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Abstract 

DATR is a declarative language for representing a 
restricted class of inheritance networks, permit- 
ting both multiple and default inheritance. The 
principal intended area of application is the 
representation of lexical entries for natural 
language processing, and we use examples from 
this domain throughout. In this paper we 
present the syntax and inference mechanisms for 
the language. The goal of the DATR enterprise is 
the design of a simple language that (i) has the 
necessary expressive power to encode the lexical 
entries presupposed by contemporary work in 
the unification grammar tradition, (ii) can 
express all the evident generalizations about 
such entries, (iii) has an explicit theory of infer- 
ence, (iv) is computationally tractable, and (v) 
has an explicit declarative semantics. The 
present paper is primarily concerned with (iii), 
though the examples used may hint at our stra- 
tegy in respect of (i) and (ii). 

1 Introduction 

Inheritance networks ("semantic nets") provide 
an intuitively appealing way of thinking about 
the representation of various kinds of 
knowledge. This fact has not gone unnoticed by 
a number of researchers working on lexical 
knowledge representation, e.g. de Smedt (1984), 
Flickinger et al. (1985), Calder & te Linden 
(1987), Daelemans (1987a,1987b), Gazdar 
(1987) and Calder (1989). However, many such 
networks have been realized in the context of 
programming systems or programming 
languages that leave their precise meaning 

unclear. In the light of Brachman (1985), Ether- 
ington (1988) and much other recent work, it has 
become apparent that the formal properties of 
notations intended to represent inheritance are 
highly problematic. Although not discussed 
here, DATR has a formal semantics (Evans & 
Gazdar 1989) for which some completeness and 
soundness results have been derived. These 
results, and others (on complexity, for example) 
will be provided in a subsequent paper. There 
ate several prototype computational implementa- 
tions of the language, and non-trivial lexicon 
fragments for English, German and Latin have 
been developed and tested. 

2 Syntax 

The syntax of DATR, especially the use of value- 
terminated attribute trees to encode information, 
derives from OATR (Shieber 1986). The language 
consists of strings of symbols drawn from the set 
SYM - {:, " , . ,  - ,  - - ,  <, >, ( ,)} and the sets 
ATOM and NODE, all of which are disjoint. 

A string is in OATR, (with respect to given sets 
ATOM of [atom]s and NODE of [node]s) iff it is a 
[sentence] as defined by the following set of 
rules: 

[sentence] ::= Inode]:[path] == [lvalue]. 
{ [nodel:[path] = [value]. 

[lvaluel ::= [latoml I ( [lseq] ) 
[gvalue] ::= [gatom] ]l ( [gseql ) 
[value] ::= [atoml ( [seql ) 

[latom] ::= [desc] I [gatom] 
[gatom] ::= "[desc]" I [atom] 
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[desc] ::= ~node] I [lpath] 
/ [node]:[lpath] 

Bseq] ::= [gseq], I [lseq] [desc] tlseq] 
[gseq] ::= [seal, ] I [gseq] "[desc]" [gseq] 
[seq] ::= e l  [value] [seq] 

[lpath] ::-- < [laseq] > 
[path] ::= < [aseq] > 

[laseq] ::= e l  [latom] [laseq] 
[aseq] ::= e l  [atom] [aseq] 

There are two kinds of sentence, those contain- 
ing '==' and those containing '=' .  Both kinds 
have on their left-hand side a node:pa th  

specification, where a path is a sequence of  
atoms enclosed in <. . .>.  Pragmatically, the 
'==' sentences are intended for defining the net- 
work, whilst the '= '  statements express the 
values at individual nodes. Put another way, the 
former provide the database definition language 
whilst the latter provide the query language: the 
useful premises will standardly all be ' --- '  state- 
ments, whilst the interesting theorems will stan- 
dardly all be '= '  statements (though the language 
itself also allows the former to be derived as 
theorems and the latter to be used as premises). 
In view of this distinction, we shall sometimes 
refer to ' --- '  sentences as definitional and '= '  
sentences as extensional. Throughout the exam- 
pies in this paper, we shall use bold for nodes 
and roman for atoms. B o l d  italic and italic will 
be used for corresponding meta-notational vari- 
ables. Variables such as N, P, L, G and V will 
be assumed to be typed (as nodes, paths, lvalues, 
gvalues and values respectively). We shall 
sometimes refer to atoms occurring in paths as 
a t t r i b u t e s .  

