
Proceedings of the Student Research Workshop at the 15th Conference of the European Chapter of the Association for Computational Linguistics,
pages 11–22, Valencia, Spain, April 3-7 2017. c©2017 Association for Computational Linguistics

Detecting spelling variants in non-standard texts

Fabian Barteld

Institut für Germanistik / Language Technology Group, Department of Informatics
Universität Hamburg

firstname.lastname@uni-hamburg.de

Abstract

Spelling variation in non-standard lan-
guage, e.g. computer-mediated commu-
nication and historical texts, is usu-
ally treated as a deviation from a stan-
dard spelling, e.g. 2mr as a non-standard
spelling for tomorrow. Consequently, in
normalization – the standard approach of
dealing with spelling variation – so-called
non-standard words are mapped to their
corresponding standard words. However,
there is not always a corresponding stan-
dard word. This can be the case for sin-
gle types (like emoticons in computer-
mediated communication) or a complete
language, e.g. texts from historical lan-
guages that did not develop to a standard
variety. The approach presented in this
thesis proposal deals with spelling vari-
ation in absence of reference to a stan-
dard. The task is to detect pairs of types
that are variants of the same morphologi-
cal word. An approach for spelling-variant
detection is presented, where pairs of po-
tential spelling variants are generated with
Levenshtein distance and subsequently fil-
tered by supervised machine learning. The
approach is evaluated on historical Low
German texts. Finally, further perspectives
are discussed.

1 Introduction

Spelling variation is a well-known feature of non-
standard language, e.g. computer-mediated com-
munication (CMC) and historical texts (Baron et
al., 2009; Eisenstein, 2013). One problem is that
this variation decreases the utility of unannotated
corpora, e.g., by reducing the recall for queries
and distorting keyword frequencies (Baron et al.,

2009). Furthermore, the variation makes it harder
to annotate this data automatically since the num-
ber of out-of-vocabulary (OOV) words is higher
when compared to the same amount of standard-
ized data. In addition, during training time, in-
stances of the same morphological word appear
as different types thereby distributing the infor-
mation about one morphological word over these
types.

The predominant way to deal with spelling vari-
ation is normalization, i.e. non-standard words are
mapped to a corresponding standard word, or a
canonical form. In this thesis proposal, we pur-
sue an alternative approach: the task of spelling-
variant detection, i.e. instead of mapping non-
standard or historical words to a standard form as
in normalization, the aim is to detect spelling vari-
ants in a set of types without reference to a canon-
ical form. Therefore, this task can be applied in
cases where no canonical form exists. The de-
tected spelling variants can then be used to miti-
gate the problems caused by spelling variation that
were described above. An approach for detect-
ing spelling variants is presented and evaluated on
Middle Low German (GML), a group of German
dialects from between 1200 and 1650. These di-
alects developed into Low German, a dialect group
of German that has not undergone standardization.
Therefore, there exists no contemporary variant of
Low German with standardized orthography that
could be used as target language.

After having discussed related work in Section
2, we elaborate on the task of spelling-variant de-
tection (Section 3) and introduce an approach us-
ing binary classification (Section 4). We present
first experiments on generating candidate pairs
(Section 4.1) and filtering these pairs using a su-
pervised machine learning approach (Section 4.2).
Finally, we conclude with an outlook on further
planned research in the framework of this thesis.

11

2 Related work

In normalization – also called standardization
(Ljubešić et al., 2014) or canonicalization (Jur-
ish, 2010a) – spelling variation is seen as a de-
viation from a given standard. In the case of
CMC this is the standardized language as used
in newspapers and regarding historical texts this
is the corresponding contemporary standard lan-
guage. This kind of normalization has been criti-
cized as a “lossy translation” for CMC data (Gim-
pel et al., 2011) and it has been shown that it is not
capable to deal with all peculiarities that appear in
non-standard texts.

An example for this is that normalization cannot
deal with differences in the usage of a word be-
tween the standard and the non-standard domain
that result in different labels – a tagger trained
on the standard domain will apply the wrong tag.
Consequently – as Yang and Eisenstein (2016)
show – the accuracy of tagging historical texts
benefits from combining domain adaptation and
normalization.

Such differences in the usage of a word are
also visible in semantic changes. Bollmann et
al. (2012) therefore distinguish between normal-
ization and modernization: While in the first a
historical word is mapped to its modern cognate,
in the second the historical word is more loosely
translated. They give the example of the Early
New High German (1350-1650) word vrlaub ‘per-
mission’ which would be normalized to its Mod-
ern German cognate Urlaub ‘vacation’ but mod-
ernized to the Modern German word Erlaubnis
‘permission’. Another, more subtle example for
a lossy normalization, would be Kopf and Haupt.
Both denote ‘head’ in Modern German, but Haupt
is only used in exalted language. However, in the
Middle High German period (1050-1350), hou-
bet the cognate of Haupt was the most commonly
used word while the cognate of Kopf was mainly
used in descriptions of battles (Fritz, 2006). Such
differences will not be relevant for tasks like POS
tagging. Still, this example shows the lossy nature
of normalization to a modern standard.

Another limitation of normalization is that it can
only deal with items that have a corresponding
standard word. This can be solved by creating an
artificial standard for the specific phenomenon and
normalizing towards this standard. Dipper (2011)
has shown that using an artificial standardized ver-
sion of Middle High German leads to better results

training and applying POS and morphological tag-
gers to these texts. In CMC, items like emoticons
have no corresponding standard form and require
a special treatment when normalizing these texts.
E.g., for the shared task of normalizing Twitter
data (Baldwin et al., 2015) only all-alphanumeric
tokens are normalized. This excludes tokens like
=), :) and :-) from the normalization. One way to
deal with variation in emoticons is again the nor-
malization to an artificial standard, cf. the manual
mapping of different emoticons to synsets used by
Hogenboom et al. (2015). Hence, normalizing to
an artificial standard solves the problems of nor-
malization. However, this introduces the need to
develop the standard first.

