
Proceedings of EACL '99

An Object-Oriented Approach to the Design
of Dialogue Management Functionality

Ian M. O'Neill and Michael F. McTear
Faculty of Informatics

Univer s i ty o f Uls t e r

N e w t o w n a b b e y

Co. A n t r i m

B T 3 7 0 Q B

N. IRELAND

mf.mctear@ulscac.uk

Abstract

Dialogues may be seen as comprising
commonplace routines on the one hand
and specialized, task-specific interactions
on the other. Object-orientation is an
established means of separating the
generic from the specialized. The system
under discussion combines this object-
oriented approach with a self-organizing,
mixed-initiative dialogue strategy, raising
the possibility of dialogue systems that
can be assembled from ready-made
components and tailored, specialized
components.

1 In troduc t ion

For the purpose of developing automated systems,
dialogues may be seen as comprising
commonplace routines on the one hand and
specialized, task-specific interactions on the other.
In software engineering, object-orientation has
proved to be an effective means of separating the
generic from the specialized, and more
particularly, of letting the specialized inherit the
generic (Rumbaugh et al., 1991). Identifying
inheritable generic functionality (for confirmation,
repair of misunderstanding, personalization of
utterances, etc.) and specialized or highly domain-
specific functionality, opens the way to dialogue
systems that can be assembled largely from ready-
made components and extended with the addition
of more specialized components. The prototype
system that we have been developing in Prolog++
for the last year combines this familiar object-
oriented approach with a self-organizing, mixed-
initiative dialogue strategy. Pseudocode is used
here to represent the Prolog processing.

2 I d e n t i f y i n g the gener ic and the
spec ia l i z ed

In the course of developing the prototype system a
number of important generic elements have been
identified that can be ported with a minimum of
alteration between domains. These generic
elements are now introduced.

2.1 Dialogue Manager
In any system that is concerned with conducting a
dialogue with a user, a mechanism is required for
receiving, forwarding for processing, and
outputting semantic contents of utterances. This
responsibility falls to a Dialogue Manager.

2.2 Domain Spotter
Any system that is intended to handle processing
across a number of real-world areas of expertise
requires a means of associating key semantic
content of the user's utterances with one or more
of the available domains. This responsibility falls
to the Domain Spotter.

2.3 Discourse Stack
Any system dealing with a transaction that
involves multiple dialogue turns must have a
means of logging a) what it believes the user has
said, b) the degree of 'confirmedness' of what has
been said, and c) how the system has decided to
respond. Maintaining a record of the evolving
discourse, and providing the means of creating and
retrieving entries for individual utterances, are the
responsibilities of the Discourse Stack.

23

Proceedings of EACL '99

2.4 Enquiry Processor
Given the current difficulties of speech
recognition, and the possibility that a user will
misunderstand or change his or her mind, any
system conducting a complex transaction must
have a strategy for confirming the semantic
contents of the user 's utterances and for
proceeding with the transaction only when details
have been adequately confirmed. The current
system increments or decrements levels o f
'confirmedness ' depending on whether the user
repeats or confirms, alters or negates values. I f
necessary, the system queries the user explicitly
about values that are new, altered or negated. The
responsibility for these purely generic,
mechanistic confirmation routines falls to the
Enquiry Processor, whose strategies are inherited,
via a generic agent or Expert, by subclasses that
have their own domain-specific processing
heuristics.

2.5 Expert
Each of the more specialized agents within the
system must have access to wider system
resources and have ways of providing the wider
system with high level information about its
processing abilities. Supporting these common
behaviours and characteristics is the responsibility
of the generic Expert class.

Other parts of the system must be tailored to
represent the specialized knowledge and
processing abilities of real-world human
specialists. These are introduced next.

2.6 Expert Subclasses
For each business area within the system there
must be functionality a) to decide what
information to elicit next, or what information to
infer, given that certain information may already

Dialogue Manager

! Domain Spotter

Event Expert
A

have been provided, b) to check the validity of the
combinations of information provided, c) to give
the most helpful guidance when the user is having
difficulty completing the enquiry, and d) to decide
when sufficient, confirmed information has been
provided to conclude the transaction. Such
functionality is specific to the Expert subclasses
within the system, and recreates in sometimes
quite extensive sets o f domain-specific heuristics,
the kind of behaviour (e.g. ' i f details for an
outward journey are received, check if a return is
needed'; ' i f a venue has been confirmed but not a
day, ask for the day ') that would characterize any
human expert in a particular business domain - a
travel agent or a theatre booking clerk, for
instance. The current subclasses are Travel
Expert, Event Expert and Place Expert.

