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Abstract  

Natural language systems based on Categorial Unifica- 
tion Grammar (CUG) have mainly employed bottom- 
up parsing algorithms for processing. Conventional 
prediction techniques to improve the efficiency of the 

• parsing process, appear to fall short when parsing CUG. 
Nevertheless, prediction seems necessary when parsing 
grammars with highly ambiguous lexicons or with non- 
canonical categorial rules. In this paper we present a 
lexicalist prediction technique for CUG and show thai 
this may lead to considerable gains in efficiency for both 
bottom-up and top-down parsing. 

1 Prel iminaries  

CATEGORIAL UNIFICATION GRAMMAR.. Unification- 
based versions of Categorial Grammar, known as CUG 
or UCG, have attracted considerable attention recently 
(see, for instance, Uszkoreit, 1986, Karttunen, 1986, 
Bouma, 1988, Bouma et al., 1988, and Calder et al., 
1988). The categories of Categorial Grammar (CG) 
can be encoded easily as feature-structures, in which 
the attribute < cat  > dominates either an atomic value 
(in case of an atomic category) or a structure with at- 
tributes < v a l  >,  < d i r  > and < arg  > (in case of 
a complex category). Morphosyntactic information can 
be added by introducing additional labels. An example 
of such a category represented as attribute-value matrix 
is presented below. 

N P [ + n o m ] / N [ + n o m ,  +sg]  = 

va l  : case  : nora  

d i r  : r i g h t  

a rg  : case  : n o m  
h u m  : s g  

The combinatory rules of classical CG, A ~ A / B  B 

(rightward application) and A ---, B B \ A  (leftward ap- 
plication), can be encoded as highly schematic rewrite 
rules associated with an attribute-value graph: 

R igh tward  Appl ica t ion  Ru le  : 
Xo ~ XI X2 

Xo:<  1 >  [- 

X l  : ] cat  : 

1. 
X~ : < 2 >  

d i r  : r i g h t  
arg  :< 2 > 

L e f t w a r d  A p p l i c a t i o n  R u l e  : 

X0 --* X1 X2 
X0:<  1 >  
X1 : < 2 >  

d i r  : l e f t  
arg  :< 2 > 

CUG is a lexicalist theory: language specific in- 
formation about word order, subcategorization, agree- 
ment, case-assignment, etc., is stored primarily in the 
lexicon. Whereas in classical CG functor-argument 
structure is the only means available for describing ling- 
uistic phenomena, in CUG additional features may be 
used to account for phenomena such as agreement and 
case-marking (see Bouma 1988). Also, whereas in clas- 
sical CG all rules are in principle universal (i.e. not 
language-specific), in CUG there is a tendency to  sup- 
plement generic categorial rules with language or con- 
struction specific rules For instance, a rule 

N P ~ N [+plu] 

may be added to account for the occurence of bare 
plural NPs, and specific rules may be added to ac- 
count for unbounded dependency constructions (Bouma 
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1987). Finally, instead of fully instantiated category- 
structures, one may choose to work with polymorphic 
categories (Kart tunen 1989, Zeevat et al. 1987). Con- 
sequently, CUG not only shows resemblances with tra- 
ditional categorial grammar,  but also with Head-driven 
Phrase Structure Grammar  (Pollard &: Sag, 1987), an- 
other lexicalist and unification-based framework. 

CHART PARSING OF UNIFICATION GRAMMAR 
(UG). Parsing methods for context-free grammar can 
be extended to unification-based grammar formalisms 
(see Shieber, 1985 or Haas, 1989), and therefore they 
can in principle be used to parse CUG. A chart-parser 
scans a sentence from left to right, while entering 
items, representing (partial) derivations, in a chart. 
Assume that items are represented as Prolog terms 
of the form item(Begin, End, LH S, Parsed, ToParse), 
where LHS is a feature-structure and Parsed 
and ToParse contain lists of feature-structures. 
An item(O, 1, [S],[NP],  [V, NP] )  represents a partial 
derivation ranging from position 0 to 1 of a constituent 
with feature-structure S, of which a daughter NP has 
been found and of which daughters V and NP are 
still to be parsed. A word with lexical entry Word : 
Cat at position Begin, leads to addition of an item 
item(Begin, Begin + 1, Cat, [Word], [ ]). Next, com- 
pletion and prediction steps are called until no further 
items can be added to the chart. 

C o m p l e t i o n  s tep :  I For each item(B, ". E, LHS, 
Parsed, [NeztlToParse]) and item(E, End, Next, 
Parsed, []), add an item(B, End, LHS, 
Parsed+Next, ToParse). 

