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ABSTRACT 

The structure of problem-solving discourse 
in the expert advising setting can be modeled by 
adding a layer of metaplans to a plan-based 
model of the task domain. Classes of metaplans 
are introduced to model both the agent's gradual 
refinement and instantiation of a domain plan for 
a task and the space of possible queries about 
preconditions or fillers for open variable slots 
that can be motivated by the exploration of par- 
ticular classes of domain plans. This metaplan 
structure can be used to track an agent's 
problem-solving progress and to predict at each 
point likely follow-on queries based on related 
domain plans. The model is implemented in the 
Pragma system where it is used to suggest cor- 
rections for ill-formed input. 

1. I N T R O D U C T I O N  

Significant progress has been achieved 
recently in natural language (NL) understanding 
systems through the use of plan recognition and 
"plan tracking" schemes that maintain models of 
the agent's domain plans and goals. Such sys- 
tems have been used for recognizing discourse 
structure, processing anaphora, providing 
cooperative responses, and interpreting intersen- 
tential ellipsis. However, a model of the dis- 
course context must capture more than just the 
plan structure of the problem domain. Each dis- 
course setting, whether argument, narrative, 
cooperative planning, or the like, involves a 
level of organization more abstract than that of 
domain plans, a level with its own structures and 
typical strategies. Enriching the domain plan 
model with a model of the agent's plans and 
strategies on this more abstract level can add 
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significant power to an NL system. This paper 
presents an approach to pragmatic modeling in 
which metaplans are used to model that level of 
discourse structure for problem-solving dis- 
course of the sort arising in NL interfaces to 
expert systems or databases. 

The  discourse setting modeled by 
metaplans in this work is expert-assisted 
problem-solving. Note that the agent's current 
task in this context is creating a plan for achiev- 
ing the domain goal, rather than executing that 
plan. In problem-solving discourse, the agent 
poses queries to the expert to gather information 
in order to select a plan from among the various 
possible plans. Meanwhile, in order to respond 
to the queries cooperatively, the expert must 
maintain a model of the plan being considered 
by the agent. Thus the expert is in the position 
of deducing from the queries that are the agent's 
observable behavior which possible plans the 
agent is currently considering. The metaplans 
presented here model both the agent's plan- 
building choices refining the plan and instantiat- 
ing its variables and also the possible queries 
that the agent may use to gain the information 
needed to make those choices. This unified 
model in a single formalism of the connection 
between the agent's plan-building choices and 
the queries motivated thereby allows for more 
precise and efficient prediction from the queries 
observed of the underlying plan-building 
choices. The model can be used for plan track- 
ing by searching outward each time from the 
previous context in a tree of metaplans to ex- 
plore the space of possible plan-building moves 
and related queries, looking for a predicted 
query that matches the agent's next utterance. 
Thus the examples will be presented in terms of 
the required search paths from the previous con- 
text to find a node that matches the context of 
the succeeding query. 

This metaplan model is discussed in two 
parts, with Section 2 covering the plan-building 
class of metaplam, which model the agent's ad- 
dition of new branches to the domain plan tree 
and instantiation of variables, while Section 3 

presents examples of plan feasibility and slot 
data query metaplans, which model the agent's 
strategies for gathering information to use in 
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plan-building. Section 4 then compares this 
modeling approach to other plan-based styles of 
discourse modeling, Section 5 discusses applica- 
tions for the approach and the current implemen- 
tation, and Section 6 points out other classes of 
metaplans that could be used to broaden the 
coverage of the model and other areas for further 
work. 

2. PLAN BUILDING M E T A P L A N S  

In this approach, the plan-building 
metaplans discussed in this section model those 
portions of problem-solving behavior that ex- 
plore the different possible refinements of the 
plan being considered and the different possible 
variable instantiations for it. The domain for all 
the examples in this paper is naval operations, 
where the agent is assumed to be a naval officer 
and the expert a cooperative interface to a fleet 
information system. The examples assume a 
scenario in which a particular vessel, the Knox, 
has been damaged in an accident, thereby lower- 
ing its readiness and that of its group. The top- 
level goal is thus assumed to be restoring the 
readiness of that group from its current poor 
rating to good, expressed as (IncreaseGroup- 
Readiness Knox-group poor good). 

