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A b s t r a c t  

It is traditionally assumed that various 
sources of linguistic knowledge and their in- 
teraction should be formalised in order to 
be able to convert words into their phone- 
mic representations with reasonable accu- 
racy. We show that using supervised learn- 
ing techniques, based on a corpus of tran- 
scribed words, the same and even better 
performance can be achieved, without ex- 
plicit modeling of linguistic knowledge. 
In this paper we present two instances of 
this approach. A first model implements a 
variant of instance-based learning, in which 
a weighed similarity metric and a database 
of prototypical exemplars are used to pre- 
dict new mappings. In the second model, 
grapheme-to-phoneme mappings are looked 
up in a compressed text-to-speech lexicon 
(table lookup) enriched with default map- 
pings. We compare performance and accu- 
racy of these approaches to a connectionist 
(backpropagation) approach and to the lin- 
guistic knowledge-based approach. 

1 I n t r o d u c t i o n  

Grapheme-to-phoneme conversion is a central task 
in any text-to-speech (reading aloud) system. Given 
an alphabet of spelling symbols (graphemes) and 
an alphabet of phonetic symbols, a mapping should 
be achieved transliterating strings of graphemes into 
strings of phonetic symbols. It is well known that 
this mapping is difficult because in general, not all 
graphemes are realised in the phonetic transcription, 
and the same grapheme may correspond to different 
phonetic symbols, depending on context. 

It is traditionally assumed that various sources of 
linguistic knowledge and their interaction should be 
formalised in order to be able to convert words into 
their phonemic representations with reasonable accu- 
racy. Although different researchers propose differ- 
ent knowledge structures, consensus seems to be that 
at least morphological and phonotactic knowledge 
should be incorporated in order to be able to find 
morphological and syllable structure. These struc- 
tures are deemed necessary to define the proper do- 
mains for phonological and phonetic rules. As a typi- 
cal architecture for grapheme-to-phoneme conversion 
in Dutch, consider the modules in [Daelemans, 1988] 
shown in Figure 1. It contains most of the traditional 
datastructures and processing components proposed 
by computational linguists. 

A problem with this approach is that the knowl- 
edge needed is highly language-dependent and re- 
quires a significant amount of linguistic engineer- 
ing. We argue that using data-oriented learning tech- 
niques on a corpus of transcribed words (information. 
which is readily available in many machine-readable 
dictionaries), the same and even better performance 
can be achieved, without explicit modeling of linguis- 
tic knowledge. The advantages of such an approach 
are that the technique is reusable for different sets 
of data (e.g. different languages or sublanguages), 
and that it is automatic (no explicit linguistic engi- 
neering is needed to handcraft the rules and knowl- 
edge structures necessary for implementing the tar- 
get mapping). 

In this paper we present two instances of this 
approach in the domain of Grapheme-to-Phoneme 
conversion. A first model implements a variant of 
instance-based learning, in which a similarity metric 
(weighed by using a metric based on information en- 
tropy) and a database of prototypieal exemplars are 
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Figure 1: Modules in GRAFON, a linguistic 
knowledge-based grapheme-to-phonerae conversion 
system. 

used to predict new mappings. In a second model, 
grapheme-to-phoneme mappings are looked up in a 
compressed text-to-speech lexicon (table lookup) en- 
riched with default mappings. The most surprising 
result of our research is that the simplest method 
(based on tables and defaults) yields the best gener- 
alisation results, suggesting that previous knowledge- 
based approaches to the problem were overkill. For 
the case of Dutch, we make a comparison of perfor- 
mance and accuracy of these approaches to a connec- 
tionist (backpropagation) approach and to a state- 
of-the-art linguistic knowledge-based approach. To 
prove reusability of the method, we show how our 
approach can also be used for automatically gener- 
ating French and English phonemisation modules. 

2 D a t a - O r i e n t e d  T e x t - t o - s p e e c h  
C o n v e r s i o n  

The algorithms we have applied in our research are 
similarity-based and data-oriented. The phonemisa- 
tion problem is interpreted as a classification task. 
Given a target grapheme and its context, the cor- 
responding phoneme should be predicted. The al- 
gorithms we used to learn this task are supervised 
and data-intensive in the sense that a large num- 
ber of examples is provided of input representations 
with their correct category (in this case a phonetic 
transcription). Within asupervised, similarity-based 
approach, the degree in which abstractions are ex- 
tracted from the examples may be different, as may 
be the time when abstractions are created: dur- 
ing training in aggressive abstraction, during perfor- 
mance in lazy learning. For grapheme-to-phoneme 
conversion, we claim a data-intensive, lazy learning 
approach is appropriate to capture the intricate in- 
teractions between regularities, subregularities, and 
exceptions that characterise the domain. 