2.7 Expert Instances
The system must contain detailed service
information of the kind that in the real world is
associated with individual businesses. Businesses
are represented by instances of Expert subclasses.
The instances represent particular airlines,
railways, theatres, cinemas and so on; they have
access to the data - concrete schedules and
timetables - that must be consulted if a transaction
is to be meaningful.

3 S o m e i m p o r t a n t s y s t e m
c h a r a c t e r i s t i c s

The current prototype (Figure 1 below) focuses on
dialogue management. It is not intended to
transcribe and parse raw spoken input, nor
compose complete utterances for speech
generation. Rather, the system accepts an input of
concepts and attributes in the form concept(action
type(attribute list)) and outputs concepts and
attributes in similar fashion.

~ Enquiry Processor ~ Discourse Stack

Expert

I
} [Travel Expert J I Place Expert

I A

vent Expert) ~ ((Travel Expert)~
eatre 1 / [A!rline 1 J

vent Expert)'1 ~ (Travel Expert)~
nema 1 | [Railway 1 |

Figure I. Main System Components.

24

Proceedings of EACL '99

I f the system is to conduct a dialogue as a
human interlocutor might, it must use to best
advantage whatever information it is given -
whether that information was explicitly sought or
not - and then be able to ask for information it still
requires. Such self-organizing behaviour, as
opposed to simpler state transitions (Novick and
Sutton, 1996), generally has one of a number of
possible motivations. The system may be plan-
based, attempting to identify and understand the
ramifications of the problem the user wants to
solve (Allen et al., 1996). Alternatively it may
attempt to prove theorems, questioning the user
for the missing facts that it needs to know in order
to help him or her complete some complex task
(Smith and Hipp, 1994). Or the system may
attempt to identify or elicit specifically those facts
that it needs to complete a 'request template ' for a
particular transaction.

It is essentially this last approach that the
current prototype has adopted, and to this extent it
resembles the SpeechMania system developed by
Philips (Aust and Oerder, 1995), which has
already been used successfully to implement a
speech-based timetable enquiry system for Swiss
Federal Railways (Aust et al., 1995). However,
by additionally identifying generic and specialized
functionality, including heuristics that would
characterize a human expert, it becomes possible
to create a dialogue management system that can
cope with several real-world enquiry domains, or a
number of complex subtasks, in one and the same
adaptable, extensible implementation.

4 G e n e r i c b e h a v i o u r - d o m a i n -

s p e c i f i c k n o w l e d g e

The system is coloured throughout by a design
philosophy that keeps the higher-level system
components largely ignorant of the capabilities of
the lower-level system. This has the advantage
that higher-level, generic dialogue functionality
can remain unchanged as the lower-level system is
adapted for specialized real-world application
areas. However, it goes without saying that the

higher-level components must know how to access
the lower-level functionality.

Domain Spotter is one such higher-level
component in the current prototype. Its purpose is
a very simple one: it consists of a collection of
rules that the Dialogue Manager uses to pass
enquiries of different types to the most appropriate
domain experts. For it to work - in the current
implementation - Domain Spotter relies on the
assumption that recognizer-grammar functionality
(outside the scope of the current implementation)
will be sufficiently powerful to identify key
semantic content from the user 's utterance,
content that may be characteristic of possibly one
or more real-world business domains. Domain
Spotter's heuristics then tell it broadly where the
corresponding domain-related functionality
resides in the system. It may then have to
determine, if necessary by quizzing the user
further, which of several Expert subclasses is best
suited to the current enquiry.

If, for example the user 's utterance indicates
simply that he or she wants to make a booking and
no further details are given, Domain Spotter is
programmed to interrogate the Expert subclasses
to find out which ones can handle bookings.
(Prolog++ conveniently provides a call to all
subclasses of a given type.) On the basis of the
responses it obtains, it may subsequently have to
ask the user to narrow the scope of the enquiry.
For the moment, however, if a subclass does
handle bookings, it will simply push its class area
attribute (indicating its area of competency: travel,
or events, say) on to the class candidate list within
Domain Spotter. Otherwise it performs a Prolog
cut and allows the call to pass to another subclass.
In the next dialogue turn the Dialogue Manager
uses the contents of the list to offer the user a
selection of business areas to choose from. Figure
2 below (with simplified calls) illustrates the
process.

If the user 's enquiry is more specific - ' I ' d
like to book a trip on Friday' or ' I ' d like to make a
theatre reservation' - such that travel- or event-
related semantic content might be readily

Dia Mgr
.L analyse(booking~

;e/ect_from(areas~

Domain Spotter Ex

l analyse(booking)
add_to.

