
Effective Parsing With Generalised Phrase Structure Grammar

Allan Ramsay

Cognitive Studies Program, University of Sussex
Brighton, BN1 9QN, England

Abstract

Generalised phrase structure grammars (GPSG's)
appear to offer a means by which the syntactic
properties of natural languages may be very con-
cisely described. The main reason for this is that
the GPSG framework allows you to state a variety of
meta-grammatical rules which generate new rules
from old ones, so that you can specify rules with
a wide variety of realisations via a very small
number of explicit statements. Unfortunately,
trying to analyse a piece of text in terms of such
rules is a very awkward task, as even a small set
of GPSG statements will generate a large number of
underlying rules.

This paper discusses some of the difficulties of
parsing with GPSG's, and presents a fairly
straightforward bottom-up parser for them. This
parser is, in itself, no more than adequate - all
its components are implemented quite efficiently,
but there is nothing tremendously clever about
how it searches the space of possible rules to
find an analysis of the text it is working on.
Its power comes from the fact that it learns from
experience: not new rules, but how to recognise
realisations of complex combinations of its
existing rules. The improvement in the system's
performance after even a few trials is dramatic.
This is brought about by a mechanism for recording
the analysis of text fragments. Such recordings
may be used very effectively to guide the sub-
sequent analysis of similar pieces of text. Given
such guidance it becomes possible to deal even with
text containing unknown or ambiguous words with
very little search.

I. Generalised Phrase Structure Grammar

There has been considerable interest recently in
a grammatical framework known as "generalised
phrase structure grammar" (GPSG). This framework
extends the expressive power of simple context
free grammars (CFG's} in a number of ways which
enable complex systems of regularities and
restrictions to be stated very easily. Advocates
of GPSG claim that it enables concise statements
of general rules; and that it provides precise
descriptions of the syntactic properties of strings
of lexical items. For the purpose of this paper
I shall assume without further discussion that
these claims are true enough for GPSG's to be

considered interesting and potentially useful.
The problem is that straightforward parsing
algorithms for GPSG's can take a long time to run
- the CFG which you get by expanding out all the
rules of a moderately complex GPSG is so enormous
that finding a set of rules which fits a given
input string is a very time-consuming task. The
aim of this paper is to show how some of that time
may be saved.

The GPSG framework has been described indetail in
a number of other places. The discussion in this
paper follows Gazdar and Pullum [Gazdar & Pullum],
[Gazdar et al.], though as these authors point out
a number of the ideas they present have been
discussed by other people as well. For readers
who are entirely unfamiliar with GPSG I shall
briefly outline enough of its most salient features
to make the remainder of the paper comprehensible
- other readers should skip to the next section.

GPSG starts by taking simple CF rules and noting
that they carry two sorts of information. The
CF rule

(I) s --) NP vP

says that whenever you have the symbol S you may
rewrite it as NP VP, i.e. as the set NP, VP with
NP written before the VP. GPSG separates out
these facets of the rule, so that a grammar con-
sisting of the single CF rule given above would
be written as

(2a) S -~ NP, VP
(2b) NP << VP

i.e. as an "~mmediate dominance" (ID) rule, saying
that the set of symbols ~S~ may be replaced by the
set of symbols NP, VP and a "linear precedence"
(LP) rule which says that in any application of
any ID rule involving a NP and a VP, the NP must
precede the VP. There is some doubt as to whether
they should be tied to specific groups of ID rules.
It makes little difference to the algorithms
outlined here one way or the other - for simplicity
of exposition it will be assumed that LP rules are
universal.

In the trivial case cited here, the switch from a
CFG to ID/LP format has increased the number of
rules required, but in more complicated cases it
generally decreases the number of statements
needed in order to specify the grammar.