2.1  Training and  Test  Set  E n c o d i n g  
Training and test set were randomly selected from 
a Dutch text-to-speech vocabulary data base. From 
the 70,000 word dataset, 20,000 were randomly se- 
lected and randomly divided into 18,500 training 
words and 1,500 test words. In both sets, each 
graphemic word is accompanied by its pronuncia- 
tion in the form of a string of phonemes. In cases 
where phonemes correspond to grapheme clusters 
(i.e. there is an alignment problem of grapheme 
strings with their corresponding phoneme strings), as 
is the case in, e.g., <schoenen> (shoes)/sXuno/, one 
grapheme of that cluster is algorithmically mapped 
to the phoneme, and the remaining graphemes are 
mapped to phonetic nulls, represented by hyphens. 
In the example of <schoenen>, this phonetic null in- 
sertion results in the following alignment: 

E 
f 

To provide a learning system with sufficient informa- 
tion about the phonemisation task, context informa- 
tion must be added. In the models described below, 
this is done by using graphemic windows (compare 
[Sejnowski and l~senberg, 1987]), i.e. fixed-length 
parts of words in which one grapheme is mapped 
to a phoneme; the other graphemes serve as con- 
text. For example, using a window with one left 
context grapheme and two right context graphemes 
(from here on written as '1-1-2'), the application of 
this window on the word < boek> (book), pronounced 
a s / b u k / ,  would result in the four pattern-category 
pairs of Table 1. 

Pattern Left 
nr. context 
1 
2 g 
3 o 
4 e 

Focus 
position 

b 
o 
e 
k 

Right Target 
context phoneme 
o e b 
e k u 
k _ 
- _ k 

Table 1: Example of the application of the 1-1-~ en- 
coding on the word < boek > (book). Underscores 
represent spaces, a hyphen represents a phonetic null. 

This approach implies that dependencies stretch- 
ing longer than the length of the graphemic window 
cannot be learned. 
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2.2 Instance-Based Learning 

As an example of a lazy learning approach, we exper- 
imented with Instance-Based Learning (IBL, [Aha et 
al., 1991]). IBL is a framework and methodology 
for incremental supervised machine learning. The 
distinguishing feature of IBL is the fact that no ex- 
plicit abstractions are constructed on the basis of the 
training examples during the training phase. A se- 
lection of the training items themselves is used to 
classify new inputs. IBL shares with Memory-Based 
Reasoning (MBR, [Stanfill and Waltz, 1986]) and 
Case-Based Reasoning (CBR, [Riesbeck and Schank, 
1989]) the hypothesis that much of intelligent be- 
haviour is based on the immediate use of stored 
episodes of earlier experience rather than on the use 
of explicitly constructed abstractions extracted from 
this experience (e.g. in the form of rules or decision 
trees). In the present context of learning linguis- 
tic mappings, the hypothesis would be that much of 
language behaviour is based on this type of memory- 
based processing rather than on rule-based process- 
ing. In linguistics, a similar emphasis on analogy to 
stored examples instead of explicit but inaccessible 
rules, is present in the work of a.o. [Derwing and 
Skousen, 1989]. IBL is inspired to some extent on 
psychological research on exemplar-based categori- 
sation (as opposed to classical and probabilistic cat- 
egorisation, [Smith and Medin, 1981]). Finally, as far 
as algorithms are concerned, IBL finds its inspiration 
in statistical pattern recognition, especially the rich 
research tradition on the nearest-neighbour decision 
rule (see e.g. [Devijver and Kittler, 1982], for an 
overview). 

2.2.1 Basic Algor i thm and  Extens ions  

The main datastructure in our version of IBL is 
the exemplar, a memory structure representing about 
each pattern the following information: (i) Its distri- 
bution over the different categories (training patterns 
may be ambiguous between different categories, so 
the memory structure should keep information about 
how many times each category was assigned to a par- 
ticular pattern). (ii) Its category. This is simply the 
category with highest frequency in the distribution of 
a pattern, or a random selection to break a tie. (iii) 
Other bookkeeping information (performance data, 
frequency of pattern in training set, etc.) 

Training. For each training pattern, it is checked 
whether an exemplar for it is already present in mem- 
ory. If this is the case, the frequency of its category 
is incremented in the distribution field of the corre- 
sponding memory structure. If the new training item 
has not yet been stored in memory, a new memory 
structure is created. In learning linguistic mappings 
(a noisy domain), learning in IBL often is helped 
by forgetting poorly performing or unrepresentative 
training items. In this research a simple technique 
was used to prune memory: each new training item 

is first classified using the memory structures already 
present. If it is categorised correctly, it is skipped. 
We have experimented also with more elaborate stor- 
age saving techniques (based on prototypicality and 
performance of training patterns), but the results are 
preliminary and will not be reported here. 