These problems do not appear when detecting
spelling variants without the reference to a stan-
dard. The detection of spelling variants has been
applied in a minor strand of work on automati-
cally annotating non-standard texts. For POS tag-
ging historical texts, the knowledge about spelling
variants has been used to substitute OOV words
with possible spelling variants – this improved
the accuracy of POS taggers trained on the non-
standard data (Logačev et al., 2014; Barteld et
al., 2015). A similar approach has been used by
Gadde et al. (2011) for SMS text. In all of these
approaches the knowledge about spelling variants
is used independently from the tagger, either in
a pre-processing step to reduce the amount of
spelling variation before training and/or tagging or
as a post-processing step to correct tagging errors.

Alternatively, specialized tools can be de-
veloped that directly use the knowledge about
spelling variation. This approach has been fol-
lowed by Kestemont et al. (2010) and Barteld et
al. (2016) for lemmatization of historical texts.

With the exception of Acharyya et al. (2009),
who present a clustering approach based on con-
text similarity that also takes surface similarity
into account, spelling-variant detection has not
been addressed independently of a specific task
like POS tagging. However, Acharyya et al.
(2009) only present an anecdotal evaluation of re-
sulting clusters.

Similar to the task of detecting pairs of spelling
variants is the detection of pairs of standard and
non-standard words appearing in noisy text and
the detection of cognate pairs. Usually, surface
similarity, contextual similarity or a combination
of both is used for these tasks. Gouws et al. (2011)

12

use the bigrams that appear before and after a word
to compute distributional similarity and string ker-
nels to measure surface similarity to create a dic-
tionary of non-standard and corresponding stan-
dard types.

3 Defining spelling variation and
spelling-variant detection

In order to define spelling variation, we dis-
tinguish between type and morphological word.
Morphological words are the inflected word forms
of a language. This distinction is similar to the
distinction between morphological word and lex-
eme: A lexeme like the English verb (to) be ap-
pears as different morphological words in texts,
e.g. am and was. In lemmatization, the task is to
assign the same lemma to the different morpholog-
ical words of the same lexeme, thereby abstracting
over inflectional differences. Similarly, the aim of
spelling-variant detection is to detect the types that
belong to the same morphologicial word. How-
ever, while the morphological words belonging to
the same lexeme differ with respect to their mor-
phology, the types that belong to the same mor-
phological word only differ in their spelling.

Consequently, the notion morphological word
can be operationalized by combining POS, mor-
phological information, lemma and word-sense
disambiguation: Each combination of these at-
tributes is a morphological word. For example
{Personal Pronoun, Nominative Sg., I} is a mor-
phological word of English. In texts, these abstract
word forms are realized by using types. Types
are the words t of a language L ⊆ Σ∗ for some
given alphabet Σ. For a standardized language, a
unique mapping from a morphological word to a
type is expected.1 For instance, {Personal Pro-
noun, Nominative Sg., I} is usually realized as ‘I’.
In GML texts, the corresponding morphological
word can be realized using the types given in Ex-
ample 1.

(1) yck, ick, jk, ik, yk, jck, jc, ic

This example shows i, j and y that appear in gen-
eral mostly interchangable in GML manuscripts
and prints. Only bi-graphs like ei are an exception
to this rule. Niebaum (2000) gives an overview
over the graphematic inventory of GML. He lists

1Not the other way around, due to ambiguity. The German
type Bank can either denote the nominative singular of bench
or bank. However, the German morphological word bench
(nominative singular) is always realized as Bank.

the grapheme <i> and amongst others j and y as
variants. He states that these are often used instead
of i to disambiguate the spelling next to letters like
m and n. However, the example of ‘I’ shows that
they are used interchangeably in other contexts as
well. Such variation can be easily modelled in
a rule-based approach. We will compare our ap-
proach with a rule-based approach developed for
GML.

Variation as in Example 1 is what we define
as spelling variation in a broad sense: the real-
ization of a morphological word using different
types. There is spelling variation even in standard-
ized texts. One example is spelling errors that lead
to a variation. But there is also real spelling vari-
ation in standardized language. One example for
this rare case where two different types are used
for the same morphological word in standardized
language is the co-existence of ß and ss in Modern
German which leads to the spelling variants Fuß
and Fuss ‘(the) foot’. This is, however, negligible
for standard texts: only 7% of the morphological
words appearing more than once in the Tiger cor-
pus (Brants et al., 2004), a corpus consisting of
German newspaper texts, show variance, i.e., are
realized by more than one type.2

In non-standard texts, there is more variation: In
the English Twitter texts used as the training data
for the W-NUT 2015 shared task on normalization
(Baldwin et al., 2015), 57% of the morphologi-
cal words show variation.3 This can be reduced to
16% by lowercasing every type.

Historical texts, for which the amount of data
available is often extremely small, also show a lot
of variation. In the GML texts from the Reference
Corpus Middle Low German (Peters and Nagel,
2014) that are used for the experiments in this pa-
per4, 58% of the morphological words show vari-
ation. However, less of this variation is due to dif-
ferences in the case as in the Twitter data: If every

2As the Tiger corpus is not annotated with word-sense dis-
ambiguation, this overestimate the actual amount of spelling
variation in the corpus as e.g. the types Bänke (‘benches’) and
Banken (‘banks’) are incorrectly treated as the same morpho-
logical word {Noun, Nominative Pl., Bank}. Tokens tagged
with FM, XY, OA, PTKVZ or one of $., $, and $(have been
excluded for the calculation.

3As the W-NUT 2015 data is neither annotated with POS,
morphology nor lemma, we use the normalization annotation:
Each normalization is treated as a morphological word. To-
kens containing non-alphanumeric characters have been ex-
cluded as they were not normalized.

4We use the release 2016-08-23 of the corpus (http:
//hdl.handle.net/11022/0000-0001-B002-5).

13

type is lowercased still 54% of the morphological
words show variation.