The right-hand sides of  extensional sentences are 
values, that is, simple atoms or lists of  
atoms/nested lists enclosed in (. . .).  Lists are 
provided to allow the components of complex 
values to be specified independently (inherited 
from different places, for example). As an 
example, the following sentences might be 
derivable from a lexical entry for English 'be':  

Be:<pres tense sing one> = am. 
Be:<pres participle> = (concat be ing). 

Likewise, the following for German 'Buch':  

Bach: <sing> = Buch. 
Bach: <plat> = (concat (umlaut Buch) er). 

Values are the principal 'results' of  a I)ATR 
description: the most typical operation is to 
determine the value associated (by an exten- 
sional sentence) with some node/path pair. 

The right-hand sides of  definitional sentences are 
lvalues, which can be simple atoms, inheritance 
descriptors (quoted or unquoted), or lists of 
lvalues. An atom is primitive, an inheritance 
descriptor specifies where the required value can 
be inherited from, and lists allow arbitrary struc- 
tures to be built as values. Inheritance descrip- 
tors come in several forms with two dimensions 
of variation. The unquoted/quoted distinction 
specifies whether the inheritance context is local 
(the most recent context employed) or global 
(the initial context employed). Once the context 
is established, the descriptor specifies a new 
node, a new lpath, or both to be used to deter- 
mine the inherited value. For example, the fol- 
lowing sentences might be found in a description 
of a lexicon for English: 

E N  MOR:  < > ==  V E R B .  
m 

EN MOR:  
<past participle> == (concat "<root>" en). 

Take: < > == E N  M O R .  
Take: <root> ~ take. 

Finally an lpath is a path made up of  lvalues, 
that is, elements which themselves may need 
evaluation, as in this example: 

Adjective:  
<form> --= <"<gen>" "<num>" "<case>">. 

W e  adopt the following abbreviation convention 
for sets of sentences about a single node: 

N: P1 == L1 
P2 == L2 

Pn --= Ln. 

abbreviates: 

N: P1 == L1. 
N: P2 =--- L2. 

N: Pn == Ln. 
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and 

N: P1 = V1 
P2 = V2 

, . .  

Pn = Vn. 

abbrev ia t e s :  

N: P I  = V1. 

N: P2 = V2. 

, . .  

N: Pn = Vn. 

Thus the 'take' example given above could 
appear, in abbreviated form, as follows: 

E N  MOR: 
< > = =  V E R B  

< p a s t  pa r t i c ip l e>  = =  ( c o n e a t  "< roo t>"  en) .  

T a k e :  

< > = =  E N  M O R .  

< r o o t >  ~ ~ake.  

3 Rule-based inference 

DATR has seven syntactic rules of inference fal- 
ling into three groups. The first rule just pro- 
vides us with a trivial route from definitional to 
extensional sentences: 

(I) N:P ~ V. 

N:P  = V. 

For example, from: 

V E R B :  < p a s t >  ~--- ed. 

one can infer: 

V E R B :  < p a s t >  = ed.  

Note that V must be a value (not an lvalue) here, 
otherwise the consequent would not be well- 
formed. 

The next three rules implement local inheritance 
of values, and use the following additional 
meta-notational device: the expression 
EO{E2/E1} is well-formed iff EO, E1 and E2 are 
Ivalues and E1 occurs as a subexpression of  EO. 
In that case, the expression denotes the result of  
substituting E2 for all occurrences of  E1 in EO. 

(u) 

(III) 

(IV) 

N2:P2 = =  G.  

NI:P1  == L. 

NI:P1 == L{G/N2:P2} .  

N2:P1 = =  G.  

NI:P1 = =  L.  

NI:P1 == L{G/N2} .  

NI :P2  == G. 

NI :P1  == L. 