57

ID/LP format allows you to specify large sets of
CF rules in a few statements. GPSG provides two
further ways of extending the sets of CF rules in
your grammar. The first is to allow the elements
of a rule to be complex sets of feature/value pairs,
rather than Just allowing atomic symbols. The rhs
of rule 2a, for instance, refers to items which
contain the feature/value pairs [category NP:] and
[category VP] respectively, with no explicit
reference to other features or their expected
values (though there will generally be a number
of implicit restrictions on these, derived from
the specification of the features in the grammar and
their interactions). Thus 2a in fact specifies a
whole family of CF ID rules, namely the set [all
possible combinations of feature/value pairs which
include [category NP]) X [all possible combinations
of feature/value pairs which include [category VP]}.
In theory tbls set could be expanded out, but it
is not a tempting prospect - it would simply take
a lot of effort, waste a lot of space, and lose the
generalisation captured by 2a.

The other way of extending the grammar is to include
metarules, i.e. rules which say that if you have a
rule that matches a given pattern, you should also
have another, derived, rule. For instance, the
metarule

(3) VP -9 NP ==>
VP [passive] -9 ..., PP[by]

says that for any rule stating that a VP may be
made up of some set of items including a NP (the
... means any, possible empty, set of items), you
should have a rule which states that a passive VP
may be made up of the same set of items but with
the NP replaced by a PP of type "by". Metarules
are applied until they close, i.e. whenever a
metarule is applied and produces a new rule, the
entire set of metarules is scanned to see if any
of them can be applied to this new rule.

There are two further points about GPSG which are
worth noting before we move on to see how to parse
using the vast set of rules induced by a set of
ID, LP and meta rules. Firstly, it is customary
to include in the feature set of each lexlcal item
a list containing the names of all the ID rules in
which that item may take part. This induces a
finer classification of lexical items than the one
implied by the simple division into categories such
as verb, noun, preposition, ... (this classification
is often referred to as "lexical subcategorisation",
i.e. splitting lexical items into subsets of the
usual categories). Secondly, the inheritance of
features when several items are combined to make
a single more complex structure is governed by two
rules, the "head feature convention" (HFC) and the
"foot feature principle" (FFP). Very briefly:
features are divided into "head features" and
"foot features". The HFC says that head features
are inherited from the "head", i.e. that sub-
structure which has the same basic category (verb,
noun, ...) as the complex structure and which is
of lowest degree out of all the substructures of
this type. The FFP says that foot features are
inherited by studying all the other, non-bead,
substructures and copying those foot features on

which they do not disagree (i.e. they need not all
include a value for each foot feature, but a foot
feature will not be copied if there are items which
include different values for it).

The foregoing is very far from being a complete
description of the GPSG framework. It should be
detailed enough to give an idea of how rules are
stated within the framework; and it should be
detailed enough to make the rest of the paper
comprehensible.

2o ParsinB Witb GPSO's

Parsing with a GPSG is essentially the same as
parsing with any of the other common grammatical
systems. Given a string of lexical items, find some
sequence of rules from the grammar which will combine
items from the string together so that all that
remains is a single structure, labelled with the
start symbol of the grammar and covering the whole
of the original text. The same decisions have to
be made when designing a parser for GPSG as for
the design of any parser for a grammar specified
as a set of rewrite rules (this includes ATN's)
- top down : bottom up, left - right : island
building, depth first : breadth first : pseudo
parallel. With GPSG there is yet another question
to be answered before you can start to put your
parser together: how far should the rule set be
expanded when the rules are read in?

There are two extreme positions on this. (i) You
could leave the rules in the form in which they
were stated, i.e. as a collection of ID rules, plus
a set of metarules which will generate new rules
from the base set, plus a set of LP rules which
restrict the order in which constituents of the
rhs of a rule may appear. (ii) You could expand
out the entire set of CF rules, first comparing
the ID rules with the metarules and constructing
new ID rules as appropriate until no new rules were

generated; then generating all the ordered per-
mutations of rhs's allowed by the LP rules; and
finally expanding the specified feature sets which
make up each constituent of a rule in all possible
ways.

Neither of these options is attractive. As Thompson
pointed out, (i) is untenable, since metarules can
alter rules by adding or deleting arbitrary elements
[Thompson 82]. This means that if you were working
top down, you would not even know how the start
symbol might be rewritten without considering all
the metarules that might expand the basic ID rules
which rewrite it; working bottom up would be no
better, since you would always have to worry about
basic ID rules which might be altered so they
covered the case you were looking at. At every
stage, whether you are working down from the top
or up from the bottom, the rule you want may be
one that is introduced by a metaruie; you have
no way of knowing, and no easy way of selecting
potentially relevant basic rules and metarules.

