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Abstract

We propose a generalized bootstrapping
algorithm in which categories are de-
scribed by relevant seed features. Our
method introduces two unsupervised steps
that improve the initial categorization step
of the bootstrapping scheme: (i) using La-
tent Semantic space to obtain a general-
ized similarity measure between instances
and features, and (ii) the Gaussian Mixture
algorithm, to obtain uniform classification
probabilities for unlabeled examples. The
algorithm was evaluated on two Text Cate-
gorization tasks and obtained state-of-the-
art performance using only the category
names as initial seeds.

1 Introduction

Supervised classification is the task of assigning cat-
egory labels, taken from a predefined set of cate-
gories (classes), to instances in a data set. Within the
classical supervised learning paradigm, the task is
approached by providing a learning algorithm with
a training data set of manually labeled examples. In
practice it is not always easy to apply this schema
to NLP tasks. For example supervised systems for
Text Categorization (TC) require a large amount of
hand labeled texts, while in many applicative cases
it is quite difficult to collect the required amounts of
hand labeled data. Unlabeled text collections, on the
other hand, are in general easily available.

An alternative approach is to provide the neces-
sary supervision by means of sets of “seeds” of in-
tuitively relevant features. Adopting terminology

from computability theory, we refer to the stan-
dard example-based supervision mode asExten-
sional Learning(EL), as classes are being specified
by means of examples of their elements (theirex-
tension). Feature-based supervision is referred to as
Intensional Learning(IL), as features may often be
perceived as describing theintensionof a category,
such as providing the name or prominent key terms
for a category in text categorization.

The IL approach reflects on classical rule-based
classification methods, where the user is expected
to specify exact classification rules that operate in
the feature space. Within the machine learning
paradigm, IL has been incorporated as a technique
for bootstrapping an extensional learning algorithm,
as in (Yarowsky, 1995; Collins and Singer, 1999;
Liu et al., 2004). This way the user does not
need to specify exact classification rules (and fea-
ture weights), but rather perform a somewhat sim-
pler task of specifying few typical seed features for
the category. Given the list of seed features, the
bootstrapping scheme consists of (i) preliminary un-
supervised categorization of the unlabeled data set
based on the seed features, and (ii) training an (ex-
tensional) supervised classifier using the automatic
classification labels of step (i) as the training data
(the second step is possibly reiterated, such as by
an Expectation-Maximization schema). The core
part of IL bootstrapping is step (i), i.e. the initial
unsupervised classification of the unlabeled dataset.
This step was often approached by relatively sim-
ple methods, which are doomed to obtain mediocre
quality. Even so, it is hoped that the second step of
supervised training would be robust enough to the
noise in the initial training set.
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The goal of this paper is to investigate additional
principled unsupervised mechanisms within the ini-
tial classification step, applied to the text catego-
rization. In particular, (a) utilizing a Latent Se-
mantic Space to obtain better similarity assessments
between seeds and examples, and (b) applying a
Gaussian Mixture (GM) algorithm, which provides a
principled unsupervised estimation of classification
probability. As shown in our experiments, incor-
porating these steps consistently improved the ac-
curacy of the initial categorization step, which in
turn yielded a better final classifier thanks to the
more accurate training set. Most importantly, we ob-
tained comparable or better performance than previ-
ous IL methods usingonly the category names as the
seed features; other IL methods required collecting
a larger number of seed terms, which turns out to be
a somewhat tricky task.

Interesting results were revealed when compar-
ing our IL method to a state-of-the-art extensional
classifier, trained on manually labeled documents.
The EL classifier required 70 (Reuters dataset) or
160 (Newsgroup dataset) documents per category to
achieve the same performance that IL obtained using
only the category names. These results suggest that
IL may provide an appealing cost-effective alterna-
tive when sub-optimal accuracy suffices, or when it
is too costly or impractical to obtain sufficient la-
beled training. Optimal combination of extensional
and intensional supervision is raised as a challeng-
ing topic for future research.