B o t t o m - u p  P r e d i c t i o n  s tep :  For each item(B, E, 
Next, Parsed, [1), and each rule (LHS--~ [Next I 
RHS]), add item(B, E, LHS, [Next], RHS). 

The prediction step causes t he  algorithm to work 
bottom-up. 

2 T h e  P r o b l e m  

In a bot tom-up chart parser, applicable rules are pre- 
dicted bot tom-up,  and thus, lexical information is used 
to constrain the addition of active items (i.e. items 
representing partial derivations). At first sight, this 
method appears to be ideal for CUG, as in CUG 
the lexical items contain syntactic information which 
is language and grammar specific, whereas the rules 
are generic in nature. Note, however, that  although 

1 In these and following definitions, we assume, unless other- 
'wise indicated, that feature-structures denoted by identical prolog 
variables are unified by means of feature-unificatiom 

bottom-up parsing is certainly attractive for CUG, 
there are also a number of potential inefficiencies: 

In many cases useless items will be predicted. 
Consider, for instance, a grammar with a lexi- 
con containing only the categories NP/N, N, and 
NP\S,  and with application as the only combina- 
tory rules. When encountering a determiner, pre- 
diction of an item(i,i, X, [np/n], [(np/n)\X]) is 
superfluous, since there is simply no way that  the 
grammar could ever produce a category (np/n)\X 
2 

If the lexicon is highly ambiguous, many useless 
(partial) derivations may take place. Consider, 
for instance, the syntax of NPs in German, where 
determiners and adjectives are ambiguous with 
respect to case, declension pattern, gender and 
number (see Zwicky, 1986, for an analysis in terms 
of GPSG).  The sentence die junge Frau schldfl has 
only one derivation, but a bot tom-up parser has to 
consider 11 possible analyses for the word junge, 
6 for the phrase junge Frau, 4 for die and 2 for 
die junge Frau. This example shows that  even irk 
a pure categorial system, there may be situations 
where top-down prediction has its merits. 

If the grammar contains language or construction 
specific rules, bot tom-up prediction may be less 
efficient. Relevant examples are the rule for form. 
ing bare plurals mentioned irk tile previous section 
and rules which implement a categorial version of 
gap-threading (see Pereira & Shieber, 1986 : l l4  
if). The rule shemata below allow for the deriva- 
tion of sentences with a preposed element and for 
the extraction of arguments: 

Gap-elimination: S --* X S[gap : X] 
Gap-introduction: X[gap : Y] ~ X / Y  

X[gap : Y] ---* Y \ X  

Oap-introduction will be used every time a func- 
for category is encountered. Again, some form of 
top-down prediction could improve this situation. 

In the following sections, we will consider top-down 
parsing, as an alternative for the bot tom-up approach, 
and we will consider the possibility of improving the 
predictive capabilities of a bot tom-up parser. 

~The example may suggest that prediction should be elimi- 
nated M l  t o g e t h e r .  This option is feasible only if the rule set is 
restricted to application. 
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3 Top-down Parsing 

Top-down chart parsing differs from the algorithm de- 
scribed above only in the prediction-step, which pre- 
dicts applicable rules top-down. Contrary to bottom- 
up parsing, however, the adaptation of a top-down al- 
gori thm for UG requires some special care. For UGs 
which lack a so-called context-free back-bone, such as 
CUG, the top-down prediction step can only be guar- 
anteed to terminate if we make use of restriction, as 
defined in Shieber (1985). 

Top-down prediction with a restrictor R (where R 
is a (finite) set of paths through a feature-structure) 
amounts to the following: 

R e s t r i c t i o n  The restriction of a feature-structure F 
relative to a restrictor R is the most specific 
feature-structure F ~ E_ F,  such that  every path 
in F j has either an atomic value or is an element 
of R. 

P r e d i c t o r  S t e p  For each item(_ , End, LHS, Parsed, 
[Next I ToParse]) such that  Rjve~, is the re- 
striction of Next  relative to R, and each rule 
RNe~:t ~ R H S ,  add item(i,i, Rge~:t, [], RHS). 

