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RESUME __________________________________________________________________________________________________ 

Le but de cette étude était de caractériser, modéliser et comparer les différentes 
stratégies articulatoires linguales pour un groupe de locuteurs. Des modèles individuels 
par analyse en composantes principales (ACP) et des méthodes de décomposition 
multilinéaires ont été appliqués aux contours de langue extraits d‘un corpus d’imagerie 
par résonance magnétique (IRM) de sept locuteurs prononçant 63 voyelles et consonnes 
du français. En moyenne sur les sept locuteurs, en utilisant quatre composantes, l'erreur 
quadratique moyenne de prédiction (RMSE) était de 0,13 cm pour les modèles 
individuels ACP et de 0.29 cm pour le modèle ‘parallel factor’ (PARAFAC), avec des 
pourcentages de variance expliquée de 91% et 62%, respectivement. Un modèle de 
régression multilinéaire permet également de prédire avec 10 composantes les contours 
de langue d’un sujet cible à partir de ceux d'un sujet source avec approximativement 
65% de la variance expliquée et une RMSE de 0.38 cm. Tous les modèles ont été évalués 
par une procédure de validation croisée. 

ABSTRACT ________________________________________________________________________________________________ 

Articulatory speaker normalisation based on MRI-data using three-way linear 
decomposition methods 

The aim of this study was to characterise, to model and to compare the different lingual 
articulatory strategies of a group of speakers. Individual principal component analysis 
(PCA) models and multi-linear decomposition methods have been applied to the tongue 
contours extracted from a magnetic resonance imaging (MRI) corpus of seven speakers 
articulating 63 French vowels and consonants. On the average over the seven speakers, 
using 4 components, the Root Mean Square prediction Error (RMSE) was 0.13 cm for the 
individual PCA models while the RMSE for the parallel factor model (PARAFAC) was 
0.29 cm, accounting for a percentage of variance explanation of 91% and 62%, 
respectively. A multi-linear regression (MRL) model could predict, with 10 components, 
the tongue contour of a target subject from a given source subject, with about 65% of 
the variance explained and an RMSE of 0.38 cm. All the models have been assessed by a 
leave-one-out cross-validation procedure. 

MOTS-CLES: Modélisation articulatoire, normalisation du locuteur, analyse factorielle, 
IRM. 

KEYWORDS: Articulatory modelling, speaker normalisation, factor analysis, MRI. 
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1. Introduction 

The Speech & Cognition Department at GIPSA-lab has developed acoustic-to-articulatory 
inversion methods to provide speakers with a visual articulatory feedback (Ben Youssef 
et al., 2011), based on a fairly complete orofacial clone. This clone is made of a set of 
models of articulators (jaw, tongue, velum, lips, etc.) based on articulatory data acquired 
on a single speaker (Badin & Serrurier, 2006). Therefore, the clone represents faithfully 
the characteristics of a specific speaker, but not necessarily those of other speakers that 
may have different morphologies and different articulatory control strategies. Thus, one 
important issue is the normalisation problem: how can the speaker-specific models of the 
orofacial clone be adapted to other speakers? This problem is particularly challenging as 
it implies discovering how different speakers with different morphologies can produce 
articulated sounds that are considered equivalent for speech communication purposes. 

Several studies based on measurements using Electromagnetic Articulography (EMA) and 
Magnetic Resonance Imaging (MRI) have been led in this field. Harshman et al. (1977) 
made a Parallel Factor analysis (PARAFAC) study on X-ray data of five American English 
speakers. The tongue postures were decomposed in two factors which explained 92.7% 
of the variance. In another study, Hoole (1998) provided a two factor PARAFAC solution 
for the German vowel system in three different consonant contexts /p t k/. Two-factor 
independent models were successfully extracted by Principal Component Analysis (PCA) 
for each consonant context. The explained variance amounted to about 92.3% and the 
Root Mean Square reconstruction Error (RMSE) to 1.24 mm for each model. On the other 
hand, the extracted two-factor PARAFAC solution for the complete dataset presented an 
increase of RMSE compared to the individual models, the explained variance now 
amounting to 80% and the RMSE to 1.9 mm. In another study, Hoole (1999) showed 
how the PARAFAC model error could be further analysed to extract an additional 
component. His approach consisted in examining the error of the two-factor PARAFAC 
model by subtracting the articulatory data predicted from the original data. Then, a PCA 
was employed to extract an extra-component. The final model explained over 90% of the 
variance. PARAFAC was performed by Hoole et al. (2000) on a set of MRI data of nine 
German speakers uttering seven German vowels in five different contexts. Two factors 
accounted for about 87 % of the variance with a RMSE of about 2.2 mm. Geng & 
Mooshammer (2000) provided a two factor PARAFAC solution. The speech material 
consisted of six German speakers uttering fifteen German vowels in /t/-context recorded 
by EMA. Two factors led to a variance explanation of about 96% and an RMSE of about 
2 mm. A two-factor model resulted in a stable solution that explained about 70% of the 
variance in a study made by Zheng et al. (2003). The data consisted of MRI images of 
five American English speakers pronouncing nine English vowels. Hu (2006) presented a 
study on the Chinese dialect called Ningbo. Seven speakers pronouncing ten vowels were 
recorded by means of EMA. Two factors explained about 90% of the variance. More 
recently, Ananthakrishnan (2010) proposed a two factor PARAFAC model that accounted 
for 71% of the variance explanation for three French speakers articulating 13 vowels.  