These numbers quantify the internal – or syn-
chronic, cf. Piotrowski (2012) – variation in the
corpus and thereby indicate the amount of the data
sparsity problem. Consequently, they give an in-
dication of how hard it is to develop tools for this
language variant. This is different than the usu-
ally reported number of OOV types with respect
to a dictionary of the corresponding standard. The
latter only indicates how promising it is to apply
tools developed for the standard to the language
variant in question.

Normalization does not deal with spelling vari-
ation directly but with non-standard words, a term
used by Sproat et al. (2001), who introduced the
task of normalization. For historical text, the
non-standard words are historical words or histor-
ical forms of contemporary words – the standard
words are contemporary words. This approach
only looks at diachronic variation and not at syn-
chronic variation as defined above. Internal vari-
ation in the data is only dealt with indirectly by
mapping the non-standard types to a correspond-
ing standard type. Hence, it resembles a transla-
tion task, a framework in which normalization has
been approached (Kobus et al., 2008; Scherrer and
Erjavec, 2016). The task of detecting spelling vari-
ants shifts the attention towards the internal vari-
ation and resembles an information retrieval task
where the aim is to detect unordered pairs of types
like GML {jc, ik} which are used to realize the
same morphological word. More formally, given
a set of types L ⊆ Σ∗, the aim is to retrieve all
pairs of types that are spelling variants, i.e. the set
SV ⊆ {{t1, t2}|t1 ∈ L, t2 ∈ L, t1 6= t2}. SV
defines the spelling-variant relation.

As has been noted, spelling variation as defined
in this paper is a broad cover term for different
types of variation that appear between types for
which the spelling-variant relation holds. In or-
der to give an overview over the phenomena that
have to be covered for spelling-variant detection,
the following constructed pair of GML sentences
illustrates three different types of spelling varia-
tion.

(2) Do
DO
when

he
he
he

komen
ghecomen
come.PPTC

was
was
was

van
uan
from

deme
dem
the

kloster
kloster
cloister

‘when he had been coming from the
cloister’

{Do, DO} and {van, uan} from Example 2 il-
lustrate spelling variation in the narrow sense, i.e.
two types for which the same pronunciation is as-
sumed. However, spelling variation in the broad
sense also covers {deme, dem} where the final
<e> is assumed to correspond to the pronuncia-
tion of a final [@]. Finally, there is morphologi-
cal variation as in {komen, ghecomen} where the
types differ by the spell-out of the morphological
marker ghe in the participle komen ‘(to) come’.

A clear-cut distinction between those three
types of variation is not always possible: {deme,
dem} could also be a spelling variant in the nar-
row sense, as it cannot be decided for a single in-
stance if there actually was a difference in the pro-
nunciation. Furthermore, the difference between
{deme, dem} could also be classified as morpho-
logical variation, treating the e as the overt dative
marker.

As has been pointed out above, we cover errors
under the term spelling variation as well. While
errors are usually defined as a deviation from a
norm (Brill and Moore, 2000), in the case of the
lack of a norm, we define them as a type of variant
that is unlikely to appear, it may even appear only
once. The GML corpus, for instance, contains one
instance of gesprok as the past participle of speak,
whereas other instances of the past participle are
realized with the suffix en. In this example it is
likely that this suffix was to be realized as an ab-
breviation, i.e. a dash over the k, and was simply
forgotten.

Besides actual spelling errors, for historical
texts another source of spelling variation are errors
in the transcription (done manually or with optical
character recognition). These lead to variants that
should be discovered by the algorithm as well.

4 Approaches towards spelling-variant
detection

For the experiments presented in this paper, we use
five texts from the Reference Corpus Middle Low
German (Peters and Nagel, 2014). The corpus
is annotated with POS, morphological informa-
tion, lemma and word-sense disambiguation. In
order to exclude temporal and spatial variants, the
texts are taken from the same dialect region and
roughly from the same time (about 1500 AD). The
texts consist of 36,269 tokens. We use two texts
that constitute about 80% of the tokens (‘Bux-
teh. Ev.’, 19,644 tokens and ‘Griselds’, 9,057 to-

14

kens) for training, the other three texts (‘Veer Koe-
plude’, 4,691 tokens, ‘Agneta Willeken’, 2,269 to-
kens and ‘Reval Tot.’, 608 tokens) are each split
into two halves, using the first halves as develop-
ment and the second halves as test set. Pairs of
types that are instances of the same morphological
word, i.e. they have the same POS, morphology
and lemma containing word-sense information,
are extracted from these texts. Tokens, for which
the annotation groups together types that are not
spelling variants were removed from the the cor-
pus. This includes text that is struck through in the
manuscript. Such tokens were always annotated
with the tag OA (‘no annotation’). This reduces
the number of training tokens to 26,915, the size of
the development set to 3,393 tokens and the size of
the test set to 3,396 tokens. We report precision,
recall and F-score for the set of spelling-variant
pairs extracted from the test set that did not appear
in the training data. These are 68% of the pairs.
This way of splitting the data into training and test
set makes the task harder than directly splitting the
set of spelling-variant pairs as the amount of pairs
containing rare words will be higher in this set-
ting. However, this way of evaluating the task will
give a more realistic estimation of the performance
for applications like POS tagging for which the
main task of spelling-variant detection is exactly
to identify variants of OOV words in new texts.

We approach spelling-variant detection in two
steps: First, we generate pairs of spelling vari-
ants, then we employ a supervised binary classi-
fier to filter out overgenerated pairs. The genera-
tion step is employed in order to reduce the num-
ber of pairs that have to be classified. Without this
step, for a given set of types L each of the

(n
2

)
pairs {t1, t2} ∈ L×L would have to be classified,
which is computationally intractable for large sets.
This pair generation step needs to be fast while
having a high recall for actual spelling variants.