2 Bootstrapping for Text Categorization

The TC task is to assign category labels to docu-
ments. In the IL setting, a categoryCi is described
by providing a set of relevant features, termed an
intensional description(ID), idci ⊆ V , whereV
is the vocabulary. In addition a training corpus
T = {t1, t2, . . . tn} of unlabeledtexts is provided.
Evaluation is performed on a separate test corpus
of labeled documents, to which standard evaluation
metrics can be applied.

The approach of categorizing texts based on lists
of keywords has been attempted rather rarely in the
literature (McCallum and Nigam, 1999; Ko and Seo,
2000; Liu et al., 2004; Ko and Seo, 2004). Several
names have been proposed for it – such asTC by
bootstrapping with keywords, unsupervised TC, TC
by labelling words– where the proposed methods

fall (mostly) within the IL settings described here1.

It is possible to recognize a common structure of
these works, based on a typical bootstrap schema
(Yarowsky, 1995; Collins and Singer, 1999):

Step 1: Initial unsupervised categorization.This
step was approached by applying some similar-
ity criterion between the initial category seed
and each unlabeled document. Similarity may
be determined as a binary criterion, consider-
ing each seed keyword as a classification rule
(McCallum and Nigam, 1999), or by applying
an IR style vector similarity measure. The re-
sult of this step is an initial categorization of (a
subset of) the unlabeled documents. In (Ko and
Seo, 2004) term similarity techniques were ex-
ploited to expand the set of seed keywords, in
order to improve the quality of the initial cate-
gorization.

Step 2: Train a supervised classifier on the ini-
tially categorized set. The output of Step
1 is exploited to train an (extensional) su-
pervised classifier. Different learning algo-
rithms have been tested, including SVM, Naive
Bayes, Nearest Neighbors, and Rocchio. Some
works (McCallum and Nigam, 1999; Liu et
al., 2004) performed an additional Expectation
Maximization algorithm over the training data,
but reported rather small incremental improve-
ments that do not seem to justify the additional
effort.

(McCallum and Nigam, 1999) reported catego-
rization results close to human agreement on the
same task. (Liu et al., 2004) and (Ko and Seo,
2004) contrasted their word-based TC algorithm
with the performance of an extensional supervised
algorithm, achieving comparable results, while in
general somewhat lower. It should be noted that it
has been more difficult to define a common evalua-
tion framework for comparing IL algorithms for TC,
due to the subjective selection of seed IDs and to the
lack of common IL test sets (see Section 4).

1The major exception is the work in (Ko and Seo, 2004),
which largely follows the IL scheme but then makes use of la-
beled data to perform a chi-square based feature selection be-
fore starting the bootstrap process. This clearly falls outside the
IL setting, making their results incomparable to other IL meth-
ods.
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3 Incorporating Unsupervised Learning
into Bootstrap Schema

In this section we show how the core Step 1 of the IL
scheme – the initial categorization – can be boosted
by two unsupervised techniques. These techniques
fit the IL setting and address major constraints of it.
The first is exploiting a generalized similarity metric
between category seeds (IDs) and instances, which
is defined in a Latent Semantic space. Applying
such unsupervised similarity enables to enhance the
amount of information that is exploited from each
seed feature, aiming to reduce the number of needed
seeds. The second technique applies the unsuper-
vised Gaussian Mixture algorithm, which maps sim-
ilarity scores to a principled classification probabil-
ity value. This step enables to obtain a uniform scale
of classification scores across all categories, which
is typically obtained only through calibration over
labeled examples in extensional learning.

3.1 Similarity in Latent Semantic Space

As explained above, Step 1 of the IL scheme as-
sesses a degree of “match” between the seed terms
and a classified document. It is possible first to
follow the intuitively appealing and principled ap-
proach of (Liu et al., 2004), in which IDs (category
seeds) and instances are represented by vectors in a
usual IR-style Vector Space Model (VSM), and sim-
ilarity is measured by the cosine function:

simvsm(idci , tj) = cos (~idci , ~tj) (1)

where~idci ∈ R|V | and~tj ∈ R|V | are the vectorial
representations in the spaceR|V | respectively of the
category IDidci and the instancetj , andV is the set
of all the features (the vocabulary).