On the other hand, expanding the grammar right out
to the underlying CF rules, as in (li), looks as
though it will introduce very large numbers of
rules which are only trivially distinct. It may

S8

conceivably be easier to parse with families of
fully instantiated rules than with rule schemas
with underdetermined feature sets, e.g. with

(4a) S -9 NP [num: sing], VP [num = sing]
(4b) S -~ NP [num= plural], VP [num: plural]

rather than

(4c) S -9 NP [num = NUM], VP [num= NUM]

However, complete expansion of this sort will
definitely require orders of magnitude more space
- one simple item such as NP could easily require
10 - 15 other features to be specified before it Was
fully instantiated. The combinatorial potential of
trying to find all compatible sets of values for
these features for each item in a rule, and then all
compatible combinations of these sets, is conside-
rable. It is unlikel Z that the possible gains in
speed of parsing will be worth the cost of con-
structing all these combinations a priori.

To a large extent, then, the choice of how far to
expand the grammar when the rules are first read is
forced. We must expand the metarules as far as we
can; we would rather not expand underdetermined
feature sets into collections of fully determined
ones. The remaining question is, should we leave
the rules which result from metarule application
in ID/LP format, or should we expand them into sets
of CF rules where the order in which items occur on
the rhs of the rule specifies the order they are to
appear in the parse? For top down analysis, it is
likely that CF rules should be generated immediately
from the ID/LP basis, since otherwise they will
inevitably be generated every time the potential
expansions of anode are required. For bottom up
analysis the question is rather more open. It
is, at the very least, worth keeping an index which
links item descriptions to rules for which the items
are potential initial constituents; this index
should clearly be pruned to ensure that nothing is
entered as a potential initial constituent if the
LP rules say that it cannot be.

We can summarise our discussion of how to parse
using GPSG's as follows. (i) Metarules should be
expanded out into sets of ID rules as soon as the
grammar is read in. (il) It may also be worth
expanding ID rules into sets of rules where the
order of the rhs is significant. (iii) It is not
a good idea to expand ID rules into families of
CF rules with all legal combinations of feature:
value pairs made explicit. We also note that if
we are simply going to treat the rules as ways of
describing constituent structure then some sort of
chart parser is likely to be the most appropriate
mechanism for finding out how these rules describe
the input text [Shieber 84].

These are all reasonable decisions. However, once
we come to work with non-trlvial GPSG grammars, it
appears that general purpose parsing algorithms,
even efficient ones, do rather a lot of work. We
need some way of converting the declarative
knowledge embodied in the rules of the grammar
into procedural knowledge about how to analyse
text. The approach described in this paper involves

using two parsing algorithm together. We have
a standard bottom-up chart parser, which simply
tries out grammatical rules as best it can until
it arrives at some combination which fits the text
it is working on; and a "direct recogniser", which
uses patterns of words which have previously been
analysed by the chart parser to suggest analyses
directly.

There is not much to say about the chart parser.
It uses the rules of the grammar in a form where
the metarules have been applied, but the permu-
tations implied by the LP rules have not been
explicitly expanded. This means that we have
fewer rules to worry about, but silghtly more
work to do each time we apply one (since we have
to check that we are applying it in a way allowed
by the LP rules). The extra work is minimised by
using the LP rules, at the time when the grammar
is first read in, to index ID rules by their
possible legal initial substructures. This
prevents the parser trying out completely point-
less rules.

It is hard to see many ways in which this parser,
considered as a general purpose grammar applying
algorithm, could be improved. And yet it is
nowhere near good enough. With a grammar consisting
of about 120 rule schemas (which expands to about
300 schemas by the time the metarules have been
applied), it takes several thousand rule appli-
cations to analyse a sentence like "I want to see
you doing it". This is clearly unsatisfactory.