Testing.  If the test pattern is present in memory, 
the category with the highest frequency associated 
with it is used. If it is not in memory, all memory 
items are sorted according to the similarity of their 
pattern to the test pattern. The (most frequent) 
category of the highest ranking exemplar is then pre- 
dicted as category of the test pattern. When using a 
Euclidean distance metric (geometrical distance be- 
tween two patterns in pattern space), all features are 
interpreted as being equally important. But this is 
of course not necessarily the case. We extended the 
basic IBL algorithm proposed by [Aha et al., 1991] 
with a technique for assigning a different importance 
to different features. Our approach to the problem of 
weighing the relative importance of features is based 
on the concept of Information Gain (IG), also used 
in learning inductive decision trees, [Quinlan, 1986], 
and first introduced (as far as we know) in IBL in 
[Daelemans and Van den Bosch, 1992] in the con- 
text of a syllable segmentation task. The idea is to 
interpret the training set as an information source 
capable of generating a number of messages (the dif- 
ferent categories) with a certain probability. The in- 
formation entropy of such an information source can 
be compared in turn for each feature to the average 
information entropy of the information source when 
the value of that feature is known. The difference 
is the IG value for that feature. The (normalised) 
IG value is used as a weight for that feature during 
similarity matching. Figure 2 shows the pattern of 
information-gain values for the different positions in 
the 2-1-3 grapheme window. Unsurprisingly, the tar- 
get grapheme is most informative, and context fea- 
tures become less informative the further they are 
removed from the target. We also found that right 
context is more informative than left context (com- 
pare [Weijters, 1991]). 

2.3 Table  Lookup  wi th  Defau l t s  

Our table lookup model can be seen as a link between 
straightforward lexical lookup and similarity-based 
reasoning. Lexical lookup of word-pronunciation 
pairs has various disadvantages, an important one 
being that this approach only works for the words 
that are stored in the lexicon and not for new words. 
Without the possibility of manipulating graphemic 
strings smaller than whole words, there is no way 
that lexical lookup can provide generalisations on the 
basis of which new words can be transliterated. 

The table lookup model presented here takes as 
its training set a text-to-speech lexicon, but solves 
the problems of lacking generalisation power and efli- 
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Figure 2: Information gain value for each position in 
the 2-1-3 grapheme window. 

ciency by compressing it into a text-to-speech lookup 
table. The main strategy behind the model is to dy- 
namically determine which left and right contexts are 
minimally sufficient to be able to map a grapheme 
to the correct phoneme with absolute certainty 1. 
The context needed to disambiguate a grapheme- 
to-phoneme mapping can be of very different width. 
Extreme examples in Dutch are on the one hand the 
c-cedille, present in a small number of loan words 
(e.g., <re,u:>), always pronounced as/s/regardless 
of left or right context, and on the other hand the 
< e>, which can map to various phonemes (e.g. , /o/ ,  
/ £ / , / e / )  in various contexts. For example, the dis- 
ambiguation of the pronunciation of the final < e> in 
words ending with <-ster> (either star or female pro- 
fession suffix) sometimes involves taking into account 
large left contexts, as in the examples <venster> 
(window) and <diensler> (servant), in which the fi- 
nal <e> is pronounced /0/ ,  versus <morgenster> 
(morning star), in which the final < e> is pronounced 
/E/. To disambiguate between these three cases, it 
is necessary to go back five positions in these words 
to find the first grapheme which the words do not 
have in common. 

Table Cons t ruc t ion .  The algorithm starts by 
searching for all unambiguous one-to-one grapheme- 
phoneme mappings, and storing these mappings 
(patterns) in the lookup table, more specifically in 
the 0-1-0 subtable. The few unambiguous 0-1-0 pat- 
terns in our training set include the < f> - / s / c a s e  
mentioned earlier. The next step of the algorithm 
is to extend the width of the graphemic window by 

1 Here, absolute certMnty of a grapheme-phoneme cor- 
respondence does only express the fact that that cor- 
respondence is unambiguous in the training set of the 
model. 

one character. We chose to start by extending the 
window on the right (i.e., a 0-1-1 window), because, 
as also reflected earlier in the Information Gain met- 
ric used in the IBL model, right context appears to 
contain slightly more valuable information than the 
equivalent left context 2 . The algorithm then searches 
for all certain 0-1-1 patterns to store in the 0-1-1 
subtable. Compression is achieved because exten- 
sions of unambiguous patterns in the 0-1-0 subtable 
do not have to be stored in the 0-1-1 subtable. This 
procedure of extending the window and storing all 
certain patterns that have not been stored earlier is 
then repeated (extending 0-1-1 to 1-1-1, then to 1- 
1-2, etc.), and stops when the whole training corpus 
is compressed in the lookup table, and all grapheme- 
phoneme mappings in the corpus are supplied with 
sufficient left and right contexts. The model eval- 
uated below is calculated up to the 5-1-5 window. 
At that point, the lookup table covers 99.5% of all 
grapheme-phoneme mappings in the training set. As 
a measure of the amount of compression, in number 
of bytes, the size of the set of linked tables (including 
the default table discussed below) is 5.8% of the size 
of the part of the lexicon used as training set 3. 