However, representing seeds and instances in a
standard feature space is severely affected in the IL
setting by feature sparseness. In general IDs are
composed by short lists of features, possibly just
a single feature. Due to data sparseness, most in-
stances do not contain any feature in common with
any category’s ID, which makes the seeds irrelevant
for most instances (documents in the text categoriza-
tion case). Furthermore, applying direct matching
only for a few seed terms is often too crude, as it ig-
nores the identity of the other terms in the document.

The above problems may be reduced by consid-
ering some form of similarity in the feature space,
as it enables to compare additional document terms

with the original seeds. As mentioned in Section
2, (Ko and Seo, 2004) expanded explicitly the orig-
inal category IDs with more terms, using a con-
crete query expansion scheme. We preferred using a
generalized similarity measure based on represent-
ing features and instances a Latent Semantic (LSI)
space (Deerwester et al., 1990). The dimensions of
the Latent Semantic space are the most explicative
principal components of the feature-by-instance ma-
trix that describes the unlabeled data set. In LSI
both coherent features (i.e. features that often co-
occur in the same instances) and coherent instances
(i.e. instances that share coherent features) are rep-
resented by similar vectors in the reduced dimen-
sionality space. As a result, a document would be
considered similar to a category ID if the seed terms
and the document terms tend to co-occur overall in
the given corpus.

The Latent Semantic Vectors for IDs and docu-
ments were calculated by an empirically effective
variation (self-reference omitted for anonymity) of
thepseudo-documentmethodology to fold-in docu-
ments, originally suggested in (Berry, 1992). The
similarity functionsimlsi is computed by the cosine
metric, following formula 1, where~idci and ~tj are
replaced by their Latent Semantic vectors. As will
be shown in section 4.2, using such non sparse rep-
resentation allows to drastically reduce the number
of seeds while improving significantly the recall of
the initial categorization step.

3.2 The Gaussian Mixture Algorithm and the
initial classification step

Once having a similarity function between category
IDs and instances, a simple strategy is to base the
classification decision (of Step 1) directly on the
obtained similarity values (as in (Liu et al., 2004),
for example). Typically, IL works adopt in Step 1
a single-label classification approach, and classify
each instance (document) to only one category. The
chosen category is the one whose ID is most simi-
lar to the classified instance amongst all categories,
which does not require any threshold tuning over la-
beled examples. The subsequent training in Step 2
yields a standard EL classifier, which can then be
used to assign multiple categories to a document.

Using directly the output of the similarity func-
tion for classification is problematic, because the ob-
tained scales of similarity values vary substantially
across different categories. The variability in sim-
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ilarity value ranges is caused by variations in the
number of seed terms per category and the levels of
their generality and ambiguity. As a consequence,
choosing the class with the highest absolute similar-
ity value to the instance often leads to selecting a
category whose similarity values tend to be gener-
ally higher, while another category could have been
more similar to the classified instance if normalized
similarity values were used.

As a solution we propose using an algorithm
based on unsupervised estimation of Gaussian Mix-
tures (GM), which differentiates relevant and non-
relevant category information using statistics from
unlabeled instances. We recall that mixture mod-
els have been widely used in pattern recognition and
statistics to approximate probability distributions. In
particular, a well-known nonparametric method for
density estimation is the so-called Kernel Method
(Silverman, 1986), which approximates an unknow
density with a mixture of kernel functions, such as
gaussians functions. Under mild regularity condi-
tions of the unknown density function, it can be
shown that mixtures of gaussians converge, in a sta-
tistical sense, toanydistribution.

More formally, letti ∈ T be an instance described
by a vector of features~ti ∈ R|V | and letidci ⊂ V
be the ID of categoryCi; let sim(idci , tj) ∈ R be
a similarity function among instances and IDs, with
the only expectation that it monotonically increases
according to the “closeness” ofidci andtj (see Sec-
tion 3.1).