The domain plans in Pragma are organized 
in a classification hierarchy based on their ef- 
fects and preconditions, so that a node in that 
hierarchy like the top-level instance of Increase- 
GroupReadiness in the examples actually stands 
for the class of plans that would achieve that 
result in a certain class of situations. The plan 
class nodes in this hierarchy can thus be used to 
represent partially specified plans, the set of 
plans that an agent might be considering that 
achieves a particular goal using a particular 
strategy. The subplans (really plan subclasses) 
of IncreaseGroupReadiness shown in Figure 1 
give an idea of the different strategies that the 
agent may consider for achieving this goal. 
(Variables are shown with a prefixed question 
mark.) 

(IncreaseGroupReadiness 
Knox-group poor good) (1) 

(RepairShip Knox) (2) 
(ReinforceGroup Knox-group ?new-ship) (3) 
(ReplaceShip Knox ?new-ship) (4) 

Figure 1: Subplans of IncreaseGroupReadiness 

The plan classification depends on the cir- 
cumstances, so that RepairShip only functions as 
a subplan of IncreaseGroupReadiness when its 
object ship is specified as the Knox, the 

damaged one, but some of the plans also intro- 
duce new variables like ?new-ship, introduced 
by the ReplaceShip plan, that can take on any 
value permitted by the plan's preconditions. 
Each of these plans also has its own subactions 
describing how it can be achieved, so that 
ReplaceShip, for example, involves sailing the 
?new-ship to the location of the damaged ship, 
having it take over the duties of the damaged 
ship, and then sailing or towing the damaged one 
to a repair facility. Those subactions, in turn, 
specify goals for which there can be multiple 
subplans. The metaplan structures modeling the 
problem-solving discourse are built on top of 
this tree of domain plans and actions. 

Plan Refining Metaplans  

The build-plan metaplan is used to capture 
the agent's goal of constructing a plan to achieve 
a particular goal, with the build-subplan and 
build-subaction metaplans modeling the 
problem-solving steps that the agent uses to ex- 
plore and refine the class of domain plans for 
that goal. An instance of build-subplan, say, 
reflects the agent's choice of one of the possible 
subplan refinements of the current domain plan 
as the candidate plan to be further explored. For 
example, the initial context assuming an 
lncreaseGroupReadiness plan due to damage to 
the Knox would be represented in our model by 
the build-plan node on line (1) of Figure 2. 

(build-plan 
(IncreaseGroupReadiness 

Knox-group poor good)) (1) 
(build.subplan 

(lncreaseGroupReadiness ...) 
(ReplaceShip ...)) (2) 

(build-plan 
(ReplaceShip Knox ?new-ship)) (3) 

(build-subaction 
(ReplaceShip ...) (Sail ...)) (4) 

(build-plan 
(Sail ?new-ship ?loc Knox-loc)) (5) 

Figure 2: Build-Plan, Build-Subplan, 
and Build-Subaction 

If we suppose that the agent first considers 
replacing Knox with some other frigate, that 
would be modeled as a build.subplan child (2) 
of the build.plan for the IncreaseGroup- 
Readiness plan (1), that would in turn generate a 
new build-plan for ReplaceShip (3). If the agent 
continues by considering how to get the new 
ship to that location, that would be represented 
as a build-subaction child (4) of the buiM-plan 
for ReplaceShip that expands the Sail action. 
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Variable  Cons t ra in ing  Metaplans  

In addition to the plan-refining choice of 
subplans and exploration of subactions, the other 
plan-building task is the instantiation of the free 
variables found in the plans. Such variables may 
either be directly instantiated to a specified 
value, as modeled by the instantiate-var 
metaplan, or more gradually constrained to sub- 
sets of the possible values, as modeled by 
add-constraint. 

The instantiate-var metaplan reflects the 
agent's choice of a particular entity to instantiate 
an open variable in the current plan. For ex- 
ample, the ReplaceShip plan in Figure 2 (3) in- 
troduces a free variable for the ?new-ship. If the 
agent were to choose the Roark as a replacement 
vessel, that would be modeled by an 
instantiate-var metaplan attached to the 
buiM-plan node that first introduced the vari- 
able, as shown in Figure 3. 