Figure 3 displays the magnitudes of the subtables. 
It can clearly be seen that most ambiguity is resolved 
with relatively small contexts. The majority of the 
ambiguity in the training set is already resolved at 
the 2-1-2 subtable, after which further extension of 
window width gradually decreases the number of 
stored patterns (i.e., resolved ambiguities). 

Retr ieval .  The pronunciation of a word can be re- 
trieved by taking each grapheme of that word sepa- 
rately, and searching in the lookup table for a match- 
ing graphemic pattern. First, the grapheme is looked 
up in the 0-1-0 subtable. If it does not match with 
any graphemic pattern stored in that table, the sin- 
gle grapheme pattern is extended to a 0-1-1 pattern. 
This procedure is then repeated until a matching 
pattern with a minimal context is found, returning 
a 'certain' grapheme-phoneme mapping. After all 
graphemes have been processed this way, the phone- 
mic mappings are concatenated to form the pronun- 
ciation of the word. 

An example of retrieving the pronunciation of a 
word by table lookup is given in Table 2. As this 
example illustrates, the contexts needed for disam- 
biguating between output categories are generally 
very small. 

2The fact that Information Gain reflects this asym- 
metry, led us to a new, more generic and domain- 
independent, conceptualisation and implementation of 
the Table Lookup method, in which context features axe 
ordered according to their information gain, and patterns 
axe stored in a single trie instead of in separate tables. 

3With considerable further compression when using a 
trie representation. 
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Figure 3: Table magnitudes of lookup subtables. 

left 
context 

a 

a 

n 

b 
i 

e 

d 
i 

n 

f o c u s  

grapheme 
right target 
context phoneme 
a a 

nb 
b m 
i b 
ed i 
di 
i d 
ng 
g_ rj 

Table 2: Example of the correct retrieval of the pro- 
nunciation of< aanbieding > (offer). Each row con- 
tains an unambiguous pattern with minimal context 
found by the lookup algorithm. Underscores repre- 
sent spaces. 

In case of unseen test words that contain grapheme 
patterns not present in the training set, the lookup 
algorithm will not be able to retrieve that specific 
mapping• This problem is handled in our model by 
adding to the lookup table a second table which con- 
tains all occurring graphemic patterns in the training 
set of a fixed window width (1-1-1), coupled with 
their most frequently occurring (default) phonemic 
mapping. Whenever lookup table retrieval fails and 
a match can be found between the test pattern and 
a 1-1-1 default pattern, this default table provides a 
'best guess' which in many cases still turns out to be 
correct• To cover for those particular cases where no 
matching can be found between the test pattern and 
the 1-1-1 default patterns, a small third default table 
is added to the model, containing for each grapheme 
its most frequently occurring phonemic mapping re- 
gardless of context (0-1-0), returning a 'final guess'. 

It is important to see that generalisation in this 
approach arises from two different mechanisms: (i) 
the fact that spellings of different words contain iden- 
tical grapheme substrings, and (ii) the default tables 
which reflect probabilities of mappings in the train- 
ing set. More sophisticated reasoning methods can 
be used instead of the default table: at present we are 
investigating the consequences of substituting case- 
based reasoning such as implemented in IBL for the 
present default tables. 

3 C o m p a r i s o n  t o  A l t e r n a t i v e  
A p p r o a c h e s  

To get a better insight into the performance of our 
data-oriented generalisation methods, we compared 
it to the performance of a 'classical' data-oriented 
method (backpropagation learning in feed-forward 
nets), and to the linguistic knowledge-based ap- 
proach. 

3.1 An Al te rna t ive  Da ta -Or i en t ed  
Approach:  Connec t ion i sm 

In IBL, explicit use is made of similarity-based rea- 
soning. A similarity metric is used to compare items, 
and the items most similar to a test item are taken as 
a basis for making a decision about the category of 
the latter. Backpropagation learning in feedforward 
connectionist networks (BP), too, uses similarity (or 
analogy), but more implicitly. Again, an input pat- 
tern activates an output pattern which is similar to 
the activation pattern of those items that are sim- 
ilar to the new item. Complexity is added by the 
fact that an intermediate hidden layer of units "re- 
defines" similarity by extracting features from the 
activation patterns of the input layer. (In our ver- 
sion of IBL, the information gain metric is used to 
achieve a similar result). 