For each categoryCi, GM induces a mapping
from the similarity scores between its ID and any
instancetj , sim(idci , tj), into the probability ofCi

given the texttj , P (Ci|tj). To achieve this goal GM
performs the following operations: (i) it computes
the setSi = {sim(idci , tj)|tj ∈ T} of the sim-
ilarity scores between the IDidci of the category
Ci and all the instancestj in the unlabeled train-
ing setT ; (ii) it induces from the empirical distri-
bution of values inSi a Gaussian Mixture distribu-
tion which is composed of two “hypothetic” distri-
butionsCi andCi, which are assumed to describe re-
spectively the distributions of similarity scores for
positive and negative examples; and (iii) it estimates
the conditional probabilityP (Ci|sim(idci , tj)) by
applying the Bayes theorem on the distributionsCi

andCi. These steps are explained in more detail be-
low.

The core idea of the algorithm is in step (ii). Since

we do not have labeled training examples we can
only obtain the setSi which includes the similar-
ity scores for all examples together, both positive
and negative. We assume, however, that similar-
ity scores that correspond to positive examples are
drawn from one distribution,P (sim(idci , tj)|Ci),
while the similarity scores that correspond to neg-
ative examples are drawn from another distribution,
P (sim(idci , tj)|Ci). The observed distribution of
similarity values inSi is thus assumed to be a mix-
ture of the above two distributions, which are recov-
ered by the GM estimation.

Figure 1 illustrates the mapping induced by GM
from the empirical mixture distribution: dotted lines
describe the Probability Density Functions (PDFs)
estimated by GM forCi, Ci, and their mixture from
the empirical distribution (Si) (in step (ii)). The
continuous line is the mapping induced in step (iii)
of the algorithm from similarity scores between in-
stances and IDs (x axis) to the probability of the in-
stance to belong to the category (y axis).
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Figure 1: Mapping induced by GM for the category
rec.motorcyclesin the 20newsgroups data set.

The probabilistic mapping estimated in step (iii)
for a categoryCi given an instancetj is computed
by applying Bayes rule:

P (Ci|tj) = P (Ci|sim(idci , tj)) = (2)

=
P (sim(idci

,tj)|Ci)P (Ci)

P (sim(idci
,tj)|Ci)P (Ci)+P (sim(Ci,tj)|Ci)P (Ci)

where P (sim(idci , tj)|Ci) is the value of
the PDF of Ci at the point sim(idci , tj),
P (sim(idci , tj)|Ci) is the value of thePDF of Ci at
the same point,P (Ci) is the area of the distribution
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Ci andP (Ci) is the area of the distributionCi. The
mean and variance parameters of the two distribu-
tionsCi andCi, used to evaluate equation 2, are esti-
mated by the rather simple application of the Expec-
tation Maximization (EM) algorithm for Gaussian
Mixtures, as summarized in (Gliozzo et al., 2004).

Finally, following the single-labeled categoriza-
tion setting of Step 1 in the IL scheme, the most
likely category is assigned to each instance, that is,
argmaxCiP (Ci|tj).

3.3 Summary of the Bootstrapping Algorithm

step 1.a: Latent Semantic Space. Instances and
Intensional Descriptions of categories (the seeds) are
represented by vectors in Latent Semantic space. As
an option, the algorithm can work with the classi-
cal Vector Space Model using the original feature
space. Similarity scores between IDs and instances
are computed by the Cosine measure.

step 1.b: GM. The mapping functionsP (Ci|tj)
for each category, conditioned on instancestj , are
induced by the GM algorithm. To that end, an Ex-
pectation Maximization algorithm estimates the pa-
rameters of the two component distributions of the
observed mixture, which correspond to the distribu-
tions of similarity values for positive and negative
examples. As an option, the GM mapping can be
avoided.

step 1.c: Categorization. Each instance
is classified to the most probable category -
argmaxCiP (Ci|tj).

step 2: Bootstrapping an extensional classifier.
An EL classifier (SVM) is trained on the set of la-
beled instances resulting from step 1.c.