NI :P1  == L{G/P2} .  

Rule II says that if we have a theorem NI:P1 == 
L. where L contains N2:P2 as a subexpression, 
and we also have a theorem N2:P2 == G., then 
we can derive a theorem in which all 
occurrences of N2:P2 in L are replaced by G. In 
the simplest case, this means that we can inter- 
pret a sentence of  the form 

NI:P1 ~ N2:P2. 

as an inheritance specification meaning "the 
value of  P1 at N1 is inherited from P2 at N2". 
So for example, from: 

NOUN: <sing gen> ~--- s. 
PRON: <sing gen> == NOUN:<sing gen>. 

one can infer: 

PRON: <sing gen> ~ s. 

Rules III and IV are similar, but specify only a 
new node or path (not both) to inherit from. The 
other component (path or node) is unchanged, 
that is, it is the same as the corresponding com- 
ponent on the left-hand-side of the rule specify- 
ing the inheritance. In fact, the following two 
sentence schemas are entirely equivalent: 

NI:P1 ~ N2.  

NI:P1 ~ N2:P1. 

as are these two: 

NI:P1 ~ P2. 
NI:P1 == NI:P2. 

Rules II, III, and IV implement a local notion of 
inheritance in the sense that the new node or 
path specifications are interpreted in the current 
local context. The three remaining inference 
rules implement a non-local notion of inheri- 
tance: quoted descriptors specify values to be 
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interpreted in the context in which the original 
query was made (the global context), rather than 
the current context. 

(V) N2:P2 = V. 

NI:P1 == G. 

NI:P1 = G{V/"N2:P2"}. 

(VI) N2:P1 = V. 
NI:P1 == G. 
N1 :P1 = G { V/"N2"}. 

(VII) NI:P2 = V. 
NI:P1 == G. 

NI:P1 = G{V/"P2"}. 

To see how the operation of these rules differs 
from the earlier unquoted cases, consider the fol- 
lowing theory: 

CAT: <sing> == <plur>. 

V: <sing> == CAT 
<plur> ~ er. 

AI: <sing> == CAT 
<plur> ~ ern. 

A2: <sing> == en 
<plur> == A1. 

The intention here is that the CAT node 
expresses the generalisation that by default 
plural is the same as singular, v and A1 inherit 
this, but A2, while inheriting its plural form from 
A1, has an exceptional singular form, overriding 
inheritance from CAT (via A1). Now from this 
theory we can derive all the following theorems 
concerning plural: 

V: <plur> = er. 
AI: <plur> = ern. 
A2: <plur> = ern. 

and the following theorem concerning singular: 

A2: <sing> = en. 

But we cannot derive a theorem for V:<sing>, 
for example. This is because v:<sing> inherits 
from CAT:<sing>, which inherits (locally) from 
CAT:<plur>, which is not defined. What we 
wanted was for CAT:<sing> to inherit from 
v:<plur>, that is, from the global initial context. 
To achieve this we change the CAT definition to 
be: 

CAT: <sing> == "<plur>". 

Now we find that we can still derive the same 
plural theorems, but now in addition we get all 
these theorems conceming singular: 

V: <sing> = er. 
AI: <sing> = ern. 
A2: <sing> = en. 

For example, the derivation for the first of  these 
is as follows: 

(1) V: <sing> == CAT. (given) 
(2) CAT: <sing> == "<phtr>". (given) 
(3) V: <sing> == "<plur>". (III on 1 and 2) 
(4) V: <plur> ~ er. (given) 
(5) V: <plur> = er. (I on 4) 
(6) V: <sing> -- er. (VII on 3 and 5) 

Finally, given a set of  sentences "/', we define the 
rule-closure of  '/', rcl( ' / ' )  to be the closure of 'T 
under finite application of the above inference 
rules in the conventional fashion. 