(build-plan (ReplaceShip Knox ?new-ship)) (1) 
(instantiate-var ?new-ship Roark) (2) 

(buiM-plan (ReplaceShip Knox Roark)) (3) 

Figure  3: Instantiate-Var 

The agent may also constrain the possible 
values for a free variable without instantiating it 
by using a predicate to filter the set of possible 
fillers. For example, the agent might decide to 
consider as replacement vessels only those that 
are within 500 miles of the damaged one. The 
predicate from the add-constraint node in line 
(2) of Figure4 is inherited by the lower 
buiM-plan node (3), which thus represents the 
agent's consideration of the smaller class of 
plans where the value of ?new-ship satisfies the 
added constraint. 

(build-plan 
(ReplaceShip Knox ?new-ship)) (1) 

(add-constraint 
?new -ship 
(< (distance Knox ?new-ship) 500)) (2) 

(build-plan 
(ReplaceShip Knox ?new-ship)) (3) 

Figure  4: Add-Constraint 

The metaplan context tree thus inherits its 
basic structure from the domain plans as 
reflected in the build-plan, build-subplan, and 
build-subaction nodes, and as further specified 
by the instantiation of domain plan variables 
recorded in instantiate-var and add-constraint 
nodes. Because the domain plans occur as ar- 
guments to the plan-building metaplans, the 

metaplan tree turns out to include all the infor- 
mation that would be available from a normal 
domain plan context tree, so that no separate 
domain tree structure is needed. 

3. Q U E R Y  M E T A P L A N S  

Although the plan-building metaplans that 
model the exploration of possible plans and the 
gradual refinement of an intended plan represent 
the agent's underlying intent, such moves are 
seldom observed directly in the expert advising 
setting. The agent's main observable actions are 
queries of various sorts, requests for information 
to guide the plan-building choices. While these 
queries do not directly add structure to the 
domain plan being considered, they do provide 
the expert with indirect evidence as to the plan- 
building choices the agent is considering. A key 
advantage of the metaplan approach is the preci- 
sion with which it models the space of possible 
queries motivated by a given plan-building con- 
text, which in turn makes it easier to predict un- 
derlying plan-building structure based on the ob- 
served queries. The query metaplans include 
both plan feasibility queries about plan precon- 
ditions and slot data queries that ask about the 
possible fillers for free variables. 

Plan Feasibility Quer ies  

The simplest feasibility query metaplan is 
ask-pred-value, which models at any build-plan 
node a query for a relevant value from one of the 
preconditions of that domain plan. For example, 
recalling the original IncreaseGroupReadiness 
context in which the Knox had been damaged, if 
the agent's first query in that context is "Where 
is Knox?", the expert',~ task becomes to extend 
the context model in a way that explains the oc- 
currence of that query. While that search would 
need to explore various paths, one match can be 
found by applying the sequence of metaplans 
shown in Figure 5. 

(build.plan 
(IncreaseGroupReadiness 

Knox-group poor good)) (1) 
(build.subplan 

(IncreaseGroupReadiness ...) 
(ReplaceShip ...)) (2) 

(build-plan 
(ReplaceShip Knox ?new-ship)) (3) 

(ask-pred-value 
(ReplaceShip Knox ?new-ship) 
(location-of Knox Knox-loc)) (4) 

Figure  5: Ask.Pred-Value 
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The build-subplan (2) and build-plan (3) nodes, 
as before, model the agent's choice to consider 
replacing the damaged ship. Because the 
ReplaceShip domain plan includes among its 
preconditions (not shown here) a predicate for 
the location of the damaged ship as the destina- 
tion for the replacement, the ask-pred-value 
metaplan (4) can then match this query, explain- 
ing the agent's question as occasioned by ex- 
ploration of the ReplaceShip plan. Clearly, there 
may in general be many metaplan derivations 
that can justify a given query. In this example, 
the RepairShip plan might also refer to the loca- 
tion of the damaged ship as the destination for 
transporting spare parts, so that this query might 
also arise from consideration of that plan. Use 
of such a model thus requires heuristic methods 
for maintaining and ranking alternative paths, 
but those are not described here. 

The other type of plan feasibility query is 
check-pred-value, where the agent asks a yes/no 
query about the value of a precondition. As an 
example of that in a context that also happens to 
require a deeper search than the previous ex- 
ample, suppose the agent followed the previous 
query with "Is Roark in the Suez?". Figure 6 
shows one branch the search would follow, 
building down from the build-plan for Replace- 
Ship in Figure 5 (3). 