4.1 Candidate-pair generation

For candidate-pair generation, we rely on surface
similarity between the types. From the set L,
we generate all pairs of types for which the Lev-
enshtein distance (Levenshtein, 1966) is below a
given threshold s. There are several efficient ap-
proaches for detecting all types from L for which
the distance is below s, some have even been pro-
posed in the context of normalization, e.g. ana-
gram hashing (Reynaert, 2009). We use a Leven-

shtein automaton (Schulz and Mihov, 2002) to re-
trieve all the pairs of types from L that have a dis-
tance below s ∈ {1, 2, 3, 4}. Table 1 shows recall,
precision and F-score as well as the average num-
ber of candidate pairs per type (arithmetic mean
and standard deviation) for the different values of
s. The numbers show that most of the spelling
variants have a distance smaller than or equal to
3. Going to distance 4 improves recall from 0.97
to 1 but also increases the average size of gener-
ated candidate pairs from about 83 to 261 per type.
The precision is always very low, even at a Leven-
shtein distance of 1 where the average number of
predicted variants is slightly below 2. This is due
to the fact that many types do not have spelling
variants.

For cognate recognition as well as mining pairs
of standard and non-standard words, variants of
a weighted Levenshtein distance have been used
in order to increase recall and precision, e.g. by
Hauser and Schulz (2007) for detecting historical
variants of modern words and Gomes and Lopes
(2011) in cognate detection. These approaches
usually employ quasimetrics, i.e. the used met-
rics are not necessarily symmetric as the weights
learned for edit operations are learned in one di-
rection – i → y may have a different cost than
y → i. This makes sense in the context of nor-
malization and cognate detection as the compar-
isons made in these cases are directed as well,
e.g., types from older stages of a language are
compared to the modern variant. However, in the
case of spelling-variant detection the weights for
both directions should be equal because next to the
pair {ghecomen, komen} from Example 2 the pair
{ghekomen, comen} exists where the difference c
↔ k appears in opposite directions.

We use an undirected version of the measure
SPSim by Gomes and Lopes (2011) as a base-
line for our experiments. This measure employs
substitution patterns (SP), i.e. segments of mis-
matches from the alignment of the types in the
candidate pair with their left and right context.
Example 3 shows a pair of spelling variants and
the corresponding undirected SP with a context of
length 2 denoted by the triple (left context, {pair of
mismatched characters}, right context). The con-
text is padded with $ at the beginning and the end
of the type.

(3) maria, marien
(‘ri’, {‘a’, ‘en’}, ‘$$’)

15

Lev R P F1 AVG SD
1 0.58 0.12 0.20 1.85 2.42
2 0.88 0.02 0.04 15.99 20.06
3 0.97 0.00 0.01 83.39 84.78
4 1.00 0.00 0.00 261.41 202.86

Table 1: Recall and Precision using the Leven-
shtein distances
Levenshtein distance (Lev), Recall (R), Precision (P),
F-score (F1), Number of candidates per type: average
(AVG) and standard deviation (SD)

Lev R P F1 AVG SD
1 0.48 0.18 0.26 1.11 1.51
2 0.65 0.09 0.15 2.93 3.92
3 0.66 0.05 0.10 4.54 6.11
4 0.67 0.05 0.09 5.08 6.58

Table 2: Results using undirected SPSim (0.9)
Levenshtein distance (Lev), Recall (R), Precision (P),
F-score (F1), Number of candidates per type: average
(AVG) and standard deviation (SD)

The measure is trained on positive examples.
When applying SPSim, SPs that appeared in the
training data get a cost of 0, otherwise their cost
is the edit distance between the mismatched seg-
ments. Furthermore, the context is generalized,
i.e. when a mismatch segment appears in the train-
ing data with at least two different contexts, the
mismatch will always get a cost of 0 regardless of
the context.

Using this measure, pairs of types where all the
changes are known get the maximal similarity of
1. This allows for improving the precision with-
out losing on recall by setting a high threshold on
the similarity for cognate detection. The results
using the undirected version of SPSim for identi-
fying spelling variants in the GML test set can be
seen in Table 2. The threshold of 0.9 produced the
best results on the development set.

While there is an improvement in F-score from
0.20 to 0.26, the precision is still very low (0.18).
One reason for this is that the training data con-
tains a lot of very generic substitutions that are
learned by SPSim. The following SPs are the SPs
that are learned from the training data and involve
a single ‘a’: (∅, {‘a’, ‘o’}, ∅), (∅, {‘a’, ‘u’}, ∅), (∅,
{‘a’, ‘e’}, ∅) and (∅, {‘a’, ‘en’}, ∅).

With this generic set of SPs, two types like
dach ‘(the) roof’ and doch ‘but’ differing only in
a vs. any other vowel except for an i will have a
similarity of 1. The pattern (∅, {‘a’, ‘u’}, ∅) is
learned from the two spelling variants {sundighe,
sandige} and {ghehat, ghehut}. However, the
first pair is likely to be an error in the original
manuscript, the second example is an error in the
gold annotation, leading to a wrongly learned pat-
tern.

In order to make the classification more robust
against such noise in the data, a more complex
weighting scheme for SPs than 0 and 1 should be
used. We follow the approach that Ciobanu and

Dinu (2014) apply to cognate recognition by train-
ing a binary classifier on positive and negative ex-
amples for spelling variants to filter out overgen-
erated candidate pairs.

4.2 Filtering overgenerated candidate pairs
For filtering out overgenerated candidate pairs, we
apply a binary classifier that is trained on positive
and negative examples of pairs of types. We exper-
iment with two different kinds of features: surface
features – representing similarities and differences
in the strings – and context features.

As surface features we use undirected SPs as
defined in the previous section as well as paired
character n-grams around mismatches (Ciobanu
and Dinu, 2014), and all paired character n-grams
(Ciobanu and Dinu, 2015) extracted from the
aligned sequences, see Example 4.

(4) maria, marien
2-grams: {$m, $m}, {ma, ma}, . . . ,

{ia, ie}, {a , en}, { $, n$}
2-grams(mis): {ia, ie}, {a , en}, { $, n$}

For the n-grams we test all combinations of
lengths in {1, 2, 3}. Similarly, for the SPs we use
context sizes of {0, 1, 2}. Furthermore, we com-
bine the n-grams with SPs.