Automatic learning of grapheme-phoneme conver- 
sion of English (NETtalk, [Sejnowski and Rosenberg, 
1987]) has been acclaimed as a success story for BP. 
The approach was replicated for Dutch in NetSpraak 
([Weijters and Hoppenbrouwers, 1990l). It is there-" 
fore appropriate to compare our two data-oriented 
models to BP. The main reason for experimenting 
with BP for learning complex linguistic mappings 
is that BP networks are alleged to be able to ex- 
tract generalisations and sub-generalisations from 
their training data, as well as store exceptions to 
these generalisations. However, there are limitations 
to BP network capabilities. BP learning is not guar- 
anteed to converge to optimal performance (i. e. it 
can end up in local minima). A consequence of this 
is that Mthough a multi-layered network may be able 
in principle to represent the solution to any mapping 
problem, this property is not of much help because 
the designer of such a network is confronted with 
a large search space of variable network parameters 
(e.g., size of the hidden layer, learning rate, num- 
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ber of training cycles, connection weight initialisa- 
tion) which may affect learning and performance of 
the network considerably, but which cannot be deter- 
mined by rule. Experimenters can therefore almost 
never be sure that their results are optimal. 

We trained BP networks on grapheme-phoneme 
conversion using a training set which was restricted, 
for computational reasons, to all unique 2-1-3 map- 
pings present in the original training set, removing 
frequency information, but also removing a large por- 
tion of redundancy inherent in the original training 
set. The same test set was used as with IBL and 
the table lookup model. Graphemes were encoded 
by assigning each letter a randomly generated 6- 
bit string; phonemes were encoded locally, i.e., each 
phoneme was represented by a 46-bit string with only 
one phoneme-specific bit 'on'. Systematic simula- 
tions were used to approach optimal hidden layer 
size (60 units), learning rate (0.05) and momentum 
(0.4). With these parameter settings, 5 networks 
were randomly initialised (weights were assigned ran- 
dom values between -0.5 and 0.5) and trained for 
100 epochs 4. The performance result listed below 
was calculated by averaging the performance scores 
of these 5 networks on the test set. 

3.1.1 Resu l t s  
The performance scores on randomly selected, un- 

seen test words show a surprising best score of the 
table lookup model. Both IBL and the table perform 
better than BP. Similar results were obtained for dif- 
ferent training and test sets, except that for small 
training sets, table lookup performance dropped be- 
low that of IBL, but was still higher than that of BP. 

Model 
'BP 91.3 

Generalisation Accuracy on Phonemes 

IBL 93.4 
TABLE 95.1 

3.2 T h e  L i n g u i s t i c  Knowledge-Based  
Approach  

The traditional linguistic knowledge-based approach 
of grapheme-phoneme conversion has produced var- 
ious examples of combined rule-based and lexicon- 
based models, e.g. MITALK ([Allen et al., 1987]) 
for English, GRAFON-D ([Daelemans, 1988]), and 
MORPA-CUM-MORPHON ([Nunn and Van Heuven, 
1993]) for Dutch. The developers of all of these mod- 
els shared the assumption that the presence of lin- 
guistic (phonotactic, morphological) knowledge is es- 
sential for a grapheme-phoneme model to perform at 
a reasonably high level. 

4All c o n n e c t i o n i s t  s i m u l a t i o n s  were  r u n  on  P l a N e t  5.6, 
a network simulator written by Yoshiro Miyata (Chukyo 
U., Japan). 

In MORPA-CUM-MORPHON ([Nunn and Van 
Heuven, 1993]), a state-of-the-art system for Dutch, 
grapheme-phoneme conversion is done in two steps. 
First, MORPA ([Heemskerk and Van Heuven, 1993]) 
decomposes a word into a list of morphemes. These 
morphemes are looked up in a lexicon. Each mor- 
pheme is associated with its category and a phone- 
mic transcription. The phonemic transcriptions of 
the consecutive morphemes are concatenated to form 
an underlying phonemic representation of the word. 
MORPHON then applies a number of phonological 
rules to this underlying representation, deriving the 
surface pronunciation of the word. 

In [Nunn and Van Heuven, 1993], test data is 
referred to with which they evaluated their sys- 
tem. We applied the table-lookup method to the 
same test data in order to make a comparison pos- 
sible. The test file consists of 1,971 words from var- 
ious sources: newspaper text, compounds, and low- 
frequency words. High-frequency words, acronyms, 
and proper names were removed from the original 
data set. As we did not try to solve the stress as- 
signment problem in this experiment, we had to re- 
comI)ute the error given by [Nunn and Van Heuven, 
1993J such that stress assignment or syllable struc- 
ture errors were not taken into account s . 