Restriction can be used to develop a top-down chart 
parser for CUG in which the (top-down) prediction step 
terminates. The  result is unsatisfactory, however, for 
the following two reasons. First, as a consequence of 
the generic and language independent nature of cate- 
gorial rules, the role of top-down prediction as a con- 
straint on possible derivation steps is lost completely. 
Second, many useless items will be predicted due to 
the fact that  the L H S  of both rightward and leftward 
application always match with RJvext in the:prediction 
step (note that  a bot tom-up parser has a similar inef- 
ficiency for leftward application only). Therefore, the 
overhead which is introduced by top-down prediction 
does not pay-off. We conclude that ,  eventhough the in- 
troduction of restriction make it possible to parse CUG 
top-down, in practice, such a method has no advantages 
over a bot tom-up approach. 

4 Lexicalist Prediction 

Instead of customizing existing top-down parsing algo- 
ri thms for CUG, we can also try to take the opposite 
track. Tha t  is, we will try to represent a CUG in such 
a way that  non-trivial forms of top-down prediction are 
possible. 

Top-down prediction, as described in the previous 
section, relies wholly on the syntactic information en- 
coded in the syntactic rules. For CUG, this is an akward 

situation, as most syntactic information which could be 
relevant for top-down prediction is located in the lexi- 
con. tn order to make this information accessible to the 
parser, we precompile the grammatical rules into a set 
of instantiated rules. The instantiated rules are more re- 
strictive than the generic categorial rules, as they take 
lexical information into account. 

The following algorithm computes a set of instanti- 
ated syntactic rules, given a set of generic rules and a 
lexicon. 

C o m p i l a t i o n  For every category C, where C is either 
a lexical category or the L H S  of an instantiated 
rule, and every (generic) rule GR, if C is utlifiable 
with the head-daughter of GR, add GR' (the re- 
sult of the unification) to the set of instantiated 
rules, a 

We assume that  there is some way of distinguishing 
head-daughters from non-head daughters (for instance, 
by means of a feature). The head daughter should be 
the daughter which has the most ialluellce on the in- 
stantiation of the rule. For the application rules, for 
instance, the functor is the most natural choice, as the 
functor both determines the instantiation of the resul- 
tant category and of the argument category. 

The compilation step is correct and complete for 
arbitrary UGs, that  is, a string is derivable using the 
instantiated rules if and only if it is derivable using 
the generic rules. Note, however, that  the compila- 
tion procedure does not necessarily terminate. Con- 
sider for instance a categorial gramrnar with category 
raising ( X / ( Y \ X )  ---, Y).  In such a gramrnar, arbitrar- 
ily complex instantiations of this rule can be compiled. 
To avoid the creation of an infinite set of rules, we may 
again employ restriction: 

C o m p i l a t i o n  w i t h  r e s t r i c t i o n  Let R be a restrictor. 
For every category C, where C is either a lexical 
category or the L H S  of art instantiated rule, and 
every (generic) rule GR, if the restriction of C 
relative to R is unifiable with the head-daughter 
of GR, add GR ~ (the result of the unification) to 
the set of instantiated rules. 

The compilation step is guaranteed to terminate a.s 
long as R is finite (cf. Shieber, 1985). The compi- 
lation procedure is not specific to a certain grammar 
formalism or rule set, and thus can be used to compile 
arbitrary UGs. Such a compilation step will give rise 
to a substantially more instantiated rule set in all cases 

3Note that  for classical CG, an algorithm of this kind can 
be used to compute the phrase-structure eqtfivalent of the input 
granunax. 
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where schematic grammar rules are used in combination 
with highly structured lexical items. 

For the compiled grammar, a standard top-down al- 
gorithm (such as the one in section 3) can be used. Pre- 
diction for CUG is now significant, as only rules which 
have a functor category that  is actually derivable by the 
grammar will be predicted. So, starting from a category 
S, we will not predict leftmost categories such as S/NP, 
(S /NP) /NP,  if no such categories can be derived from 
the lexical categories. Also, a leftmost argument cate- 
gory A will only be predicted if the grammar contains 
a matching functor category A~S. Finally, since we are 
working with the instantiated rules, morphosyntactic 
information can effectively be predicted top-down. 

Restriction is not only useful to guarantee termi- 
nation of the compilation procedure. The precompi- 
lation procedure can in principle lead to an instanti- 
ated grammar that  is considerably larger than the input 
grammar. For instance, given a grammar which distin- 
guishes between plural and singular and between first, 
second and third person NPs, six versions of the rule 
S --~ NP N P \ S  might be derivable. Such a multipli- 
cation is unnecessary, however, as it does not provide 
any information which is useful for the top-down pre- 
diction step. Choosing a restrictor which filters out all 
distinctions that  are irrelevant to top-down prediction, 
can prevent an explosion of the rule set. 