As context feature, we use the cosine similar-
ity between dense vector representations (vec) ob-
tained using positive pointwise mutual informa-
tion with singular value decomposition on a larger
unannotated set of GML texts (1,730,614 tokens)
than the annotated texts used for the experiments.
As suggested by Levy et al. (2015), we have tested
different hyperparameters for the creation of the
dense vectors: dimensions ({125, 250, 375, 500}),
context windows ({2, 5}) and frequency thresh-
olds ({10, 25, 50, 75, 100}). We have also com-
bined the context feature with the best performing
surface features and the surface features with the
best performing context feature.

16

For classification a Support Vector Machine
(SVM) is trained. We use a radial basis function
(RBF) kernel and train the model with the Weka
(Witten et al., 2011) wrapper for LibSVM (Chang
and Lin, 2011) doing a grid-search over the values
{1, 2, . . . , 5} and {10−2, . . . , 102} for the hyper-
parameters c and γ on the development set.

The classifier is trained on positive and negative
examples. As positive examples, we use all the
pairs of spelling variants appearing in the training
data (1834 pairs). In order to obtain negative ex-
amples, we extract pairs of types with a Leven-
shtein distance of 1 and of 2 that do not appear
with the same annotation using only types that ap-
pear at least 10 times in the training data. The fre-
quency threshold is used to reduce the probability
that the pair is actually a pair of spelling variants
that – due to ambiguity of the types – did not oc-
cur as the same morphological word in the training
data. The negative pairs are sampled randomly to
obtain the same number of negative and positive
pairs. In the sampling procedure, we prefer pairs
with a lower Levenshtein distance.

We apply the trained classifier to all candidate
pairs obtained using the generation process de-
scribed in the previous section using the Leven-
shtein distances 1, 2 and 3. Table 3 shows relevant
results.

Overall, all of the features lead to an improve-
ment in F-score over the best F-score obtained us-
ing the Levenshtein distance (0.20) and the undi-
rected SPSim (0.26). Combining the different
types of surface features did not improve the re-
sults.

Differing from the result obtained by Ciobanu
and Dinu (2015) for discriminating between cog-
nates and borrowings, using only n-grams around
mismatches leads to better overall result than us-
ing only n-grams in terms of F-score (0.38 against
0.36), but using all n-grams leads to a slightly bet-
ter recall (0.43 against 0.42). Both features lead
to better results than using SPs, which lead to an
F-score of 0.34. However, the differences between
these three feature types are small and are not sta-
ble across different splits of the dataset.

Using only context features, the results are com-
parable to the results with surface features, regard-
ing the F-score (0.36). However, this F-score re-
sults from a higher recall and a lower precision. A
context size of 2, a small frequency threshold (10)
and the dimensions 500 and 375 lead to the best

results on the data set.
Combining surface and context features re-

sults in the best F-score (0.42) using this ap-
proach. However, in experiments with vectors ob-
tained from a smaller subcorpus (739,576 tokens),
adding the context features led to no improvement
over using only surface features.

Regarding the generation method, the best F-
scores are obtained using a Levenshtein distance
of 1. The increase in recall obtainable by adding
further candidate pairs corresponds to a larger
drop in precision.

Finally, we compare our approach with a rule-
based approach. For this, a set of 26 rules devel-
oped by linguists for the purpose of reducing the
spelling variation in GML texts is used to detect
spelling variants. The rules consist of regular ex-
pressions and substitutions. They are applied in a
fixed order.5 Example 5 gives an exemplary rule.
Example 6 gives the set of spelling variants for
the personal pronoun in first person singular (Engl.
‘I’) and the remaining variants after applying the
rules showing that the number of variants for this
morphological word is reduced from 8 to 2 by the
rule-based approach.

(5) /ck?(?!h)/→ /k/

(6) {ik, ic, ick, jc, jck, jk, yck, yk} → {ik, jk}

All pairs of types that are mapped to the
same form by applying these rules are considered
spelling variants. With this approach a slightly
better F-score as with SPSim is obtaind (0.29),
see Table 4. However, it is outperformed by the
machine learning approach. By simply taking
the union of the sets of spelling variants obtained
using the rules and the best binary classification
model, we obtain the best F-score (0.45), see Ta-
ble 4.

5 Conclusion and future work

In this paper, we presented the task of spelling-
variant detection and preliminary results of an ap-
proach using supervised machine learning, which
was evaluated on Middle Low German texts. The

5The script applying these rules to the data has been cre-
ated by Melissa Farasyn in the project ‘Corpus of Histori-
cal Low German’ (CHLG; http://www.chlg.ac.uk/
index.html) and contains rules by Melissa Farasyn with
additions by Sarah Ihden and Katharina Dreessen both from
the project ‘Reference Corpus Middle Low German/ Low
Rhenish (1200-1650)’.

17

Lev Features R P F1 AVG SD c γ

1 n-gram(mis): 1, 2, 3 0.42 0.34 0.38 0.62 0.86 2 10−1

1 n-gram: 1, 2, 3 0.43 0.31 0.36 0.68 0.91 3 10−1

1 SP: 0, 1 0.37 0.31 0.34 0.60 0.84 2 100

1 vec: 500, 2, 10 0.52 0.28 0.36 0.83 1.08 4 10−1

1 vec: 500, 2, 50, n-gram(mis): 1, 2, 3 0.47 0.37 0.42 0.62 0.87 2 10−1

1 vec: 375, 2, 25, n-gram(mis): 1, 2, 3 0.47 0.38 0.42 0.62 0.86 2 10−1

2 vec: 500, 2, 10, n-gram: 3, n-gram(mis): 1, SP: 2 0.58 0.17 0.26 1.48 1.81 4 10−1