~nalyse(boo:ind:)t c

l "analyso(booking~

~ert Travel Expert Event Expert Place Expert

I=
.list(trav_area)

.list(event_area)

Figure 2. Finding the Relevant Subclass

25

Proceedings of EACL '99

identified by a recognizer-grammar - Domain
Spotter, in its high-level analysis, performs like a
human receptionist or operator and passes the
enquiry to the most relevant subclass for a more
detailed analysis specific to that subclass.

Any available attributes of the travel enquiry -
day, time, etc. - are also forwarded to the
specialized domain expert. The expert then has to
decide using its own heuristics what use it can
make of the attributes.

5 F i n d i n g an objec t to h a n d l e the
t r a n s a c t i o n

At this point the enquiry is still being processed
quite generically at the level of an Expert subclass

let us assume the Travel Expert, in order to
explore further the evolution of a typical
transaction. However, for the enquiry to stand any
chance of reaching a successful conclusion, it
must eventually be processed by an instance of a
class (in object-oriented terms a specific 'object ') ,
representing an actual company or organisation
that has a highly detailed knowledge of the
required service. (Cf. Wang (1998), who uses a
semantic grammar in a base class to provide high
level understanding of an utterance, and then finds
a 'best match' from among the grammars of
derived classes for a more detailed understanding.)

Thus, having been passed the enquiry by
Domain Spotter, the Travel Expert subclass now
attempts to identify the most suitable Travel
Expert instance to handle the enquiry, or if it is
unable to do so in this dialogue turn, to elicit
further information from the user to help it
identify a 'handling instance'. In a move
analogous to the one adopted by Domain Spotter
previously, the Travel Expert interrogates its
instances and has them push their area of expertise
(their area attribute - railway, airline, etc.) on to

Domain Spotter 's candidate list. In the next turn
the Dialogue Manager will ask the user to narrow
the enquiry to one of the areas available.

Although the system may request specific
information (as in the turn above), the user may
supply rather more than this. Using the heuristics
of the relevant Expert subclass (here the Travel
Expert), the system analyses the supplied
information, to try to establish the context of the
transaction, and then to process the transaction
within that context. Again, the system is aiming
to find the object (the :representation of a real-
world business) that is best suited to processing
the transaction to its conclusion. Let us explore
this further.

6 A f l e x i b l e r e s p o n s e

At the early stages of the transaction Domain
Spotter polls the Expert class and subclasses (on
the basis of the semantic content o f the user 's
utterance) with the goal of finding a handling
instance. I f in response to the system's question
'Is that a railway ticket or an airline ticket?' the
user says that he or she wants a ticket with a
particular airline, processing is immediately taken
up by the appropriate airline instance.
Alternatively the user might respond along the
lines that he or she wants 'a plane ticket for
London on Friday at around nine a.m.' Assuming
that a phrase such as 'ticket to London' has been
successfully parsed as a travel-related request,
Domain Spotter will pass the query to the Travel
Expert class, which in turn will interrogate its
instances to see how many have airline as an
attribute and travel to the destination on the day
and at the time requested. Figure 3 below
illustrates the process. If the instance is unable to
meet the criteria it simply performs a cut and
passes the call to the next instance. Any instance
that can provide the required service adds its

Dia Mgr

,a?alyse(travbk~l

choose_from(exp:

Domain Spotter

analyse(trav_bkg)

Travel Expert Travel Expert 1

do_you_go_there(trav_dest

add to._list(exp 1
~ l - -

~dd_to_list(exp2

list(exps)
q

do_you_go_there(trav_dest)

~o_you_go_there(trav_dest)

Travel Expert 2 Travel Expert 3

Figure 3. Identifying Appropriate Instances

26

Proceedings of EACL '99

mnemonic , its unique identifying name, to Domain
Spotter 's candidate list. Again, the analogy with
Domain Spotter's own interrogation technique
holds good.

Now the role of the instances becomes more
important. In the prototype system the instances
contain, as one of their attributes, specific details
of the service they offer: in the case of a Travel
Expert instance this will be a schedule; in the case
of an Event Expert instance a programme of
shows. In a more realistic implementation the
instance is more likely to serve as the gateway to a
corporate database. Nonetheless, whatever the
implementation, the instance will serve as the
means by which the system at large has access to
the detailed information it needs to complete the
transaction.

I f as a result of the interrogation above, there
are several candidates for 'handling instance' on
Domain Spotter's candidate list, the Dialogue
Manager, in the system's next turn, will prompt
the user to choose one of them (and, of course,
accept any additional information that the user
might provide). If there is only one candidate, or
indeed if at some point the user specifically names
the instance he or she wants to provide the service
(' I ' d like to book a flight with Aer Lingus.'), the
system can move the dialogue into its final stage,
where the semantic content of the user 's
utterances is methodically confirmed and checked
for compatibility with the instance's data, and
where data still required f o r closure of the
transaction are elicited from the user.