4 Evaluation

4.1 Intensional Text Categorization Datasets

Even though some typical data sets have been used
in the TC literature (Sebastiani, 2002), the datasets
used for IL learning were not standard. Often there
is not sufficient clarity regarding details such as the
exact version of the corpus used and the training/test
splitting. Furthermore, the choice of categories was
often not standard: (Ko and Seo, 2004) omitted 4
categories from the 20-Newsgroup dataset, while
(Liu et al., 2004) evaluated their method on 4 sepa-
rate subsets of the 20-Newsgroups, each containing

only 4-5 categories. Such issues make it rather diffi-
cult to compare thoroughly different techniques, yet
we have conducted several comparisons in Subsec-
tion 4.5 below. In the remainder of this Subsection
we clearly state the corpora used in our experiments
and the pre-processing steps performed on them.

20newsgroups. The 20 Newsgroups data set is
a collection of newsgroup documents, partitioned
(nearly) evenly across 20 different newsgroups. As
suggested in the dataset Web site2, we used the
“bydate” version: the corpus (18941 documents)
is sorted by date and divided in advance into a
training (60%) set and a chronologically follow-
ing test set (40%) (so there is no randomness in
train/test set selection), it does not include cross-
posts (duplicates), and (more importantly) does not
include non-textual newsgroup-identifying headers
which often help classification (Xref, Newsgroups,
Path, Followup-To, Date).

We will first report results usinginitial seeds
for the category ID’s, which were selected using
only the words in the category names, with some
trivial transformations (i.e.cryptography#n
for the categorysci.crypt , x-windows#n
for the category comp.windows.x ). We
also tried to avoid “overlapping” seeds, i.e.
for the categories rec.sport.baseball
and rec.sport.hockey the seeds are only
{baseball#n } and {hockey#n } respec-
tively and not {sport#n, baseball#n } and
{sport#n, hockey#n }3.

Reuters-10. We used the top 10 categories
(Reuters-10) in the Reuters-21578 collection
Aptè split4. The complete Reuters collection
includes 12,902 documents for 90 categories,
with a fixed splitting between training and test
data (70/30%). Both the Aptè and Apt̀e-10
splits are often used in TC tasks, as surveyed
in (Sebastiani, 2002). To obtain the Reuters-10

2The collection is available at
www.ai.mit.edu/people/jrennie/20Newsgroups .

3One could propose as a guideline for seed selection
those seeds that maximize their distances in the LSI vec-
tor space model. On this perspective the LSI vectors
built from {sport#n, baseball#n } and {sport#n,
hockey#n } are closer than the vectors that represent
{baseball#n } and {hockey#n }. It may be noticed that
this is a reason for the slight initial performance decrease in the
learning curve in Figure 2 below.

4available athttp://kdd.ics.uci.edu/databases/-
reuters21578/reuters21578.html ).
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Aptè split we selected the 10 most frequent cate-
gories: Earn, Acquisition, Money-fx,
Grain, Crude, Trade, Interest,
Ship, Wheat and Corn . The final data set
includes 9296 documents. The initial seeds are only
the words appearing in the category names.

Pre-processing. In both data sets we tagged the
texts for part-of-speech and represented the docu-
ments by the frequency of each pos-tagged lemma,
considering only nouns, verbs, adjectives, and ad-
verbs. We induced the Latent Semantic Space from
the training part5 and consider the first 400 dimen-
sions.

4.2 The impact of LSI similarity and GM on IL
performance

In this section we evaluate the incremental impact
of LSI similarity and the GM algorithm on IL per-
formance. When avoiding both techniques the algo-
rithm uses the simple cosine-based method over the
original feature space, which can be considered as a
baseline (similar to the method of (Liu et al., 2004)).
We report first results using only the names of the
categories as initial seeds.