The table lookup model was reconstructed on 
the basis of the complete 70,000 word-pronunciation 
pairs in our Dutch corpus, resulting in a model con- 
taining 48,000 patterns (including default tables). 

3.2.1 Resul t s  
W h e n  comparing the phonemisation accuracy of 

the linguistic knowledge-based approach in MORPA- 
CUM-MORPHON to the results on the same data by 
the table method, we see that  the table scores signif- 
icantly higher. 

Model 

TABLE 

MORPA-  
CUM-MORPHON 

Generalisation Accuracy 
on Words 

89.5 
85.3 

In the knowledge-based approach, errors of mor- 
phological analysis (spurious ambiguity or no anal- 
ysis) account for a considerable amount of incorrect 
phoneme output (even after removal by [Nunn and 
Van Heuven, 1993] of proper names and other diffi- 
cult cases from the test set). A new data-oriented 
version of MORPA ([Heemskerk, 1993]) assigns a pri- 
ority ordering to the set of morphological decom- 

Sin a different set of experiments, we successfully ap- 
plied the IBL approach and two other data-oriented algo- 
rithms, analogical modeling and backprop, to the stress 
assignment problem (see [Gillis et al., 1992], [Daelemans 
et  al., 1993], but we have not yet tried to combine the 
two tasks. 
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positions, based on a probabilistic grammar derived 
from a corpus of examples of correct decompositions. 
This new approach raises the overall performance 
of MORPA-CUM-MORPHON tO 88.7%, which remains 
slightly worse than the table method. 

On the basis of an analysis of confusion matri- 
ces (misclassifications per grapheme), we find that 
the same types of errors are made by both systems, 
mainly on vowels (especially on the transcription of 
grapheme <e>), but less frequently by the table 
method. E.g. an intended /~ /  was assigned cate- 
g o r y / ~ /  112 times by MOttPA-CUM-MORPHON, and 
only 23 times by the table method. Another dif- 
ference is that while confusions by the table method 
are symmetric, confusions in MORPA-CUM-MORPHON 
seem to be directed (e.g. an intended / ~ / i s  often 
misclassified as /E / ,  but almost never the other way 
round). 

4 D i s c u s s i o n  

4.1 Re la t ed  Work  

As mentioned earlier, Instance-Based Learning is a 
form of case-based reasoning: a set of exemplars 
(cases) and a similarity metric are used to make de- 
cisions about unseen cases. Earlier work on the ap- 
plication of Memory-Based Reasoning ([Stanfill and 
Waltz, 1986; Stanfill, 1987]) (another form of case- 
based reasoning) to the phonemisation problem using 
the NetTalk data (MBRTalk), showed a better per- 
formance than NetTalk itself ([Sejnowski and Rosen- 
berg, 1987]), however at the cost of an expensive, 
domain-dependent computational measure of dissim- 
ilarity that seems to be computationally feasible only 
when working on a massive parallel computer like the 
Connection Machine. The Information Gain metric 
we use in our version of IBL is domain-independent 
and can be efficiently computed. Another case-based 
system (or rather a hybrid combination of case-based 
reasoning and relaxation in a localist interactive ac- 
tivation network) is PRO ([Lehnert, 1987]). The re- 
ported performance of this system is not very con- 
vincing, however, neither is the need for a combina- 
tion of connectionist and case-based techniques ap- 
parent. Dietterich and Bakiri ([1991]) systematically 
compared the performance of ID3 ([Quinlan, 1986]) 
and BP on the NetTalk data. Their conclusion is 
that BP consistently outperforms ID3 because the 
former captures statistical information that the lat- 
ter does not. However, they demonstrate that ID3 
can be extended to capture this statistical informa- 
tion. Dietterich and Bakiri suggest that there is still 
substantial room for improvement in learning meth- 
ods for text-to-speech mapping, and it is indeed the 
case that our approach significantly outperforms BP. 

The application of compression techniques like our 
table method to the phonemisation problem has not 
yet been reported on as such in the literature. In 

[Golding and Rosenbloom, 1991], the interaction of 
rule-based reasoning and case-based reasoning in 
the task of pronouncing surnames is studied. It 
is claimed that a hybrid approach is preferable, in 
which the output of the rules is used unless a com- 
pelling analogy exist in the case-base. If a compelling 
analogy is found, it overrides the rule output. In this 
approach, the (hand-crafted) rules are interpreted as 
implementing the defaults, and the cases the pockets 
of exceptions. Our table-method works along a differ- 
ent dimension: both default mappings and pockets 
of exceptions are represented in both the table and 
the default mapping (which as we suggested earlier, 
we have replaced in the current version by case-based 
reasoning). Certain mappings are present in the ta- 
ble (which can be interpreted as an automatically ac- 
quired rule set), and uncertain cases are handled by 
the case-base (or default mapping). Future research 
should make clearer how these two uses of case-based 
reasoning are related and whether the strengths of 
both can be combined. 