5 Bottom-Up Parsing with Pre- 
diction 

The compilation procedure described in section 4 was 
developed to improve the performance of top-down 
parsing-algorithms for lexicalist grammars of the CUG- 
variety. In this section, we argue that  replacing a 
generic CUG with its instantiated.equivalent also has 
advantages for bot tom-up parsing. There are two rea- 
sons to believe that  this is so: first, predictions based on 
leftward application will be less frequent and second, to 
an instantiated grammar non-trivial forms of top-down 
prediction can be added. 

In section 2 we pointed out that  a bot tom-up parser 
will predict many useless instances of leftward applica- 
tion. This is due to the fact that  the leftmost daughter 
of leftward application is completely general and thus, 
given an item(B, E, Cat, Parsed, I]), an item(B,E, X, 
[Cat], [Cat\X]) will always be predicted. The compi- 
lation procedure presented in the previous section re- 
places leftward application with instantiated versions 
of this rule, in which the leftmost argument of the rule 
is instantiated. Although the instantiated rule set of a 
grammar is bound to be larger than the original rule 

set, which is a potential disadvantage, the chart will 
grow less fast if we use the ins tan t ia ted  grammar. It is 
therefore worthwhile to investigate the performance of 
a bot tom-up parser which uses a compiled grammar as 
opposed to a bot tom-up parser working with a generic 
rule set. 

There is a Second reason for considering instan- 
tiated grammars. It is possible in bot tom-up pars- 
ing to speed up the parsing process by adding top- 
down prediction. Top-down prediction is implemented 
with the help of a table containing items of the 
form left_corner(Ancestor, LeftCorner), which lists 
the left-corner relation for the grammar at hand. The 
left-corner relation is defined as follows: 

L e f t - c o r n e r  Category C1 is a left-corner of an ancestor 
category A if there is a rule A ---* C1 .... C, .  The 
relation is,transitive: if A is a left-corner of B and 
B a left-corner of C, A is a left-corner of C. 

Top-down filtering is now achieved by modifying the 
prediction step as follows : 

B o t t o m - u p  P r e d i c t i o n  w i t h  T o p - d o w n  F i l t e r i ng :  
For each item(B, E, Cat, Parsed, []), and each 
rule (Xo "-* [Cat [ RHS]), such that  there is an 
item(_, B, _, _, [NeztlToParse]) with Xo a left- 
corner of Next, add item(B, E, Xo, [Cat], RHS) 4. 

For CUG it makes little sense to compute a left- 
corner relation according to this definition, since any 
category X is a left-corner of any category Y (accord- 
ing to leftward application), and thus the left-corner 
relation can never have any predictive power. 

For an instantiated grammar,  the situation is more 
promising. For instance, given the fact that  only nom- 
irmtive NPs occur as left-corner of S, and that  every 
determiner which is the left-corner of NP, has a case 
feature which is compatible (unifiable) with that  NP, it 
can be concluded that  only nominative determiners can 
be left-corners of S. 

Computing the left-corner relation mechanichally 
for a UG will not always lead to the most economic- 
a|  representation of the left-corner table. For exam- 
pie, in German the left-corner of an NP with case and 
number features X will be a determiner with identi: 
cal features. If we compute this, using a sufficiently 

4The bottom-up parsing algorithm extended with left-corner 
prediction is closely re la ted  to the BUP-parser of Matsumoto et 
al. (1983). The BUP-parser is based on definite clause grammar 
and thus, may backtrack. Minimal use is made of a chart (in 
which successful and failed parse  a t t e m p t s  are  stored). Our algo- 
rithm assigns a more important role to the chart and thus avoids  
backtracking. 
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instantiated grammar,  we get 8 versions (i.e. 4 cases 
times 2 possible values for number) of this relation. 
Similar observations can be made for adjectives that  
are left-corners of N (where things are even worse, as 
we would like to take declension classes into account 
as well). This multiplication may lead to a needlessly 
large left-corner table, which, if used in the prediction 
step, may in fact lead to sharp decreases in parsing per- 
formanee (see also Haas, 1989, who encountered sim- 
ilar problems). Note that  checking a left-corner table 
containing feature-structures is in general expensive, as 
unification, rather than identity-tests, have to be car- 
ried out. 

To avoid tMs problem we have found it necessary to 
construct the left-corner table by hand, using linguistic 
meta.knowledge about  what is relevant, given a particu- 
lar left-corner relation, to top-down prediction to com- 
press the table to an absolute minimum. It turns out to 
be the case that  only in this way the effect of top-down 
filtering will pay-off against the increased overhead of 
having to check the left-corner table. 