7 An e n g i n e for c o n f i r m a t i o n
s t ra teg i e s

Perhaps the most domain-independent element of
the system is the Enquiry Processor class, which
implements the generic confirmation strategies
that must be performed in a system intended to
cope with imperfect speech recognition, and users
who change their mind. In reality, Enquiry
Processor adopts quite a mechanistic approach to
confirmation and this routine functionality is
inherited, via the Expert class and the Expert
subclasses, by the 'handling instances' that
ultimately process the enquiry.

Enquiry Processor has two strategies, used in
combination, to help it decide whether the
attributes of a user's utterance have been
confirmed to a sufficient degree to be used as
input in the final transaction (the actual process of
reserving a ticket for a journey or an event). On
the one hand, Enquiry Processor assigns an
appropriate status to each of the attributes in the
user 's utterance (from the set defined by
Heisterkamp and McGlashan (1996)) and updates
the statuses as the dialogue evolves. Enquiry

Processor is designed to perform this function
regardless of how many attributes might be
associated with the concept expressed in the user 's
utterance - though realistically even a complex
concept, such as a booking for a return trip, will
have no more than about fourteen attributes,
covering place of departure, destination, details of
outward and return journey, and so on. Within
Enquiry Processor the attributes are processed
simply as members of a list of arbitrary length.
Each attribute is structured as follows.

attribute(type, value, status, system intention)

The attribute's status is generally assigned one of
the following values:

• new f o r system
• inferred by system
• repeated by user
• modif ied by user
• negated by user

A suite of evolve predicates represent the rules by
which the statuses are updated as values are
repeated, modified or negated by the user, or
inferred by the system, evolve takes the following
form:

evolve(type, last value, last status, current value,
new value, new status).

The new status of any given attribute is therefore
determined by its last value, its current value (i.e.
its value in the user 's current utterance), and its
last status. The last value and last status are taken
from the Discourse Stack, a discrete system
component comprising a list and functionality to
push and pop the concepts and attributes that
document the user 's utterances and the system's
responses. Enquiry Processor also contains the
rules that determine the system's spoken response
to an attribute, taking into account not only the
status of the individual attribute but also of the
other attributes in the overall enquiry concept.
Following invocation of the rules, the system
intention parameter of the attribute term is set to
the system's intended next move in regard to the
attribute - whether it will confirm, query, etc., the
attribute. This is especially important in the event
that the user replies simply 'yes ' or 'no ' in his or
her subsequent turn. Moreover, Enquiry
Processor's rules not only determine the system's
responses, but also help it prioritize its responses:
for example, before doing anything else it will
question the user about any value that he or she
has negated since negation represents a
significant misunderstanding or change of plan; if
it needs to confirm attributes, it will attempt to

27

Proceedings of EACL '99

confirm no more than three in a single turn. Its set
of priorities permitting, the system will perform a
repair request on a negated value, a repair
confirm on a modified value, a confirm on a value
that is new to the system or has been inferred by
the system, and a spec on any value that requires
the user to choose between one of several options
(Heisterkamp and McGlashan, 1996).

Alongside this processing of the attributes'
statuses, each attribute has a 'discourse peg' that
is incremented by 1 when the user repeats a value,
zeroed if the value is modified, and set to -1 if the
value is negated. The aim here is to ensure that
every attribute has been adequately confirmed (in
this prototype its peg must simply be set to a value
greater than zero) before it is used to complete a
transaction.

AND
the Handling Agent's schedule
includes a service for

departure point,
destination,
day and
departure time)

THEN

instruct the Dialogue Manager
to generate a final system
utterance confirming a

reservation for
departure point,
destination,
day and
departure time.

8 Knowing when enough is enough
As well as implementing these mechanisms for
evolving attributes' statuses and determining the
system's next utterance, the Enquiry Processor
class has a mechanism, a template check, for
deciding whether the user has supplied enough
information to complete the transaction.

Enquiry Processor's functions are performed
in the context of a specific handling instance, so
the template check uses the data that are
encapsulated in the current handling instance.
Again, in an actual real-world system these data
might be contained in the database to which the
instance has, from the overall system's
perspective, exclusive access. For each Expert
subclass there are normally a number of different
potential combinations of confirmed data that can
be used to successfully conclude a transaction:
collectively these constitute the 'request template'
for the subclass. The request template
additionally indicates information that the system
should prompt for next, given a particular
combination of data that have already been
confirmed.