To deal with this, we keep a record of text fragment~
that we have previously managed to analyse. When
we make an entry in this record, we abstract away
from the text the detailsof exactly which words
were present. What we want is a general descrip-
tion of them in terms of their lexical categories,
features such as transitivity, and endings (e.g.
"-ing" or "-ed"). These abstracted word strings
are akin to entries in Becker's "phrasal lexicon"
[Becker 75]. Alongside each of them we keep an
abstracted version of the structure that was
found, i.e. of the parse tree that was constructed
to represent the way we did the analysis. Again
the abstraction is produced by throwing away the
details of the actual words that were present,
replacing them this time by indicators saying
where in the original text they appeared.

It is clearly very easy to compare such an
abstracted text string with a piece of text, and
to instantiate the associated structure if they
are found to match. However, even if we throw
away the details of the particular words that
were present in the original text, we are likely
to find that we have so many of these string:
structure pairs that it will take us just as long
to do all the required comparisons as it would
have done to use the basic chart parser with the
original set of rules.

To prevent this happening, we condense our set
of recognised strings by merging strings with
common initial sequence, e.g. if we have two
recognised fragments llke

59

(3) det, adj, adJ, noun ---3
adJlist = [2 3], n = [4])

(4) det, adJ, noun
adJ l l s t = [2] , n = [3])

NP(det = [I],

NP(det = [I],

we take advantage of their shared structure to store
them away like

(5) det, adJ,

adj, noun ---3 NP(det = [I],
adJlist = [2 3], n = [4])

noun 9 NP(det = [I],
adJlist = [2], n = [3])

Merging our recognised fragments into a network llke
this means that if we have lexically unambiguous
text we can find the longest known fragment starting
at any point in the text with very little effort
indeed - we simply follow the path through the
network dlhtated by the categories (and other
features, which have been left out of (3), (4) and
(5) for simplicity) of the successive words in the
text.

This "direct recognition" algorithm provides
extremely rapid analyses of text which matches
previously analysed input. It is not, however,
"complete" - it is a mechanism for rapid recognition
of previously encountered expansions of rules from
the gr~m, ar, and it will not work if what we have
is something which is legal according to the
grammar but which the system has not previously
encountered. The chart parser Is complete in this
sense. If the input string has a legal analysis
then the chart parser will - eventually - produce
it.

For this reason we need to integrate the two
mechanisms. This is a surprisingly intricate
task, largely because the chart parser assumes
that all rules which include completed substructures
are initiated together, even if some of them are
not followed up immediately. This assumption
breaks down if we use our direct recogniser, since
complete structures will be entered into the chart
without their components ever being explicitly
added. It is essential to be very careful inte-
grating the two systems if we want to benefit
from the speed of the direct recogniser without
losing the completeness of the chart parser. Our
current solution is to start by running the direct
recognition algorithm across the text, repeatedly
taking the longest recognised substring, adding
all its known analyses to the chart, and then
continuing from the position immediately following
this string. If we do not recognise anything at
a particular point, we simply make an entry in the
chart for the current word and move on. When we
have done this there will be a number of complete
edges in the chart, put there by the direct
recogniser, and a number of potential combinations
to follow up. At this point we allow normal chart
parsing to take place, hoping that the recognised
structures will turn out to be constituents of
the final analysis. If they are not, we have to
go back and successively add single word edges
wherever we jumped in with a guess about what
was there.

3. Ambiguous And Unknown Words

The combination of chart parser and direct
recogniser is sufficiently effective that we can
afford to use it on text that contains ambiguous
words without worrying about the extra work these
will entail. This is fortunate, given the number
of words in English which are ambiguous as to
lexical category - "chart", "direct", "can", "use",
"work" and "entail" from the first sentence of
this paragraph alone!

Lexical ambiguity generally causes problems for
bottom-up parsers because each interpretation of
a given word will tend to indicate the presence of
a different type of structure. It will often turn
out that when all the possibilities have been
explored only one of the interpretations actually
contributed to a complete, consistent parse, but
it may take some time to check them all. By looking
for structures cued by strings of words we get a
strong indication of which is the most promising
interpretation - interpretations which are not
going to be part of the final analysis are not
likely to appear inside substantial recognised
strings. To take a simple example, consider the
two sentences "I don't see the use" and "I will use
it". In the first the interpretation of "use"
as a noun fits easily into wider patterns of the
sort we will have stored away, such as [det, noun 3
9 NP or [verb, det, noun] @ VP, whereas its
interpretation as a verb does not. In the second
the interpretation as a verb fits into plausible
patterns like aux, verb 9 VSEQ or [aux, verb,
pronoun] ~ VP, while the interpretatlon as a
singular noun does not seem to fit well into any
surrounding patterns.