6 Some Resu l t s  

The performance of the parsing algorithms discussed 
in the preceding sections (a bot tom-up parser for UG 
(BU), a top-down parser for UG (of Shieber, 1985) 
(TD),  a top-down parser operating on an instantiated 
grammar (TD/1),  and a bot tom-up parser with top- 
down filtering operating on an instantiated grammar 
(BU/LC))  were tested on two experimental CUGs, one 
implementing the morphosyntactic features of German 
N Ps, and one implementing the syntax of WH-questions 
in Dutch by means of a gap-threading mechanism. 
Some illustrative results are listed in Tables 1 and 2. 

Sentencel Sentence2 
items sees items sees 

TD: 93 5.9 160 10.5 
T D / I :  45 2.0 68 2.5 
B U :  68 2.0 120 3.0 
Bu/ c: 12 o.6 53 o . 9  

Table1 :  G e r m a n  

For German, an ideal restrictor R was {< l* > II = 
cat,val, arg, or dir}. This restrictor effectively filters 
out all morphosyntactic information, in as far as it is not 
repeated in the categorial rules. The resulting precom- 
piled grammar is much smaller than in the case where 

no restriction was used or where morphosyntactic in- 
formation was not completely filtered out. A categorial 
lexicon for German, for instance, containing only deter- 
miners, adjectives, nouns, and transitive and intransi- 
tive verbs, will give rise to more than 60 instantiated 
rules if precompiled without restriction, whereas only 
four rules are computed if R is used (i.e. only two more 
than in the uncompiled (categorial) grammar).  The 
improvement in efficiency of T D / I  over TD is due to 
the fact that  no useless instances of leftward applica- 
tion are predicted and to the fact that  no restriction is 
needed during parsing with an instantiated grammar. 
Thus, prediction based on already processed material 
can be maximal. As soon as we have parsed a cate- 
gory N P/N[+sg, +wk, +dat, +fern], for instance, top- 
down prediction will add only those items that  have 
N[+sg, +wk, +dat, +fern] as LHS. 

BU is almost, as efficient as TD/ I ,  eventhough it 
works with a generic grammar, and thus produces 
(significantly) more chart-items. Once we replace the 
generic grammar by an instantiated grammar, and add 
left-corner relationships (BU/LC),  the predictive capac- 
ities of the parser are maximal, and a sharp decrease in 
the number of chart items and parse times occurs. 

Senteneel Sentence2 Sentence3 
items sees items sees items sees 

TD: 255 32.2 225 27.9 358 47.2 
TD/ I :  48 3.2 71 6.0 ]29 11.9 
BU : 78 1.8 7 4  1.7 131 3.6 
BU/LC: 40 1.7 45 2.1 ~i9 3.9 

T a b l e l :  G a p - t h r e a d i n g  

For the grammar with gap-threading (table 2), 
we used a restrictor R = {< 1 ° > II = 
eat,val, arg,dir, gap, in or out}. The TD parser en- 
counters serious difficulties in this case, whereas TD/ I  
performs significantly better,  but still is rather ineffi- 
cient. There is a distinct difference between BU and 
BU/LC if we look at the number of chart items, al- 
though the difference is less marked than in the case of 
German. In terms of parse times the two algorithms 
are almost equivalent. 

Comparing our results with those of Shieber (1985) 
and Haas (1989), we see that  in all cases top-down fil- 
tering may reduce the size of the chart significantly. 
Whereas Haas (1989) found that  top-down filtering 
never helps to actually decrease parse times in a 
bottom-up parser, we have found at least one example 
(German) where top-down filtering is useful. 
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7 Conclusions 

There is a trend in modern linguistics to replace gram- 
mars that are completely language specific by grammars 
which combine universal rules and principles with lan- 
guage specific parameter settings, lexicons, etc. This 
trend can be observed in such diverse frameworks 
as Lexical Functional Grammar, Government-Binding 
Theory, Head-driven Phrase Structure Grammar and 
Categorial Grammar. In parsing with such formalisms, 
especially those formalisms that are unification-based, 
we find that traditional parsing-techniques, eventhough 
they may be applicable to UG, are no longer satisfac- 
tory. In particular, prediction techniques which may 
be efficient for phrase structure grammar do not always 
carry over easily to UG. The present paper shows that if 
a grammar uses only schematic combinatory principles 
instead of phrase-structure rules, prediction is only pos- 
sible if we replace the generic rules by grammar-specific 
instances of these rules. 
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