Table 3: Recall and Precision for the binary classification approach
Levenshtein distance (Lev), Recall (R), Precision (P), F-score (F1), Number of candidates per type: average (AVG) and standard
deviation (SD), hyperparameters for the SVM (c, γ)

Method R P F1 AVG SD
Rule 0.19 0.67 0.29 0.20 0.56
SVM 0.47 0.38 0.42 0.62 0.86
SVM+Rule 0.52 0.39 0.45 0.67 0.93

Table 4: Recall and Precision for the rule-based
approach and the combination with the best bi-
nary classification
Recall (R), Precision (P), F-score (F1), Number of can-
didates per type: average (AVG) and standard deviation
(SD)

Lev R P F1 AVG SD
1 0.36 0.03 0.05 3.10 6.62
2 0.65 0.00 0.01 48.49 84.93
3 0.83 0.00 0.00 299.57 368.07
4 0.92 0.00 0.00 913.19 785.16

Table 5: Recall and Precision using the Leven-
shtein distance for English Twitter data
Levenshtein distance (Lev), Recall (R), Precision (P),
F-score (F1), Number of candidates per type: average
(AVG) and standard deviation (SD)

results obtained are better than using a variant of
the trainable edit distance SPSim that was devel-
oped for cognate detection. Furthermore, this ap-
proach outperformed a rule-based approach with
rules developed by linguists for the GML data.
Still, the overall F-score obtained is low. In the
proposed thesis, we will focus on various ways to
improve these results (Section 5.1). In addition,
we will extend the scope of the approach (Section
5.2) and use extrinsic evaluations (Section 5.3).

5.1 Improving spelling-variant detection

Improving the precision of the generator seems
like a promising way to improve the results, as the
drop in precision when going from Levenshtein
distance 1 to 2 for generating candidate pairs, led
to worse results regarding the F-score.

We will also look into ways to improve the
context features, e.g., by using vector represen-
tations obtained from the skip-gram (Mikolov et
al., 2013) or other models. As for historical texts
the amount of texts available is often very lim-
ited, we will experiment with ways to improve the
obtained vector representations from smaller data
sets, e.g., by taking surface similarity into account
as Acharyya et al. (2009) do in their clustering ap-
proach, by improving the representations of rare
words (Sergienya and Schütze, 2015) which are
especially important in spelling-variant detection

or by using only the most frequent types in the
context (Gimpel et al., 2011).

5.2 Extending the scope

For this paper, we limited the data used for train-
ing and evaluation to GML texts from only one di-
alect region and the same time. In future work, we
will expand the scope of variant detection. We will
add data from other dialect regions and time spans,
which will add dialectal and diachronic variation
as well – which is common for historical corpora
that contain heterogeneous texts.

We will also extend the experiments to other
kinds of non-standard data, especially CMC texts.
We did first experiments with Twitter data using
the data of the W-NUT 2015 normalization shared
task (Baldwin et al., 2015) and treated all types
that are normalized with the same type as spelling
variants. Table 5 shows results for generating can-
didate pairs using the Levenshtein distance. There
is a difference when comparing these results to
the results obtained for the GML data (see Table
1): while the number of candidates generated us-
ing the Levenshtein distance is higher, at the same
time the recall is lower. Therefore, we plan to ex-
periment with other ways of generating candidate
pairs in order to reduce the number of pairs that
have to be classified, e.g., by using a distributional
thesaurus (Riedl and Biemann, 2013). A surface

18

based way to improve the recall is to use rules to
simplify the non-standard words, e.g. by reducing
the number of character repetitions to a maximum
of 3 (Han and Baldwin, 2011) thereby detecting
spelling variants like {loool, loooooooool}.

Another difference between contemporary
CMC texts and historical data is the amount
of text that is available. Therefore, e.g., using
context representations should give better results
for this type of data than for the GML data.

In this paper, spelling-variant detection has been
approached on the type level. However, there
is variation on the token level as well (Jurish,
2010b). For example, the dative singular of the
name Maria appears as maria and as marien in the
GML data, whereas the nominative singular only
appears as maria. Therefore, marien is a spelling
variant of maria in do he comen was to maria
‘when he came to Maria’, but not a spelling variant
for maria in maria hett gesegt ‘Maria said’. One
way to approach spelling-variant detection on the
token level is to rank spelling variants generated
for the type. One possible starting point for this is
the system presented by Roark and Sproat (2014)
to expand abbreviations. Similarly to the approach
presented here, one of their models uses an SVM
to evaluate possible expansion candidates. This
model also includes features related to the token
context, as the abbreviation expansion is done for
specific tokens.

Furthermore, for the experiments presented
here, we used texts that have been tokenized man-
ually. This removed spelling variation that in-
volves white space. E.g. the GML word for ‘king-
dom’ appears as koninckryke, konnick ryke and
konynck ryke in the texts. In order to detect this
kind of variation, tokenization has to be combined
with spelling-variant detection or spelling-variant
detection has to be extended to token n-grams.

5.3 Applications

Apart from an intrinsic evaluation of spelling-
variant detection as in this paper, we will also eval-
uate it extrinsically. Next to the approaches that
use detected spelling variants to improve the accu-
racy of POS tagging and lemmatization, we will
employ spelling variants in other tasks.

One of these tasks is normalization. While we
presented spelling-variant detection as an alterna-
tive to normalization in the absence of an existing
standard, it should also be usable to complement

normalization as normalization has to deal with
spelling variation in non-standard words while
mapping these to standard words. For instance,
Jin (2015) uses an approach for normalization,
where for non-standard words, firstly, normaliza-
tion candidates are generated, and, secondly, the
most probable of these candidates is selected. The
candidate generation used in the original approach
cannot generate the correct candidate for spelling
variants of non-standard words that did not ap-
pear in the training data, e.g., you are as a nor-
malization candidate for urr will not be gener-
ated if only ur as a non-standard variant of you
are is known from the training data. Similarly
to the approach that Barteld et al. (2016) used to
improve the lemmatization of non-standard texts,
the knowledge that urr is a spelling variant of ur
could be used to generate the candidate you are
and thereby improve the coverage of the genera-
tor.