(build-plan 
(ReplaceShip Knox ?new-ship)) (1) 

( instantiate-var 
(ReplaceShip Knox ?new-ship) 
?new-ship Roark) (2) 

(build-plan 
(ReplaceShip Knox Roark)) (3) 

(buiM-subaction 
(ReplaceShip ...) (Sail ...)) (4) 

(buiM-plan 
(Sail Roark Roark-loc Knox-loc)) (5) 

(check-pred-value 
(Sail Roark Roark-loc Knox-lot) 
(location-of Roark Roark-loc)) (6) 

F i g u r e  6 :  Instantiate-Var and Build-Subaction 

Here the search has to go through instantiate-var 
and build-subaction steps. The ReplaceShip 
plan has a subaction (Sail ?ship ?old-loc ?new- 
loc) with a precondition (location-of ?ship ?old- 
loc) that can match the condition tested in the 
query. However, if the existing build-plan node 
(1) were directly expanded by build-subaction to 
a build-plan for Sail, the ?new-ship variable 
would not be bound, so that that path would not 
fully explain the given query. The expert in- 
stead must deduce that the agent is considering 

the Roark as an instantiation for ReplaceShip's 
?new-ship, with an instantiate-var plan (2) 
modeling that tentative instantiation and produc- 
ing a build-plan for ReplaceShip (3) where the 
?new-ship variable is properly instantiated so 
that its Sail sub-action (5) predicts the actual 
query correctly. 

Slot Data  Quer ies  

While the feasibility queries ask about the 
values of plan preconditions, the slot data 
queries gather data about the possible values of a 
free plan variable. The most frequent of the slot 
data query metaplans is ask-fillers, which asks 
for a list of the items that are of the correct type 
and that satisfy some subset of the precondition 
requirements that apply to the filler of the free 
variable. For example, an ask-fillers node at- 
tached beneath the build-plan for ReplaceShip in 
Figure 6 (1) could model queries like "List the 
frigates." or "List the C1 frigates.", since the 
?new-ship variable is required by the precon- 
ditions of ReplaceShip to be a frigate in the top 
readiness condition. 

An ask-fillers query can also be applied to 
a context already restricted by an add-constraint 
metaplan to match a query that imposes a 
restriction not found in the plan preconditions. 
Thus the ask-fillers node in line (4) of Figure 7 
would match the query "List the C1 frigates that 
are less than 500 miles from the Knox." since it 
is applied to a build.plan node that already in- 
herits that added distance constraint. 

(build-plan 
(ReplaceShip Knox ?new-ship)) (1) 

(add-constraint 
?new-ship 
(< (distance Knox ?new-ship) 500)) (2) 

(build-plan 
(ReplaceShip Knox ?new-ship)) (3) 

(ask-fillers 
?new-ship 
(ReplaceShip Knox ?new-ship)) (4) 

Figure 7: Ask-Fillers 

Note that it is the query that indicates to the 
expert that the agent has decided to restrict con- 
sideration of possible fillers for the ?new-ship 
slot to those that are closest and thus can most 
quickly and cheaply replace the Knox, while the 
restriction in turn serves to make the query more 
efficient, since it reduces the number of items 
that must be included, leaving only those most 
likely to be useful. 

There are three other slot data metaplans 

- 3 8  - 



that are closely related to ask.fillers in that they 
request information about the set of possible 
fillers but that do not request that the set be 
listed in full. The ask-cardinality metaplan re- 
quests only the size of such a set, as in the query 
"How many frigates are CI?". Such queries can 
be easier and quicker to answer than the parallel 
ask-fillers query while still supplying enough in- 
formation to indicate which planning path is 
worth pursuing. The check-cardinality metaplan 
covers yes/no queries about the set size, and ask- 
existence covers the bare question whether the 
given set is empty or not, as in the query "Are 
there any C1 frigates within 500 miles of 
Knox?". 

In addition to the slot data metaplans that 
directly represent requests for information, 
modeling slot data queries requires metaplans 
that modify the information to be returned from 
such a query in form or amount. There are three 
such query modifying metaplans, limit- 
cardinality, sort.set-by-scalar, and ask-attribute- 
value. The limit-cardinality modifier models a 
restriction by the agent on the number of values 
to be returned by an ask-fillers query, as in the 
queries "List 3 of the frigates." or "Name a C1 
frigate within 500 miles of Knox.". The 
sort.set.by-scalar metaplan covers cases where 
the agent requests that the results be sorted 
based on some scalar function, either one known 
to be relevant from the plan preconditions or one 
the agent otherwise believes to be so. The func- 
tion of ask-attribute-value is to request the dis- 
play of additional information along with the 
values returned, for example, "List the frigates 
and how far they are from the Knox.". 