The present study attempts to extend this type of modelling from vowels to consonants. 
We first describe the set of data acquired to perform the different experiments; then we 
describe the performance of individual speaker models and compare them in terms of 
variance explained, RMSE and individual articulatory strategies. Next, we present an 
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attempt to build a single model to drive the tongue contours of all the speakers based on 
multi-linear decomposition methods. We perform a PARAFAC solution up to 10 
components and a more practical solution using Multiple Linear Regression (MLR) with a 
large number of components.  

2. Data 

In this study, midsagittal Magnetic Resonance Images (MRI) of seven French speakers 
(two males: PB, YL, and five females: HL, AA, MG, AK, MGO) have been collected. The 
subjects were asked to pronounce and sustain 63 different articulations for 16 seconds 
each. The corpus consisted of the 10 French oral vowels /i e ɛ a y ø œ u o ɔ/, the 3 nasal 
vowels /ã ɛ ̃ɔ/̃ and the 10 consonants /p t k f s ʃ m n ʁ l/ articulated in symmetric VCV 
context of five vowels /a e ɛ i u/.  The contour of the tongue was manually traced. The 
present study is limited to the contour from the tongue tip to the base of the epiglottis, 
which is resampled with N = 150 equidistant points to model what we call Tongue upper 
contour.  

3. Individual articulatory models (PCA) 

PCA is a two-way factor analysis approach often used for dimensionality reduction and 
analysis of data sets to summarize their main characteristics. Consider articulatory 
measurements for the speaker s:  1 � � � �, which consists of Xs = ���, �
 , … , ��, being 
xa (1 � � � �) a row vector of measurements for the articulation a: 1 � � � �. Such 
that Xs is decomposed into a set of control parameters π�

�� � ��� (set of Cmp components 
that explain the variations in articulations) and the articulatory model C�

�� � ��� 
(coefficients that explain the contribution of each articulator point to the components) 
by the following equation:  Xs =π� �  C�

� � γ�  , where γ� is the residual error. 

 

FIGURE 1 - Performance of the LOOCV PCA individual models as a function of number of 

components for the tongue upper contours of the seven speakers PB, YL, HL, AA, MG, AK 

and MGO. Left: variance explained (%). Right: RMSE (cm). 

The models were made and assessed by means of a leave-one-out cross validation 
(LOOCV) procedure. One observation of the data was left out; the model was built from 
the remaining data and used to predict the left-out articulation, this process was 
repeated for each articulation on the set. LOOCV was useful to decide how many 
predictors to use. For instance, the cross-validated mean-square error will tend to 
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decrease if valuable predictors are added, but increase if worthless predictors are added. 
Indeed, increasing the number of predictors might lead to an over-fitted or degenerated 
model (Riu & Bro, 2003). Figure 1 displays the variance explained and RMSE relative to 
the reconstruction of the tongue for the whole corpus of vowels and consonants. We 
have found that, on average over our seven speakers, the PCA model with the first four 
components explains an amount of 91% of the data variance, with an RMSE of 0.13 cm. 

