclusion,
“case” indicatesw/o stopwordexclusion.

short longÊ H Ê � Ê � Ê ¤Ð]Ñ Ê H Ê � Ê � Ê ¤Ð]Ñ
stop case stop case stop case stop case stop case stop case stop case stop case

ROUGE-1 .965 .884 .931 .888 .937 .879 .956 .906 .906 .876 .919 .916 .897 .891 .918 .948
ROUGE-2 .943 .960 .836 .880 .861 .906 .904 .937 .886 .930 .788 .941 .834 .616 .856 .929
ROUGE-3 .906 .936 .759 .814 .786 .846 .862 .900 .873 .909 .717 .849 .826 .431 .844 .885
ROUGE-4 .878 .914 .725 .752 .729 .794 .837 .871 .850 .890 .651 .787 .836 .292 .836 .865
ROUGE-L .919 .777 .789 .683 .875 .867 .898 .852 .917 .840 .861 .812 .847 .829 .910 .848
ROUGE-S(" ) .934 .914 .805 .888 .872 .938 .867 .917 .812 .863 .744 .954 .709 .547 .757 .900
ROUGE-S(9) .929 .935 .783 .899 .808 .917 .856 .939 .840 .903 .735 .951 .730 .617 .787 .927
ROUGE-S(4) .936 .943 .802 .891 .839 .917 .877 .940 .876 .920 .778 .945 .814 .663 .840 .932
ROUGE-SU(" ) .934 .914 .805 .887 .872 .937 .867 .917 .811 .864 .743 .954 .707 .547 .756 .900
ROUGE-SU(9) .926 .938 .765 .890 .789 .906 .845 .936 .829 .904 .705 .948 .701 .586 .766 .925
ROUGE-SU(4) .930 .945 .772 .865 .810 .889 .861 .927 .868 .921 .730 .928 .785 .620 .818 .925  : F ��b�=� ;=¢�C � A .942 .927 .921 .957 .941 .957 .967 .969  : F ��b�=� ;=¢�C$#�A .929 .943 .928 .965 .939 .962 .959 .967  : F ��b�=� ;=¢�C � A .939 .923 .919 .962 .926 .954 .953 .966  : F ��b�=� ;=¢�C$#�A .927 .933 .920 .964 .920 .947 .904 .949  : F ��b�=� ;=¢�C � A .921 .900 .897 .955 .900 .932 .890 .946  : F ��b�=� ;=¢�C$#�A .909 .900 .888 .950 .892 .921 .819 .922  : F �% ��� ;=¢�C � A .939 .900 .897 .942 .931 .923 .936 .939  : F �% ��� ;=¢�C$#�A .928 .921 .909 .958 .932 .939 .950 .950  : F �% ��� ;=¢�C � A .938 .902 .886 .947 .924 .921 .934 .944  : F �% ��� ;=¢�C$#�A .928 .922 .895 .960 .920 .929 .919 .942  : F �% ��� ;=¢�C � A .929 .896 .873 .947 .910 .913 .908 .938  : F �% ��� ;=¢�C$#�A .918 .915 .879 .956 .903 .913 .865 .925

bles show results obtained with and without stop
word exclusion for the entire ROUGE family. For
ROUGE-S and ROUGE-SU, we use three varia-
tionsfollowing (Lin, 2004b): themaximumskipdis-
tances are4, 9 andinfinity 7. In addition, we exam-
ine

¥ & # and
 for theESK-basedandWSK-based
methods. Thedecayparameter � for ��§�©Zª and �&��©Nª
is setat 0.5. We will discusstheseparameter values
in Section 4.6.

From the tables, ROUGE-N’s � and Ö decrease
monotonically with N whenweexcludestopwords.
In mostcases,the performanceis improved by in-
cluding stop words for N ( 	1# ). There is a large
differencebetween ROUGE-1 andROUGE-4. The
ROUGE-S family is comparable to theROUGE-SU
family and their performanceis closeto ROUGE-
1 without stop words and ROUGE-2 with stop
words.ROUGE-L is betterthanbothROUGE-3and
ROUGE-4 but worsethanROUGE-1or ROUGE-2.