These cues are e f fec t i ve enough for us to be able
to fo l low [Thorne et a l . 68] in merging the "open"
l e x i c a l categories, i . e . noun, verb, adj and adv.
In the vast majority of cases, the final analysis
of the text will tell us which of the various sub-
classes of the category "open" a particular
instance of a given word must have belonged to.
We do, of course, make heavy use of the connections
between these categories and the suffix system
- if a word has had "-ing" added to it, for
instance, then it must be functioning as a verbal
form. Not only does the final analysis usually
determine uniquely the interpretation for each
open category word in the input, the combined
recogniser and parser produce this final analysis
with comparatively little search. We are thus
able to deal with input that contains ambiguous
words just about as effectively as with input
that doesn't. The disambiguation is performed
largely by having the system recognise that it has
never seen, say, an open category word functioning
as a verb surrounded by the current local con-
figuration of words, whereas it has seen something
in this context which was eventually interpreted
as a noun. This has the added advantage of
enabling us to produce a syntactic analysis of
text containing previously unknown words - they
are immediately assigned to the open category,
and their particular function in the current
context is discovered at the end of the analysis.
How you construct a meaning representation from

60

such an analysis is another matter.

5. Conclusions

The parser and rule learner described above perform
far far better than the parser by itself - on complex
cases, the parser may find the correct analysis
several hundred times as quickly using learnt rules
as it would have done with Just the basic set.
Experience with the system to date indicates that
the introduction of new rules does not slow down
the process of selecting relevant rules all that
much, partly because the indexing of patterns
against initial elements cuts out quite a lot of
potentially pointless searching. It is conceivable
that when the system has been run on large numbers
of examples, the gains introduced by abstracting
over long, unusual strings will be outweighed by
the extra effort involved in testing for them when
they are not relevant. If so, it may be a good
idea to put a limit on the length of string for
which compound rules should be recorded. There
is no indication as yet that this will be necessary.

It is of interest that the compound rules the
system creates are akin to the productions used in
Marcus' deterministic parser [Marcus] - patterns
of descriptions of items which the parser is
prepared to react to, combined with packets of
simple actions to be taken when a pattern is
recognised. There is no suggestion here that the
system described above could ever be fully
deterministic - there are Just too many possi-
bilities to be explored for this to be likely -
but it certainly explores fewer dead ends with
learnt compound rules than with the initial basic
ones.

Acknowledgments

My understanding of GPSG owes a great deal to
discussions with Roger Evans and Gerald Gazdar.
The idea of using recognisable sequences of
categories to find shortcuts in the analysis arose
partly out of conversations some time ago with
Aaron Sloman. Gerald Gazdar and Steve Isard
read and commented on this paper and an earlier,
even more misguided one. Steve Isard implemented
the basic chart parser which was adapted for the
work reported here. Any remaining errors, etc.
are as usual the author's responsibility.

References

Becket, The Phrasal Lexicon. TINLAP, 1975.

Gazdar, G. Klein, E., Pullum, G.K., Sag, I.A.,
Generalised Phrase Structure Grammar.
Blackwell, Oxford (in press - 1985).

Marcus, M., A Theory of Natural Language Processing
PhD thesis, MIT, 1980.

Shieber, S.M., Direct Parsing of ID/LP Grammars
Linguistics & Philosophy 7/2, 1984.

Thorne, J.P., Bratley, P. & Dewar, H., The
Syntactic Analysis of English By Machine in

Machine Intelligence 3, ed. Michie, Edinburgh
UP, 1968.

Thomson, H. Handling Metarules In A Parser For
GPSG DAIRP 175, University of Edinburgh, 1982.

61