These modification metaplans can be com- 
bined to model more complex queries. For ex- 
ample, sort-set-by-scalar and ask-attribute-value 
are combined in the query "List the C1 frigates 
in order of decreasing speed showing speed and 
distance from the Knox.". In the metaplan tree, 
branches with multiple modifying metaplans 
show their combined effects in the queries they 
will match. For example, Figure 8 shows the 
branch that matches the query "What are the 3 
fastest frigates?". The sort-set-by.scalar 
metaplan in line (2) requests the sorting of the 
possible fillers of the ?new-ship slot on the basis 
of descending speed, and the limit-cardinality 
metaplan in that context then restricts the answer 
to the first 3 values on that sorted list. 

As shown in these examples, the slot data 
query metaplans provide a model for some of 
the rich space of possible queries that the agent 
can use to get suggestions of possible fillers. 
Along with the plan feasibility metaplans, they 

model the structure of possible queries in their 
relationship to the agent's plan-refining and 
variable-instantiating moves. This tight model- 
ing of that connection makes it possible to 
predict what queries might follow from a par- 
ticular plan-building path and therefore also to 
track more accurately, given the queries, which 
plan-building p~ths the agent is actually con- 
sidering. 

(build-plan 
(ReplaceShip Knox ?new-ship)) (1) 

(sort-set.by-scalar 
?new-ship 
(speed-of ?new-ship ?speed) 
descending) (2) 

(limit-cardinality ?new-ship 3) (3) 
(ask-fillers 

?new-ship 
(ReplaceShip Knox ?new-ship)) (4) 

Figure 8: Sort-Set-by-Scalar 
and Limit-Cardinality 

4. C O M P A R I S O N  W I T H  O T H E R  
P L A N - B A S E D  D I S C O U R S E  M O D E L S  

The use of plans to model the domain task 
level organization of discourse goes back to 
Grosz's (1977) use of a hierarchy of focus 
spaces derived from a task model to understand 
anaphora. Robinson (1980a, 1980b) sub- 
sequently used task model trees of goals and ac- 
tions to interpret vague verb phrases. Some of 
the basic heuristics for plan recognition and plan 
tracking were formalized by Allen and Perrault 
(1980), who used their plan model of the agent's 
goals to provide information beyond the direct 
answer to the agent's query. Carberry (1983, 
1984, 1985a, 1985b) has extended that into a 
plan-tracking model for use in interpreting prag- 
matic ill-formedness and intersentential ellipsis. 
The approach presented here builds on those 
uses of plans for task modeling, but adds a layer 
modeling problem-solving structure. One result 
is that the connection between queries and plans 
that is implemented in those approaches either 
directly in the system code or in sets of inference 
rules is implemented here by the query 
metaplans. Recently, Kautz (1985) has outlined 
a logical theory for plan tracking that makes use 
of a classification of plans based on their in- 
cluded actions. His work suggested the structure 
of plan classes based on effects and precon- 
ditions that is used here to represent the agent's 
partially specified plan during the problem- 
solving dialogue. 
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Domain plan models have also been used 
as elements within more complete discourse 
models. Carberry's model includes, along with 
the plan tree, a stack that records the d~_scourse 
context and that she uses for predicting the dis- 
course goals like accept-question or express- 
surprise that are appropriate in a given discourse 
state. Sidner (1983, 1985) has developed a 
theory of "plan parsing" for distinguishing 
which of the plans that the speaker has in mind 
are plans that the speaker also intends the hearer 
to recognize in order to produce the intended 
response. Grosz and Sidner (1985) together 
have recently outlined a three-part model for dis- 
course context; in their terms, plan models cap- 
ture part of the intentional structure of the dis- 
course. The metaplan model presented here tries 
to capture more of that intentional structure than 
strictly domain plan models, rather than to be a 
complete model of discourse context. 