On theother hand, ��§�©Nª ’s correlation coefficients
(� ) donotchangeverymuchwith respectto l . Even
if l is set at 4, we can obtain good correlations.
The behavior of rank correlation coefficients(Ö ) is

7We use ¢ =1,2, and3. However thereare little difference
amongcorrelationcoefficient regardlessof ¢ because thenum-
ber of the words in referenceandthe number of the words in
systemoutputarealmostthesame.

similar to the above. The differencebetweenthe
ROUGEfamily andourmethod is particularly large
for long summaries. By setting l/&1# , our method
gives the good results. The optimal

¥
is varied in

thedatasets. However, thedifferencebetween
¥ &6#

and
¥ &1
 is small.

For Ö , our methodoutperformstheROUGEfam-
ily except for Ó�² . By contrast,we cansee l/&1
 or
l3&(' provided the bestresults. The differencesbe-
tweenourmethodandtheROUGEfamily arelarger
thanfor � .

For both � and Ö , when multiple references are
available,ourmethod outperformstheROUGEfam-
ily.

Although ROUGE-1 sometimesprovides better
results than our method for short summaries, it has
a critical problem; ROUGE-1 disregardsword se-
quencesmaking it easyto cheat. For instance,we
caneasily obtaina high ROUGE-1 scoreby using
a sequenceof high InverseDocument Frequency
(IDF) words. Sucha summaryis incomprehensi-
bleandmeaninglessbut weobtainagoodROUGE-1
scorecomparableto thoseof thetopTSC-3systems.
By contrast,it is difficult to cheatothermembersof
theROUGEfamily or ourmethod.

Our evaluation results imply that ��§�©Nª is robust
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Table5: Resultsobtainedwith Spearman’s correlation coefficient. “stop” indicateswith stop word exclu-
sion, “case” indicatesw/o stopwordexclusion.

short longÊ H Ê � Ê � Ê ¤Ð]Ñ Ê H Ê � Ê � Ê ¤Ð]Ñ
stop case stop case stop case stop case stop case stop case stop case stop case

ROUGE-1 .988 .964 .842 .891 .842 .855 .927 .903 .818 .830 .903 .806 .867 .855 .842 .915
ROUGE-2 .927 .976 .770 .794 .855 .842 .879 .903 .721 .891 .721 .855 .794 .648 .818 .903
ROUGE-3 .879 .927 .588 .697 .818 .818 .867 .927 .758 .842 .636 .745 .806 .564 .709 .855
ROUGE-4 .818 .879 .721 .697 .745 .745 .867 .867 .685 .794 .564 .612 .830 .455 .709 .758
ROUGE-L .927 .830 .661 .600 .806 .818 .879 .806 .842 .770 .576 .612 .636 .709 .879 .697
ROUGE-S(" ) .939 .939 .673 .818 .794 .818 .818 .927 .770 .879 .636 .818 .697 .527 .709 .867
ROUGE-S(9) .879 .952 .600 .745 .721 .794 .733 .939 .758 .806 .576 .806 .673 .564 .745 .855
ROUGE-S(4) .891 .964 .600 .794 .794 .794 .794 .939 .709 .842 .576 .770 .770 .733 .758 .842
ROUGE-SU(" ) .939 .939 .673 .818 .794 .818 .818 .927 .770 .879 .636 .818 .697 .553 .709 .867
ROUGE-SU(9) .879 .964 .600 .745 .721 .794 .745 .939 .745 .806 .576 .758 .612 .564 .745 .903
ROUGE-SU(4) .879 .988 .600 .745 .721 .770 .794 .903 .758 .855 .576 .794 .709 .612 .794 .842  : F ��b�=� ;=¢�C � A .952 .879 .855 .939 .842 .927 .903 .903  : F ��b�=� ;=¢�C$#�A .952 .915 .891 .939 .855 .903 .903 .903  : F ��b�=� ;=¢�C � A .964 .867 .867 .976 .818 .927 .879 .879  : F ��b�=� ;=¢�C$#�A .964 .891 .915 .976 .758 .903 .709 .891  : F ��b�=� ;=¢�C � A .927 .830 .867 .952 .661 .903 .733 .915  : F ��b�=� ;=¢�C$#�A .927 .842 .842 .988 .588 .903 .673 .891  : F �% ��� ;=¢�C � A .976 .794 .830 .952 .818 .867 .806 .891  : F �% ��� ;=¢�C$#�A .952 .842 .830 .952 .818 .867 .794 .903  : F �% ��� ;=¢�C � A .976 .794 .818 .939 .806 .855 .733 .879  : F �% ��� ;=¢�C$#�A .976 .879 .855 .952 .806 .818 .794 .915  : F �% ��� ;=¢�C � A .964 .794 .818 .939 .806 .855 .697 .915  : F �% ��� ;=¢�C$#�A .964 .867 .855 .976 .745 .855 .770 .915