Table 1 displays the F1 measure for the 20news-
groups and Reuters data sets, with and without LSI
and with and without GM. The performance figures
show the incremental benefit of both LSI and GM. In
particular, when starting with just initial seeds and
do not exploit the LSI similarity mechanism, then
the performance is heavily penalized.

As mentioned above, the bootstrapping step of the
algorithm (Step 2) exploits the initially classified in-
stances to train a supervised text categorization clas-
sifier based on Support Vector Machines. It is worth-
while noting that the increment of performance after
bootstrapping is generally higher when GM and LSI
are incorporated, thanks to the higher quality of the
initial categorization which was used for training.

4.3 Learning curves for the number of seeds

This experiment evaluates accuracy change as a
function of the number of initial seeds. The ex-

5From a machine learning point of view, we could run the
LSA on the full corpus (i.e. training and test), the LSA being a
completely unsupervised technique (i.e. it does not take into ac-
count the data annotation). However, from an applicative point
of view it is much more sensible to have the LSA built on the
training part only. If we run the LSA on the full corpus, the
performance figures increase in about 4 points.

Reuters 20 Newsgroups
LSI GM F1 F1
no no 0.38 0.25

+ bootstrap 0.42 0.28
no yes 0.41 0.30

+ bootstrap 0.46 0.34
yes no 0.46 0.50

+ bootstrap 0.47 0.53
yes yes 0.58 0.60

+ bootstrap 0.74 0.65

Table 1: Impact of LSI vector space and GM
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Figure 2: Learning curves on initial seeds for 20
newsgroups, LSI and Classical VSM (no LSI)

periment was performed for the 20 newsgroups cor-
pus using both the LSI and the Classical vector
space model. Additional seeds, beyond the cate-
gory names, were identified by two lexicographers.
For each category, the lexicographers were provided
with a list of 100 seeds produced by the LSI similar-
ity function applied to the category name (one list of
100 candidate terms for each category). From these
lists the lexicographers selected the words that were
judged as significantly related to the respective cat-
egory, picking a mean of 40 seeds per category.

As seen in Figure 2, the learning curve using
LSI vector space model dramatically outperforms
the one using classical vector space. As can be
expected, when using the original vector space (no
generalization) the curve improves quickly with a
few more terms. More surprisingly, with LSI sim-
ilarity the best performance is obtained using the
minimal initial seeds of the category names, while
adding more seeds degrades performance. This
might suggest that category names tend to be highly
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indicative for the intensional meaning of the cate-
gory, and therefore adding more terms introduces
additional noise. Further research is needed to find
out whether other methods for selecting additional
seed terms might yield incremental improvements.
The current results, though, emphasize the bene-
fit of utilizing LSI and GM. These techniques ob-
tain state-of-the-art performance (see comparisons
in Section 4.5) using only the category names as
seeds, allowing us to skip the quite tricky phase of
collecting manually a larger number of seeds.

4.4 Extensional vs. Intensional Learning

A major point of comparison between IL and EL is
the amount of supervision effort required to obtain a
certain level of performance. To this end we trained
a supervised classifier based on Support Vector Ma-
chines, and draw its learning curves as a function
of percentage of the training set size (Figure 3). In
the case of 20newsgroups, to achieve the 65% F1
performance of IL the supervised settings requires
about 3200 documents (about 160 texts per cate-
gory), while our IL method requires only the cate-
gory name. Reuters-10 is an easier corpus, there-
fore EL achieves rather rapidly a high performance.
But even here using just the category name is equal
on average to labeling 70 documents per-category
(700 in total). These results suggest that IL may pro-
vide an appealing cost-effective alternative in prac-
tical settings when sub-optimal accuracy suffices, or
when it is too costly or impractical to obtain suffi-
cient amounts of labeled training sets.