3.1. Differences between speaker control strategies 

Using a procedure based on a guided PCA analysis of tongue contours, Badin and 
Serrurier (2006) have shown that the first four components account for the largest 
amount of tongue movement variance. In this section we describe the results of the 
Guided PCA analysis of our seven speakers. The jaw height parameter JH was defined as 
the normalized value of the measured lower incisor height; it was used as the first 
control parameter of the tongue model (the associated model coefficients were obtained 
by the MLR of all the vertex coordinates against JH). The next two parameters, tongue 
body TB  and tongue dorsum TD were extracted by PCA from the coordinates of the 
midsagittal tongue contour, excluding the tongue tip region, from which the JH 
contribution had been removed (the associated model coefficients were obtained by 
MLR, as for JH). The next parameter called tongue tip TT was extracted by PCA from the 
midsagittal tongue tip contour coordinates, from which the TB and TD contributions had 
been removed (the associated coefficients were also obtained by MLR).       

   

FIGURE 2 - Illustration of the first four components and their variance explained extracted 

by Guided PCA for the tongue contour of speakers PB, AA and YL (from left to right 

respectively). Each predictor is varied from -3 to +3 with a 0.5 step. X and Y axis are 

cms. 

Hence, in order to understand the articulatory characteristics of each subject, we 
compared their four guided PCA components explained above. Figure 2 illustrates the 
associated nomograms for the subject PB, AA and YL. The main effect of JH is a rotation 
of the tongue around a point located in its back. In our case, the JH parameter of 
subjects MGO, MG, AA and AK is associated with a movement of the front of the tongue 
without movement in the back. Oppositely, subjects HL, PB and YL move the back of the 
tongue when JH moves. The tongue body parameter TB controls front-back 
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displacements while the TD parameter is related to flattening-arching movements. It 
appears that the TB component of subjects HL, AK and YL is a horizontal movement of 
the tongue body while it is a diagonal movement for subjects PB, MG, AA and MGO.  
Besides, TB explains more variability than TD for most subjects, but that behaviour is 
swapped for subject YL. In other words, subject YL uses more his tongue dorsum 
component than his tongue body component compared to the other subjects. On the 
other hand, the TT parameter controls precisely the tongue tip motions. We have 
observed that subjects AA, AK, MG, MGO and PB are able to move their tongue tips more 
independently from the tongue back than the subjects HL and YL do. 

4. Multi-linear decomposition methods 

4.1. PARAFAC model 

PARAFAC is a factor analysis approach often used to decompose multi-way data. In our 
specific case, the dimensions of the three-way data are related to the articulations, 
articulator points and subjects, respectively. The data of a given subject Xs is 
decomposed as: 

Xs = π �  Ф�  �  C� � γ�   

where γ� is the residual error. π�� � ��� is the set of universal components that models 
the variations in articulations over the S subjects, the articulatory model C�� � ��� is a 
matrix of coefficients that models the contribution of each component, over the S 
subjects, to the articulator points. The extra matrix Ф� provides speaker-specific weights 
to the contribution of the components. 

4.2. PARAFAC model with vowels 

In order to make a fair comparison of our results with those given by the literature, we 
restricted our modelling to the 10 French oral vowels. Using a two factor PARAFAC 
model, the average reconstruction error, over our seven speakers, was 0.25 cm for the 
150 articulator points while the RMSE for tongue contours under-sampled to 3 points 
was 0.21 cm, accounting for a variance of 75.1% and 85.8%, respectively. 

Type S tudy No. S ubjects Corpus No. Points Variance Exp

Hoole(1998)[5] 7 15 vowels  4 s ensors 80.0%

Geng(2000) [6] 6 15 vowels 4 s ensors 96.0%

Hu(2006) [7] 7 10 vowels 3 s ensors 90.0%

X ray Harshman(1977)[8] 5 10 vowels 13 points 92.7%

Hoole(2000) [9] 9 7 vowels 13 points  87.0%

Zheng(2003) [10] 5 9 vowels 13 points  76.2%

Ananth(2010) [3] 3 13 vowels 150 points 71.0%

7 10 vowels 3 points 85.8%

7 10 vowels 150 points 75.1%

EMA

MRI

MRI

Our Results

Valdes (2012)
 

TABLE 1 – Comparison of our results with the literature using 2 PARAFAC components. 
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Table 1 shows that, on the overall, our results are comparable with those reported in the 
literature. The challenge is to extend this analysis to a corpus consonants (63 
articulations), as explained in the following sections.  