Table6: Bestscores for eachdataset.
Pearson’s CorrelationCoefficient

Length Ê H Ê � Ê � Ê bÐYÑ
short .945 .946 .933 .967
(
� >^�%>b¢ ) (2,0.7,2) (2,0.7,4) (2,0.1,3) (2,0.7,3)

long .941 .962 .971 .972
(
� >^�%>b¢ ) (2,0.6,2) (2,0.6,3) (2,0.7,2) (2,0.8,2)

Spearman’s RankCorrelationCoefficient
Length Ê H Ê � Ê � Ê bÐYÑ
short .964 .915 .915 .988
(
� >^�%>b¢ ) (3,0.9,4) (2,0.3,4) (3,0.5,3) (4,0.7,4)

long .855 .927 .915 .939
(
� >^�%>b¢ ) (2,0.8,4) (3,0.5,2) (2,0.5,4) (2,0.8,3)

for l andlength of summaryandcorrelatesclosely
with humanevaluationresults. Moreover, it includes
no trivial way of obtaining a good score. These
aresignificant advantagesover ROUGE family. In
addition, our method outperformedtheWSK-based
methodin mostcases. Thisresult confirmstheeffec-
tivenessof semantic informationandthesignificant
advantageof theESK.

4.6 Effects of Parameters

Our methodhasthree parameters, l3 "� , and
¥

. In
this section, we discussthe effects of these param-
eters. Figure1 shows � and Ö for various � and

¥
values with respect to Ó ÅYÔ�Õ . Note that we set l at
2 in thefigurebecausethetendency is similar when
we useother values, namely l3��&1
¨ç%ì)'�$ . FromFig.
1, we canseethat

¥ &1� is not good. With automatic

summarization,‘precision’ is notnecessarily agood
evaluation measurebecausehighly redundantsum-
mariesmay obtain a very high precision. On the
other hand, ‘recall’ is notgoodwhenasystem’sout-
put is redundant.Therefore,equaltreatment of ‘pre-
cision’ and‘recall’ does not give a goodevaluation
measure. The figure shows that

¥ &h#% "
 and 5 are
goodfor � and

¥ &h
% �'� +* andinfinity aregood for Ö .
Moreover, wecanseeasignificantdifferencesbe-

tween�¶&)� andothersfromthefigure.Thisimplies
anadvantageof ourmethodcomparedto ROUGE-S
andROUGE-SU, which cannot handle decayfactor
for skip-n-grams.

FromFig. 1,wecanseethat Ö is moresensitiveto¥
than � . Here,

¥ &1
% �'� +* andinfinity obtained the
bestresults.

¥ &1� wasagainthe worst. This result
indicatesthat we have to determine the parameter
valueproperly for differenttasks. � doesnotgreatly
affect thecorrelation for l3&h
% �'� +* andinfinity asre-
gardsthemiddlerange.

Table 6 show the best results when we exam-
ined all parametercombinations. In the brackets,
we show the bestsettings of these parameter com-
binations. For � , l3&)# providesthe bestresultand
middlerange � and

¥ &1# or 3 aregoodin mostcases.
On theother hand, thebestsettings for Ö vary with
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Figure1: Correlationcoefficientsfor variousvaluesof , and - on .0/�132 .
thedataset. 46587 is notalwaysgoodfor 9 .

In short, we canseethat thedecay parameter for
skips is significant andlong skip-n-gramsareeffec-
tiveespecially 9 .

Theseresults show that our methodhasan ad-
vantage over the ROUGE family. In addition, our
methodis robust andsufficiently good even if close
attention is notpaidto theparameters.

5 Conclusion

In this paper, we described an automatic evalua-
tion methodbasedon the ESK, which is a method
for measuring the similarities betweentexts based
on sequences of words and word senses. Our ex-
periments showed that our methodis comparable
to ROUGE family for shortsummaries andoutper-
forms it for long summaries. In orderto prove that
our methodis languageindependent, we will con-
duct an experimental evaluation by using DUC’s
evaluation data. We believe that our methodwill
alsobeuseful for other natural languagegeneration
tasks. We arenow planning to apply our methodto
anevaluation of machine translation.
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