It should also be stressed that when using the
complete labeled training corpus state-of-the-art EL
outperforms our best IL performance. This result
deviates from the flavor of previous IL literature,
which reported almost comparable performance rel-
ative to EL. As mentioned earlier, the method of (Ko
and Seo, 2004) (as we understand it) utilizes labeled
examples for feature selection, and therefore cannot
be compared with our strict IL setting. As for the
results in (Liu et al., 2004), we conjecture that their
comparable performance for IL and EL may not be
sufficiently general, for several reasons: the easier
classification task (4 subsets of 20-Newsgroups of
4-5 categories each); the use of the usually weaker
Naive-Bayes as the EL device; the use of cluster-
ing as an aid for selecting the seed terms from the
20-Newsgroup subsets, which might not scale up
well when applied to a large number of categories
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age of the training set.

4.5 Comparisons with other algorithms

As mentioned earlier it is not easy to conduct a thor-
ough comparison with other algorithms in the litera-
ture. Most IL data sets used for training and evalua-
tion are either not available (McCallum and Nigam,
1999) or are composed by somewhat arbitrary sub-
sets of a standard data set. Another crucial aspect
is the particular choice of the seed terms selected to
compose an ID, which affects significantly the over-
all performance of the algorithm.

As a baseline system, we implemented a rule
based approach in the spirit of (McCallum and
Nigam, 1999). It is based on two steps. First, all
the documents in the unlabeled training corpus con-
taining at least one word in common with one and
only one category ID are assigned to the respective
class. Second, a supervised classifier based on SVM
is trained on the labeled examples. Finally, the su-
pervised classifier is used to perform the final cate-
gorization step on the test corpus. Table 2 reports
the F1 measure of our replication of this method, us-
ing the category name as seed, which is substantially
lower than the performance of the method we pre-
sented in this paper.

Reuters 20 Newsgroups
0.34 0.30

+ bootstrap 0.42 0.47

Table 2: Rule-based baseline performance
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We also tried to replicate two of the non-standard
data sets used in (Liu et al., 2004)6. Table 3 displays
the performance of our approach in comparison to
the results reported in (Liu et al., 2004). Follow-
ing the evaluation metric adopted in that paper we
report here accuracy instead of F1. For each data
set (Liu et al., 2004) reported several results vary-
ing the number of seed words (from 5 to 30), as well
as varying some heuristic thresholds, so in the ta-
ble we report their best results. Notably, our method
obtained comparable accuracy by using just the cat-
egory name as ID for each class instead of multiple
seed terms. This result suggests that our method en-
ables to avoid the somewhat fuzzy process of col-
lecting manually a substantial number of additional
seed words.

Our IDs per cat. Liu et al. IDs per cat.
REC 0.94 1 0.95 5
TALK 0.80 1 0.80 20

Table 3: Accuracy on 4 “REC” and 4 “TALK” news-
groups categories

5 Conclusions

We presented a general bootstrapping algorithm for
Intensional Learning. The algorithm can be applied
to any categorization problem in which categories
are described by initial sets of discriminative fea-
tures and an unlabeled training data set is provided.
Our algorithm utilizes a generalized similarity mea-
sure based on Latent Semantic Spaces and a Gaus-
sian Mixture algorithm as a principled method to
scale similarity scores into probabilities. Both tech-
niques address inherent limitations of the IL setting,
and leverage unsupervised information from an un-
labeled corpus.

We applied and evaluated our algorithm on some
text categorization tasks and showed the contribu-
tion of the two techniques. In particular, we obtain,
for the first time, competitive performance using
only the category names as initial seeds. This mini-
mal information per category, when exploited by the
IL algorithm, is shown to be equivalent to labeling
about 70-160 training documents per-category for
state of the art extensional learning. Future work is

6We used sequential splitting (70/30) rather than random
splitting and did not apply any feature selection. This setting
might be somewhat more difficult than the original one.

needed to investigate optimal procedures for collect-
ing seed features and to find out whether additional
seeds might still contribute to better performance.
Furthermore, it may be very interesting to explore
optimal combinations of intensional and extensional
supervision, provided by the user in the forms of
seed featuresand labeled examples.
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