4 Default inference 

In addition to the conventional inference defined 
above, I~AI'I¢ has a nonmonotonic notion of infer- 
ence by default: each definitional sentence about 
some node/path combination implicitly deter- 
mines additional sentences about all the exten- 
sions to the path at that node for which no more 
specific definitional sentence exists in the theory. 
Our overall approach follows Moore (1983, 
1985), whose treatment of inferences from sets 
of  beliefs can be viewed more generally as a 
technique for providing a semantics for a 
declarative notion of  inference by default (cf. 
Touretzky 1986, p34; Evans 1987). We begin 
with some auxiliary definitions. 

The expression P^Q, where P and Q are paths, 
denotes the path formed by concatenating com- 
ponents of  P and Q. A path P2 is an extension 
of a path P1 iff there is a path Q such that P2 = 
PI^Q. P2 is a strict extension iff Q is non- 
empty. We also use the ^ operator to denote 
extension of  all the paths in a DArR sentence, as 
in the following examples: 
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S: 
S^<c d>: 

S: 
S^<c d>: 

S: 
S^<c d>: 

N : < a >  ~--- v. 

N:<a c d> ~ v. 

Nl:<a> == N2:<x y>. 

Nl:<a c d> == N2:<x y c d>. 

Nl:<a> == "N2:< >". 

Nl:<a c d> == "N2:<c d>". 

Given a sentence S, we define the root  of  5 to 
be the [node]:[path] expression appearing to the 
left of  the equality ( '=='  or '= ')  in S (for exam- 
ple the root of  'N:P - -  V.' is 'N:P)'.  The root 
does not correspond to any syntactic category 
defined above: it is simply a substring of  the 
sentence. 

Given a set of  sentences in DATR, T, a node N 
and a path P, we say N:P is specified in T i f f  T 
contains a definitional sentence S whose root is 
N:P. 

Let NI:P1, NI:P2 be such that NI:P1 is 
specified in T. We say NI:P2 is connected to 
NI:P1 (relative to T) iff: 

i) P2 is an extension of P1, and 

ii) there is no strict extension P3 of P1 of which P2 
is an extension such thatNl:P3 is specified in T. 

So NI:P2 is connected to NI:P1 if P1 is the 
maximal subpath of  P2 that is specified (with 
N1) in T. 

Now given a set of  sentences T, define the path 
closure pcl(T) of  T t o  be: 

p c l ( T )  = {S:S is an extensional sentence in T } 
w {S^Q: S is a definitional sentence in T, 

with root N:P, and N:P^Q is 
connected to N:P} 

It is clear from these definitions that any N:P is 
connected to itself and thus that T is always a 
subset of  pa l (T) .  The path closure contains all 
those theorems which can be inferred by default 
from T. 

To illustrate path closure, consider the following 
example theory: 

V E R B :  

<past> ~ ed 
<past participle> == en. 

We can infer by default the following theorems 
for V E R B :  

V E R B :  

<past> ~--- ed 
<past tense> ~--- ed 
<past participle> == en 
<past tense singular> == ed 
<past participle plural> ~ en 
<past tense singular third> == ed. 

The situation is slightly more complicated with 
sentences that have paths on their right-hand 
sides. Such paths are also extended by the sub- 
path used to extend the left-hand side. So the 
sentence: 

A2:<sing> ~ "Al:<phtr>". 

might give rise Coy default) to sentences such as: 

A2:<sing fern nom> == "Al:<plur fern nom>". 

Using default inference, the example theory we 
used to illustrate global inference can be phrased 
more succinctly: 

CAT: <sing> == "<plur>". 

V: < > == CAT 
<plur> ~ er. 

AI: < > == CAT 
<plur> ~ ern. 

A2: <sing> == en 
< > == A1. 

In this version, we state that anything not 
specifically mentioned for v is inherited Coy 
default) from CAT, whereas before we had to list 
cases (only 'sing' in the example) explicitly. 
Similarly A1 inherits by default from CAT, and 
A2 from A1. The operation of  path closure is 
n o n - m o n o t o n i c :  if we add more sentences to 
our original theory, some of our derived sen- 
tences may cease to be true. 

The two forms of inference in DATR are com- 
bined by taking the path closure of  a theory first, 
and then applying the inference rules to the 
result. In other words, given a theory T, and a 
sentence S, S is provable from T i f f  S 
rcl(pcl(T)) .  
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