Thus, for example, in the current relatively
simple prototype, if the system has confirmed the
place of departure, the destination, the day of
departure and the departure time, and if a final
check with the instance's database indicates that
the combination of data is valid, then the system
can proceed with issuing a ticket. In a more
structured form the processing for template check
runs as follows:

IF
(the discourse pegs for

departure point,
destina tion,
day and
departure time are > 0

Alternatively, if the system has all the required
information except, say, a departure time, the
template check may indicate that prompting the
user for the departure time would be the next
appropriate step.

Should the check on the template fail -
because the details supplied by the user and
confirmed by the system prove to be an invalid
combination in terms of the handling instance's
database - then Enquiry Processor will move on
from the template check to perform a number of
remedial checks. These checks again use
heuristics that are valid at the level of the Expert
subclass, in combination with data that are specific
to the handling instance. In performing its checks
Enquiry Processor aims to offer the user an
alternative course of action - for example, if the
flight does not depart at the time the user
requested, the system might be able to use the
instance's data to suggest another time. Again, in
more structured form, processing for a typical
check can be represented as follows.

IF
(the discourse pegs for

departure point,
destination,
day and
departure time are > 0

AND the Handling Agent's schedule
DOES NOT include a service for

departure point,
destination,
day and
departure time

AND the Handling Agent's schedule
includes a service for

departure point,
destination,
day and
another depaJ~_ture time)

28

Proceedings of EACL '99

THEN
instruct the Dialogue Manager
to generate an utterance
suggesting

another departure time.

In the present implementation the system will
continue to seek information until it has confirmed
enough values to conclude the enquiry, or until the
user quits.

9 The way ahead

Currently the system is being tested in a selection
of short travel- and event-related transactions,
during which it processes concept terms whose
attributes the user may alter or negate to simulate
misrecognition and/or revised requirements. Its
performance has been accurate and its responses
near-instantaneous on a 100 MHz Pentium PC
with 16 MB RAM running under Windows 95.
Typically the test transactions require the user and
the system each to make between three and seven
utterances.

The prototype system has recently been
amended to allow the confirmation strategy to
come into play as soon as the user has supplied a
concept with confirmable attributes - even before
a handling agent has been identified. With the
confirmation strategy now being introduced
earlier, and potentially having to deal with more
amendments, negations and additional comments
by the user, further investigation will be required
to determine the best way to prioritize and
meaningfully group the attributes that the system
has to query for different enquiry types. It is
likely that additional heuristics will be required at
the Expert subclass level.

Peer objects will also be developed to work
alongside the current Expert subclasses, providing
highly specialized but essentially domain-
independent functionality - such as processing
credit card details or gathering address
information. The aim is to create a suite of
components which, with their encapsulated real-
world expertise, can be combined 'off-the-shelf '
for functionally rich dialogue management. The
object architecture readily supports the addition of
still more specialized subclasses and instances as
further functionality is required.

Allen, James F., Bradford W. Miller, Eric K. Ringger,
and Teresa Sikorski. 1996. A Robust System for
Natural Spoken Dialogue. Proceedings of the 34 th
Annual Meeting of the ACL: 62-70.

Aust, Harald and Martin Oerder. 1995. Dialogue
Control in Automatic Enquiry Systems. ECSA
Workshop on Spoken Dialogue Systems: 121-124.

Heisterkamp, Paul and Scott McGlashan. 1996.
Units of Dialogue Management: An Example.
ICSLP96 - Proceedings of the Fourth International
Conference on Spoken Language Processing: 200-
203.

Novick, David G. and Stephen Sutton. 1996.
Building on Experience: Managing Spoken
Interaction through Library Subdialogues.
Proceedings of TWL T 11 - Dialogue Management in
Natural Language Systems: 51-60.

Rumbaugh, James, Michael Blaha, William
Premerlani, Frederick Eddy, and William Lorensen.
1991. Object-Oriented Modeling and Design.
Englewood Cliffs, New Jersey: Prentice-Hall.

Smith, Ronnie W. and D. Richard Hipp. 1994.
Spoken Natural Language Dialog Systems: A
Practical Approach. New York: Oxford University
Press.

Wang, Kuansan. 1998. An Event-Driven Model for
Dialogue Systems. ICSLP98 - Proceedings of the
Fifth International Conference on Spoken Language
Processing: 393-396.

R e f e r e n c e s

Aust, Harald, Martin Oerder, Frank Seide, and
Volker Steinbiss. 1995. The Philips automatic
train timetable information system. Speech
Communication 17: 249-262.

29