4.2 Multi-lingual Grapheme-to-Phoneme 
Conversion 

To test the reusability of our algorithms to 
grapheme-to-phoneme conversion in different lan- 
guages, we applied the table lookup approach to En- 
glish and French data. For English, we used the 
benchmark NetTalk corpus as used in [Sejnowski and 
Rosenberg, 1987]. For French, we extracted word- 
pronunciation pairs from Brulex, a lexical data base 
for French ([Content et ai., 1990]). Roughly similar 
models resulted, proving reusability of technique. 

In order to be able to compare these models to 
the Dutch model described in this paper, we selected 
for each language a comparable data base containing 
20,000 word-pronunciation pairs, and divided these 
data sets in test sets of 1,500 pairs and training 
sets of 18,500 pairs. Figure 4 displays the result- 
ing lookup tables, including the Dutch lookup table 
displayed earlier in Figure 3. 

Given the constant lookup table construction pro- 
cedure and the similar data sets, two interesting dif- 
ferences between the three models emerge. Firstly, 
as can be seen clearly from Figure 4, there are sig- 
nificant differences between the magnitudes of the 
models. After expansion to 5-1-5 width, the French 
model contains 18,000 patterns, the Dutch 27,000 
and the English 35,000, reflecting differences in deep- 
ness of orthography between the three languages. 

Secondly, as the labels on the 2-1-3 subtable bars 
in Figure 4 indicate, the performance accuracy of 
the English model lags behind that of the Dutch and 
French model. Final performance accuracy on the 
test set, with the inclusion of default tables, is 98.2% 
for the French model, 97.0% for the Dutch model 
and 90.1% for the English model, again reflecting a 
significant difference as regards deepness of orthog- 
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Figure 4: Table magnitudes of subtables of English, 
Dutch and French models. For each language, perfor- 
mance accuracy up to the 2-1-3 subtable is displayed 
on the 2-1-3 subtable bar. 

raphy between English on the one hand and Dutch 
and French on the other hand. 

5 C o n c l u s i o n  

In computational linguistics, one of the common- 
sense beliefs is that the performance of a system solv- 
ing a linguistic problem improves with the amount 
of linguistic knowledge and sophistication incorpo- 
rated into it. We have shown that at least for one 
linguistic task, this is not the case. The linguistically 
least informed method (compression of a training set 
into a table, complemented with a rudimentary form 
of probabilistic reasoning) performed better on un- 
seen input than a linguistically sophisticated, state- 
of-the-art knowledge-based system. We have reason 
to believe that this also applies to other linguistic 
categorisation problems where superficial input fea- 
tures and local context solve most ambiguities (we 
have positive results on stress assignment, [Gillis et 
al., 1992; Daehmans et al., 1993], and part of speech 
tagging). 

The data-oriented algorithms described are sim- 
ple and domain-independent, and introduce a new 
kind of reusability into computational linguistics: 
reusability of the acquisition method (on different 
data sets) rather than reusability of (hand-coded) 
knowledge in different applications or formalisms. 
The former type of reusability seems to be easier to 
achieve than the latter. 

Acknowledgemen t s  

Thanks to Henk Kempff (ITK), Alain Content 
(ULB), and Terrence Sejnowski (UCSD) for mak- 
ing available for research purposes the Dutch, French 

and English data we used. We are also grateful 
to Josee Heemskerk, Anneke Nunn, Gert Durieux, 
Steven Gillis, Ton Weijters and participants of the 
CLIN'92-meeting in Tilburg for comments and ideas. 

R e f e r e n c e s  

[Aha et al., 1991] D. Aha, D. Kibler and M. Albert. 
Instance-Based Learning Algorithms. Machine 
Learning, 6, 37-66, 1991. 

[Allen et al., 1987] J. Allen, S. Hunnicutt, and 
D. Klatt. From text to speech: the MITaik system. 
Cambridge, UK: Cambridge University Press. 

[Content et al., 1990] A. Content, P. Mousty, and 
M. l~deau. Brulex: une base de donn~es lexi- 
tales informatis6e pour le francais 6crit et purl6. 
L'Ann~e Psychologique, 90, 551-566, 1990. 

[Daelemans, 1988] W. Daelemans. GRAFON: A 
Grapheme-to-phoneme Conversion System for 
Dutch. In Proceedings Twelfth International Con- 
ference on Computational Linguistics (COLING- 
88), Budapest, 133-138, 1988. 