4.3. PARAFAC model extended to consonants 

In section 3, it was shown that the individual speaker models (PCA) need four 
components to explain about 91% of the variance. Figure 3 displays the variance 
explanation and RMSE related to the reconstruction of the tongue upper contour of our 
seven subjects by a PARAFAC model assessed by means of LOOCV. It appears that 25 
components are not enough to explain the variance that the individual PCA models reach 
with 4 components. We see that to drive all articulatory models from the same set of 
PARAFAC control parameters, we need at least the same number of components as the 
total number of components for each subject when using individual PCA models (7x4). 
We conclude that PARAFAC is not able to take into account the dimensionality reduction 
that could be expected from the fact that the speakers have produced the same set of 
phonemes, even though they used different articulatory strategies. This problem is very 
likely related to the fact that inter-speaker variability cannot be efficiently represented in 
linear terms. 

5 10 15 20 25
0

0.2

0.4

0.6

0.8

1
PARAFAC jacknife Variance explained Tongue Upper Contours 

Number Of Components

P
er

ce
nt

ag
e 

V
ar

ia
nc

e 
E

xp
la

in
ed

 

 

PARAFAC model

PCA model

5 10 15 20 25
0

0.1

0.2

0.3

0.4

0.5
PARAFAC jacknife Rmse Tongue Upper Contours

Number Of Components

R
M

S
 E

rr
or

 in
 c

m

 

 
PARAFAC model

PCA model

 
FIGURE 3 – LOOCV PARAFAC model as a function of number of components for the 

tongue  upper contour of the seven speakers PB, YL, HL, AA, MG, AK and MGO. Left: 

variance explained. Right: RMSE. 

4.3.1. Multiple linear regression between control parameters of couple of 
subjects 

In the previous sections we attempted to model the tongue contour by using a reduced 
set of control parameters common to all speakers. This section presents an alternative 
approach, aiming at solving the problem of driving the contours of one target speaker 
from those of a source speaker, using a large number of PCA components. This solution 
does not allow interpreting the semantics of the components, but provides a practical 
solution to the normalisation problem. In this experiment, we attempted to predict the 
PCA control parameters of a target subject π�� from the PCA control parameters of a 
source subject π��. Formally, a MLR model, given Cmp components, is expressed by:     
π�� i = ��π��� + �
π��2 + ... � π��i + I   , for i = 1, 2 … Cmp, β being the coefficients 
of the linear regression. 

We have built MLR models between each possible combination of couple of subjects. 

534



Figure 4 shows the evaluation for subject PB. It appears that, the model gave strong signs 
of being over-fitted from the tenth component on. So, we discarded the meaningless 
components. Nevertheless, with the 10 first components, the MLR model is able to 
predict the tongue contour of subject TS from subject SS accounting for about 65% of the 
variance and with a RMSE of 0.38 cm. 

2 4 6 8 10 12 14
0

0.2

0.4

0.6

0.8

1

P
er

ce
nt

ag
e 

V
ar

ia
nc

e 
E

xp
la

in
ed

Number Of Components

LR jacknife subjectTS pb Variance explained versus factors 

 

 

PCA model of pb
Prediction of pb from yl

Prediction of pb from hl

Prediction of pb from aa

Prediction of pb from mg

Prediction of pb from ak
Prediction of pb from mgo

2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

R
M

S
 E

rr
or

 in
 c

m

Number Of Components

LR jacknife subjectTS pb RMSE versus factors

 

 

PCA model of pb

Prediction of pb from yl

Prediction of pb from hl

Prediction of pb from aa
Prediction of pb from mg

Prediction of pb from ak

Prediction of pb from mgo

 

FIGURE 4 - RMSE of LOOCV MLR models between control parameters of PB and the other 

subjects as a function of number of components. 

5. Conclusions and perspectives 

We applied individual PCA models and multi-linear decomposition methods to model the 
tongue upper contours of 63 French phonemes extracted from an MRI database of 7 
French speakers. As far as we know, this is one of the few studies that includes both 
vowels and consonants. The primary focus of this study was to establish a model that 
represents different speaker articulatory strategies. The experiments carried out showed 
that such a kind of model is possible, using 4 components, with an RMSE of 0.13 cm for 
the individual PCA models and 0.29 cm for the PARAFAC model, accounting for a 
variance of 91% and 62%, respectively. We also performed a more practical solution in 
which a large number of components were used to make a given target subject more 
likely predictable from a source subject. Using 10 components, the RMS error was 
0.38 cm accounting for about 65% of the variance explanation.  

The present study shows that linear methods may not offer a good solution to model 
tongue variations among different speakers, especially in the presence of consonants. 
There is indeed an inter-speaker variability due to speaker independent control strategies 
that might not be possible to model with linear methods. Thus, future work is to be 
directed at using non linear methods. 
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