Detected spelling variants could also be used
as the basis for an artifical standard that can then
be used as the target for normalization, where no
standard exists. A simple first approach for this
would be to transform the spelling variant relation
into a clustering by using the symmetric transitive
closure and take the most frequent form for each
cluster as the standard form.

Another use case that we are interested in is the
detection of annotation errors in a corpus. One ap-
proach to do this is to use variation n-grams (Dick-
inson and Meurers, 2003) to detect potential er-
rors. In this approach, variation in the annotation
of identical n-grams is used to detect annotation
errors. Spelling variation, however, leads to the
situation that two identical n-grams on the level
of the morphological word appear as different n-
grams on the observable type level (cf. Example
2) which affects the recall of this approach. We
want to employ spelling-variant detection to iden-
tify n-grams that are identical on the level of the
morphological word but differ on the type level
before employing the variation n-gram method for
annotation error detection.

Acknowledgements

This work has been supported by the German Re-
search Foundation (DFG), grant SCHR 999/5-2. I
would like to thank the anonymous reviewers for
their helpful remarks.

19

References
Sreangsu Acharyya, Sumit Negi, L. V. Subramaniam,

and Shourya Roy. 2009. Language independent
unsupervised learning of short message service di-
alect. International Journal on Document Analysis
and Recognition (IJDAR), 12(3):175–184.

Timothy Baldwin, Marie-Catherine de Marneffe,
Bo Han, Young-Bum Kim, Alan Ritter, and Wei
Xu. 2015. Shared tasks of the 2015 workshop on
noisy user-generated text: Twitter lexical normal-
ization and named entity recognition. In Proceed-
ings of the Workshop on Noisy User-generated Text,
pages 126–135. Association for Computational Lin-
guistics.

Alistair Baron, Paul Rayson, and Dawn Archer. 2009.
Word frequency and key word statistics in historical
corpus linguistics. Anglistik: International Journal
of English Studies, 20(1):41–67.

Fabian Barteld, Ingrid Schröder, and Heike Zinsmeis-
ter. 2015. Unsupervised regularization of historical
texts for POS tagging. In Proceedings of the Work-
shop on Corpus-Based Research in the Humanities
(CRH), pages 3–12.

Fabian Barteld, Ingrid Schröder, and Heike Zinsmeis-
ter. 2016. Dealing with word-internal modification
and spelling variation in data-driven lemmatization.
In Proceedings of the 10th SIGHUM Workshop on
Language Technology for Cultural Heritage, Social
Sciences, and Humanities, pages 52–62. Association
for Computational Linguistics.

Marcel Bollmann, Stefanie Dipper, Julia Krasselt, and
Florian Petran. 2012. Manual and Semi-automatic
Normalization of Historical Spelling—Case Studies
from Early New High German. In Proceedings of
the 11th Conference on Natural Language Process-
ing (KONVENS 2012), LThist 2012 Workshop, pages
342–350.

Sabine Brants, Stefanie Dipper, Peter Eisenberg, Sil-
via Hansen-Schirra, Esther König, Wolfgang Lezius,
Christian Rohrer, George Smith, and Hans Uszko-
reit. 2004. TIGER: Linguistic interpretation of a
German corpus. Research on Language and Com-
putation, 2(4):597–620.

Eric Brill and Robert C. Moore. 2000. An improved
error model for noisy channel spelling correction. In
Proceedings of the 38th Annual Meeting of the As-
sociation for Computational Linguistics, pages 286–
293.

Chih-Chung Chang and Chih-Jen Lin. 2011. Libsvm:
A library for support vector machines. ACM Trans.
Intell. Syst. Technol., 2(3):27:1–27:27.

Maria Alina Ciobanu and Liviu P. Dinu. 2014. Au-
tomatic detection of cognates using orthographic
alignment. In Proceedings of the 52nd Annual Meet-
ing of the Association for Computational Linguistics
(Volume 2: Short Papers), pages 99–105. Associa-
tion for Computational Linguistics.

Maria Alina Ciobanu and Liviu P. Dinu. 2015. Au-
tomatic discrimination between cognates and bor-
rowings. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 2: Short Papers),
pages 431–437. Association for Computational Lin-
guistics.

Markus Dickinson and Detmar W. Meurers. 2003. De-
tecting errors in part-of-speech annotation. In 10th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics, pages 107–114.

Stefanie Dipper. 2011. Morphological and Part-of-
Speech Tagging of Historical Language Data: A
Comparison. Journal for Language Technology and
Computational Linguistics (JLCL), 26(2):25–37.

Jacob Eisenstein. 2013. What to do about bad lan-
guage on the internet. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 359–369. Associa-
tion for Computational Linguistics.

Gerd Fritz. 2006. Historische Semantik. Metzler,
Stuttgart and others, 2nd edition.

Phani Gadde, L. V. Subramaniam, and Tanveer A.
Faruquie. 2011. Adapting a WSJ trained part-of-
speech tagger to noisy text: Preliminary results. In
Proceedings of the 2011 Joint Workshop on Multi-
lingual OCR and Analytics for Noisy Unstructured
Text Data, pages 5:1–5:8.

Kevin Gimpel, Nathan Schneider, Brendan O’Connor,
Dipanjan Das, Daniel Mills, Jacob Eisenstein,
Michael Heilman, Dani Yogatama, Jeffrey Flanigan,
and Noah A. Smith. 2011. Part-of-speech tagging
for twitter: Annotation, features, and experiments.
In Proceedings of the 49th Annual Meeting of the
Association for Computational Linguistics: Human
Language Technologies, pages 42–47. Association
for Computational Linguistics.

Luı́s Gomes and José G. P. Lopes. 2011. Measuring
Spelling Similarity for Cognate Identification. In
Luis Antunes and H. Sofia Pinto, editors, Progress
in Artificial Intelligence, Lecture Notes in Computer
Science 7026, pages 624–633. Springer, Berlin, Hei-
delberg.