[Daelemans and Van den Bosch, 1992] 
W. Daelemans and A. van den Bosch. Generaliza- 
tion performance of backpropagation learning on a 
syllabification task. In M. Drossaers and A. Nijholt 
(Eds.), Proceedings of the 3rd Twente Workshop 
on Language Technology. Enschede: Universiteit 
Twente, 27-37, 1992. 

[Daelemans et al., 1993] 
W. Daelemans, A. van den Bosch, S. Gillis and 
G. Durieux. A data-driven approach to stress ac- 
quisition. In Proceedings of the ECML workshop 
on ML techniques for Te~t Analysis, Vienna, 1993. 

[Derwing and Skousen, 1989] B. L. Derwing and 
It. Skousen. Real time morphology: symbolic rules 
or analogical networks. Berkeley Linguistic Soci- 
ety, 15: 48-62, 1989. 

[DevijverandKittler, 1982] P. A. Devijver and 
J. Kittler. Pattern Recognition. A Statistical Ap- 
proach. London: Prentice-Hall, 1982. 

[Dietterich and Bakiri, 1991] T. G. Dietterich and 
G. Bakiri. Error-correcting output codes: a gen- 
eral method for improving multiclass inductive 
learning programs. Proceedings AAAI-91, Menlo 
Park, CA, 572-577, 1991. 

[Gillis et at., 1992] S. Gillis, G. Durieux, W. Daele- 
roans and A. van den Bosch. Exploring artificial 
learning algorithms: learning to stress Dutch sim- 
plex words. Antwerp Papers in Linguistics, 71, 
1992. 

[Golding and Rosenbloom, 1991] A. R. Golding and 
P. S. l~osenbloom. Improving rule-based sys- 
tems through Case-Based Reasoning. Proceedings 
AAAI-91, Menlo Park, CA, 22-27, 1991. 

52 



[Heemskerk and Van Heuven, 1993] 
J. Heemskerk and V. J. van Heuven. MORPA, a 
lexicon-based MORphological PArser. In V.J. van 
Heuven and L.C.W. Pols (Eds.), Analysis and syn- 
thesis of speech; strategic research towards high- 
quality text-to-speech generation. Berlin: Mouton 
de Gruyter, 1993. 

[Heemskerk, 1993] J. Heemskerk. A probabilistic 
context-free grammar for disambiguation in mor- 
phological parsing. In Proceedings EACL-93, 
Utrecht, 1993. 

[Lehnert, 1987] W. Lehnert. Case-based problem 
solving with a large knowledge base of learned 
cases. In Proceedings AAAI-87, Seattle, WA, 1987. 

[Nunn and Van Heuven, 1993] A. Nunn 
and V. J. van Heuven. MORPHON, lexicon- 
based text-to-phoneme conversion and phonolog- 
ical rules. In V.J. van Heuven and L.C.W. Pols 
(Eds.), Analysis and synthesis of speech; strategic 
research towards high-quality text-to-speech gener- 
ation. Berlin: Mouton de Gruyter, 1993. 

[Quinlan, 1986] J. R. Quinlan. Induction of Decision 
Trees. Machine Learning, 1, 81-106, 1986. 

[Riesbeck and Schank, 1989] C. K. Riesbeck and 
R. S. Schank. Inside case based reasoning. Hills- 
dale, NJ: Lawrence Earlbaum Assoc., 1989. 

[Sejnowski and Rosenberg, 1987] T. J. Sejnowski 
and C. R. Rosenberg. Parallel networks that learn 
to pronounce English text. Complex Systems, 1, 
145-168, 1987. 

[Smith and Media, 1981] E. E. Smith and 
D. L. Medin Categories and concepts. Cambridge, 
MA: Harvard University Press, 1981. 

[Stanfill and Waltz, 1986] 
C. W. Stanfill and D. Waltz. Toward memory- 
based reasoning. Communications of the ACM, 
29:12, 1213-1228, 1986. 

[Stanfill, 1987] C. W. Stanfill. Memory-based rea- 
soning applied to English pronunciation. Proceed- 
ings AAAI-87, Seattle, WA, 577-581, 1987. 

[Weijters and Hoppenbrouwers, 1990] A. Wei- 
jters and G. Hoppenbrouwers. NetSpraak: een 
neuraal netwerk voor grafeem-foneem-omzetting. 
Tabu, 20:1, 1-25, 1990. 

[Weijters, 1991] A. Weijters. Analyse van het pa- 
troonherkennend vermogen van NETtalk. In J. 
Treur (Ed.), NAIC'#I Proceedings, 249-260, 1991. 

53 