The addition of metaplans to plan-based 
models owes much to the work of Wilensky 
(1983), who proposed a model in which 
metaplans, with other plans as arguments, were 
used to capture higher levels of organization in 
behavior like combining two different plans 
where some steps overlap. Wilensky's 
metaplans could be nested arbitrarily deeply, 
providing both a rich and extensive modeling 
tool. Litman (1985) applied metaplanning to 
model discourse structures like interruptions and 
clarification subdialogues using a stack of 
metaplan contexts. The approach taken here is 
similar to Litman's in using a metaplan com- 
ponent to enhance a plan-hased discourse model, 
but the metaplans here are used for a different 
purpose, to model the particular strategies that 
shape problem-solving discourse. Instead of a 
small number of metaplans used to represent 
changes in focus among domain plans, we have 
a larger set modeling the problem-solving and 
query strategies by which the agent builds a 
domain plan. 

Because this model uses its metaplans to 
capture different aspects of discourse structure 
than those modeled by Litman's, it also predicts 
other aspects of agent problem-solving behavior. 
Because it predicts which queries can be 
generated by considering particular plans, it can 
deduce the most closely related domain plan that 
could motivate a particular query. For instance, 
when the agent asked about frigates within 500 
miles of Knox, the constraint on distance from 
Knox suggested that the agent was considering 
the ReplaceShip plan; a similar constraint on 
distance from port would suggest a RepairShip 
plan, looking for a ship to transport replacement 

parts to the damaged one. Another advantage of 
modeling this level of structure is that the 
metaplan nodes capture the stack of contexts on 
which follow-on queries might be based. In this 
example, follow-on queries might add a new 
constraint like "with fuel at 80% of capacity" as 
a child of the existing add-constraint node, add 
an alternative constraint like "within 1000 miles 
of Knox" as a sibling, query some other predi- 
cate within ReplaceShip, or attach even further 
up the tree. As pointed out below in Section 6, 
the metaplan structures presented here can also 
be extended to model alternate problem-solving 
strategies like compare-plan vs. build-plan, thus 
improving their predictive power through sen- 
sitivity to different typical patterns of agent 
movement within the metaplan tree. The clear 
representation of the problem-solving structure 
offered in this model also provides the right 
hooks for attaching heuristic weights to guide 
the plan tracking system to the most likely plan 
context match for each new input. Within 
problem-solving settings, a model that captures 
this level of discourse structure therefore 
strengthens an NL system's abilities to track the 
agent's plans and predict likely queries. 

5. A P P L I C A T I O N S  AND 
I M P L E M E N T A T I O N  

This improved ability of the metaplan 
model to track the agent's problem-solving 
process and predict likely next moves could be 
applied in many of the same contexts in which 
domain plan models have been employed, in- 
cluding anaphora and ellipsis processing and 
generating cooperative responses. For example, 
consider the following dialogue where the 
cruiser Biddle has had an equipment failure: 

Agent: Which other cruisers are 
in the Indian Ocean? (1) 

Expert: <Lists 6 cruisers> (2) 
Agent: Any within 200 miles of Biddle? (3) 

Expert: Home and Belknap. (4) 
Agent: Any of them at Diego Garcia? (5) 

Expert: Yes, Dale, and there is a supply 
flight going out to Biddle tonight. (6) 

The agent first asks about other cruisers that 
may have the relevant spare parts. The expert 
can deduce from the query in line (3) that the 
agent is considering SupplySparePartByShip. 
The "them" in the next query in line (5) could 
refer either to all six cruisers or to just the two 
listed in (4). Because the model does not predict 
the Diego Garcia query as relevant to the current 
plan context, it is recognized after search in the 
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metaplan tree as due instead to a SupplyPartBy- 
Plane plan, with the change in plan context im- 
plying the correct resolution of the anaphora and 
also suggesting the addition of the helpful infor- 
mation in (6). The metaplan model of the prag- 
matic context thus enables the NL processing to 
be more robust and cooperative. 