Stephan Gouws, Dirk Hovy, and Donald Metzler.
2011. Unsupervised mining of lexical variants from
noisy text. In Proceedings of the First workshop on
Unsupervised Learning in NLP, pages 82–90. Asso-
ciation for Computational Linguistics.

Bo Han and Timothy Baldwin. 2011. Lexical normal-
isation of short text messages: Makn sens a #twit-
ter. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 368–378. Asso-
ciation for Computational Linguistics.

20

Andreas W. Hauser and Klaus U. Schulz. 2007. Unsu-
pervised learning of edit distance weights for retriev-
ing historical spelling variations. In Proceedings of
the First Workshop on Finite-State Techniques and
Approximate Search, pages 1–6.

Alexander Hogenboom, Daniella Bal, Flavius Fras-
incar, Malissa Bal, Franciska De Jong, and Uzay
Kaymak. 2015. Exploiting Emoticons in Polarity
Classification of Text. Journal of Web Engineering,
14(1-2):22–40.

Ning Jin. 2015. Ncsu-sas-ning: Candidate genera-
tion and feature engineering for supervised lexical
normalization. In Proceedings of the Workshop on
Noisy User-generated Text, pages 87–92. Associa-
tion for Computational Linguistics.

Bryan Jurish. 2010a. Comparing canonicalizations of
historical german text. In Proceedings of the 11th
Meeting of the ACL Special Interest Group on Com-
putational Morphology and Phonology, pages 72–
77. Association for Computational Linguistics.

Bryan Jurish. 2010b. More than Words: Using To-
ken Context to Improve Canonicalization of Histor-
ical German. Journal for Language Technology and
Computational Linguistics (JLCL), 25(1):23–39.

Mike Kestemont, Walter Daelemans, and Guy De
Pauw. 2010. Weigh your words—memory-based
lemmatization for Middle Dutch. Literary and Lin-
guistic Computing, 25(3):287–301.

Catherine Kobus, François Yvon, and Géraldine
Damnati. 2008. Normalizing sms: are two
metaphors better than one ? In Proceedings of the
22nd International Conference on Computational
Linguistics (Coling 2008), pages 441–448. Coling
2008 Organizing Committee.

Vladimir Levenshtein. 1966. Binary codes capable of
correcting deletions, insertions, and reversals. So-
viet Physics Doklady, 10(8):707–710.

Omer Levy, Yoav Goldberg, and Ido Dagan. 2015. Im-
proving distributional similarity with lessons learned
from word embeddings. Transactions of the Associ-
ation of Computational Linguistics, 3:211–225.

Nikola Ljubešić, Tomaž Erjavec, and Darja Fišer.
2014. Standardizing Tweets with Character-Level
Machine Translation. In Alexander Gelbukh, editor,
15th International Conference CICLing 2014, Pro-
ceedings, Part II, Lecture Notes in Computer Sci-
ence 8404, pages 164–175. Springer, Berlin, Hei-
delberg.

Pavel Logačev, Katrin Goldschmidt, and Ulrike
Demske. 2014. POS-tagging historical corpora:
The case of Early New High German. In Proceed-
ings of the Thirteenth International Workshop on
Treebanks and Linguistic Theories (TLT-13), pages
103–112.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word repre-
sentations in vector space. In Proceedings of the
International Conference on Learning Representa-
tions (ICLR) 2013, Workshop Track.

Hermann Niebaum. 2000. Phonetik und Phonolo-
gie, Graphetik und Graphemik des Mittel-
niederdeutschen. In Sprachgeschichte. Ein
Handbuch zur Geschichte der deutschen Sprache
und ihrer Erforschung. De Gruyter, Berlin, Boston,
2nd edition.

Robert Peters and Norbert Nagel. 2014. Das digi-
tale ,Referenzkorpus Mittelniederdeutsch / Nieder-
rheinisch (ReN)‘. Jahrbuch für Germanistische
Sprachgeschichte, 5(1):165–175.

Michael Piotrowski. 2012. Natural Language Pro-
cessing for Historical Texts. Synthesis Lectures on
Human Language Technologies 17. Morgan & Clay-
pool Publishers.

Martin Reynaert. 2009. Parallel identification of the
spelling variants in corpora. In Proceedings of the
Third Workshop on Analytics for Noisy Unstructured
Text Data 2009, pages 77–84.

Martin Riedl and Chris Biemann. 2013. Scaling to
large3 data: An efficient and effective method to
compute distributional thesauri. In Proceedings of
the 2013 Conference on Empirical Methods in Nat-
ural Language Processing, pages 884–890. Associ-
ation for Computational Linguistics.

Brian Roark and Richard Sproat. 2014. Hippocratic
abbreviation expansion. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
364–369. Association for Computational Linguis-
tics.

Yves Scherrer and Tomaž Erjavec. 2016. Modernising
historical Slovene words. Natural Language Engi-
neering, 22(6):881–905.

Klaus Schulz and Stoyan Mihov. 2002. Fast string cor-
rection with Levenshtein-automata. International
Journal of Document Analysis and Recognition,
5:67–85.

Irina Sergienya and Hinrich Schütze. 2015. Learn-
ing better embeddings for rare words using distribu-
tional representations. In Proceedings of the 2015
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 280–285. Association for
Computational Linguistics.

Richard Sproat, Alan W. Black, Stanley Chen, Shankar
Kumar, Mari Ostendorf, and Christopher Richards.
2001. Normalization of non-standard words. Com-
puter Speech & Language, 15(3):287–333.

Ian H. Witten, Eibe Frank, and Mark A. Hall. 2011.
Data Mining: Practical Machine Learning Tools
and Techniques. Morgan Kaufmann, Burlington,
MA, 3rd edition.

21

Yi Yang and Jacob Eisenstein. 2016. Part-of-speech
tagging for historical english. In Proceedings of the
2016 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1318–1328. As-
sociation for Computational Linguistics.

22