The Pragma system in which this metaplan 
model is being developed and tested makes use 
of the pragmatic model's predictions for sug- 
gesting corrections to ill-formed input. Given a 
suitable library of domain plans and an initial 
context, Pragma can expand its metaplan tree 
under heuristic control identifying nodes that 
match each new query in a coherent problem- 
solving dialogue and thereby building up a 
model of the agent's problem-solving behavior. 
A domain plan library for a subset of naval fleet 
operations plans and sets of examples in that 
domain have been built and tested. The result- 
ing model has been used experimentally for 
dealing with input that is ill-formed due to a 
single localized error. Such queries can be 
represented as underspecified logical forms con- 
taining "wildcard" terms whose meaning is un- 
known due to the ill-formedness. By searching 
the metaplan tree for queries coherently related 
to the previous context, suggested fillers can be 
found for the unknown wildcards. For the 
roughly 20 examples worked with so far, 
Pragma returns between 1 and 3 suggested cor- 
rections for the ill-formed element in each sen- 
tence, found by searching for matching queries 
in its metaplan context model. 

6. E X T E N S I O N S  TO T H E  M O D E L  AND 
AREAS FOR F U R T H E R  W O R K  

This effort to capture further levels of 
structure in order to better model and predict the 
agent's behavior needs to be extended both to 
achieve further coverage of the expert advising 
domain and to develop models on the same level 
for other discourse settings. The current model 
also includes simplifying assumptions about 
agent knowledge and cooperativity that should 
be relaxed. 

Within the expert advising domain, further 
classes of metaplans are required to cover in- 
forming and evaluative behavior. While the ex- 
pert can usually deduce the agent's plan- 
building progress from the queries, there are 
cases where that is not true. For example, an 
agent who was told that the nearest C1 frigate 
was the Wilson might respond "I don't want to 
use it.", a problem-solving move whose goal is 
to help the expert track the agent's planning cor- 

rectly, predicting queries about other ships rather 
than further exploration of that branch. Inform- 
ing metaplans would model such actions whose 
purpose is to inform the expert about the agent's 
goals or constraints in order to facilitate the 
expert's plan tracking. Evaluative metaplans 
would capture queries whose purpose was not 
just establishing plan feasibility but comparing 
the cost of different feasible plans. Such queries 
can involve factors like fuel consumption rates 
that are not strictly plan preconditions. The typi- 
cal patterns of movement in the metaplan tree 
are also different for evaluation, where the agent 
may compare two differently-instantiated 
build-plan nodes point for point, moving back 
and forth repeatedly, rather than following the 
typical feasibility pattern of depth-first explora- 
tion. Such a comparison pattern is highly struc- 
tured, even though it would appear to the current 
model as patternless alternation between 
ask-pred-value queries on two different plan 
branches. Metaplans that capture that layer of 
problem-solving strategy would thus sig- 
nificantly extend the power of the model. 

Another important extension would be to 
work out the metaplan structure of other dis- 
course settings. For an example closely related 
to expert advising, consider two people trying to 
work out a plan for a common goal; each one 
makes points in their discussion based on fea- 
tures of the possible plan classes, and the 
relationship between their statements and the 
plans and the strategy of their movements in the 
plan tree could be formalized in a similar system 
of metaplans. 

The current model also depends on a num- 
ber of simplifying assumptions about the 
cooperativeness and knowledge of the agent and 
expert that should be relaxed to increase its 
generality. For example, the model assumes that 
both the expert and the agent have complete and 
accurate knowledge of the plans and their 
preconditions. As Pollack (1986) has shown, the 
agent's plan knowledge should instead be for- 
mulated in terms of the individual beliefs that 
define what it means to have a plan, so the 
model can handle cases where the agent's plans 
are incomplete or incorrect. Such a model of the 
agent's beliefs could also be a major factor in 
the heuristics of plan tracking, identifying, for 
example, predicates whose value the agent does 
not already know which therefore are more 
likely to be queried. The current model should 
also be extended to handle multiple goals on the 
agent's part, examples where the expert does not 
know in advance the agent's top-level goal, and 
cases of interactions between plans. 
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However, no matter how powerful the 
pragmatic modeling approach becomes, there is 
a practical limitation in the problem-solving set- 
ting on the amount of data available to the expert 
in the agent's queries. More powerful, higher 
level models require that the expert have ap- 
propriately more data about the agent's goals 
and problem-solving state. That tradeoff ex- 
plains why an advisor who is also a friend can 
often be much more helpful than an anonymous 
expert whose domain knowledge may be similar 
but whose knowledge of the agent's goals and 
state is weaker. The goal for cooperative inter- 
faces must be a flexible level of pragmatic 
modeling that can take full advantage of all the 
available knowledge about the agent and the 
recognizable elements of discourse structure 
while still avoiding having to create high-level 
structures for which the data is not available. 
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