
Proceedings of the EACL 2017 Software Demonstrations, Valencia, Spain, April 3-7 2017, pages 33–36
c©2017 Association for Computational Linguistics

CASSANDRA: A multipurpose configurable voice-enabled
human-computer-interface

Tiberiu Boros, Stefan Daniel Dumitrescu and Sonia Pipa
Research Center for Artificial Intelligence

Romanian Academy
Bucharest, Romania

tibi@racai.ro, sdumitrescu@racai.ro, sonia@racai.ro

Abstract

Voice enabled human computer interfaces
(HCI) that integrate automatic speech
recognition, text-to-speech synthesis and
natural language understanding have be-
come a commodity, introduced by the im-
mersion of smart phones and other gad-
gets in our daily lives. Smart assistants
are able to respond to simple queries (sim-
ilar to text-based question-answering sys-
tems), perform simple tasks (call a num-
ber, reject a call etc.) and help organiz-
ing appointments. With this paper we in-
troduce a newly created process automa-
tion platform that enables the user to con-
trol applications and home appliances and
to query the system for information us-
ing a natural voice interface. We offer an
overview of the technologies that enabled
us to construct our system and we present
different usage scenarios in home and of-
fice environments.

1 Introduction

Major mobile developers are currently including
some form of personal assistants in their operating
systems, which enable users to control their de-
vice using natural voice queries (see Google Now
in Android, Siri in Apple’s iOS, Microsoft’s Cor-
tana, etc.). While these assistants offer powerful
integration with the device, they are restricted to
that device only - the user (a) is able to control its
device, (b) has access to information from simple
queries (QA systems included by major competi-
tors in the mobile OS world are able to understand
and automatically summarize answers to queries
such as: how is the weather today?, who is the
president of the United States or who was Michael
Jackson) and (c) can organize his/her agenda ac-

cording to the documents stored in his/her own
cloud-hosted storage (Google is able to parse and
obtain information from plane tickets and book-
ings and automatically provides calendar entries
as well as general tips such as your plane leaves
tomorrow at 11 AM and you should be at the
airport before 10 AM due to traffic). We intro-
duce our natural-voice assistive system for pro-
cess automation that enables control of external
devices/gadgets as well as allowing the user to
interact with the system in the form of informa-
tion queries, much like a personal assistant exist-
ing now on mobile devices. The user interacts with
the system using his/her voice, the system under-
stands and acts accordingly by controlling exter-
nal devices or by responding to the user with the
requested information. All the work presented in
this paper was done during the implementation of
the Assistive Natural-language, Voice-controlled
System for Intelligent Buildings (ANVSIB) na-
tional project. We cover aspects related to sys-
tem architecture, challenges involved by individ-
ual tasks, performance figures of the sub-modules
and technical decisions related to the development
of a working prototype. The tools and technolo-
gies are divided in 3 main topics: (a) automatic
speech recognition (ASR); (b) text-to-speech syn-
thesis (TTS) and (c) integration with home au-
tomation services.

2 System architecture

From a logical point of view, the system is di-
vided in three components (each presented in this
paper): ASR, TTS, and integration with exter-
nal services using natural language understanding
(NLU). From an procedural point of view, the sys-
tem has two distinct entities: one entity acts as an
endpoint(client) and is implemented as an android
application that is responsible for (a) acquisition of

33

speech data from the user, processing and recog-
nition (all using external services), as well as the
(b) presentation of data to the user. The second
entity acts as a server and is responsible for re-
ceiving text-input from the endpoint, identifying a
scenario from a limited set, extracting parameters,
performing the necessary operations and returning
information to the endpoint in the form of text, im-
ages and sound.

Because we wanted to keep our system as scal-
able as possible, Automatic Speech Recognition
and Text-to-speech synthesis operations are car-
ried out on external servers. The endpoint can be
configured to access both Cassandra’s own ASR
and TTS services (described here) as well as the
ASR and TTS servers provided by Google Speech
API.

2.1 Cassandra’s TTS synthesis system

Text-to-speech synthesis refers to the conversion
of any arbitrary (unrestricted) text into audio sig-
nal. The unrestricted requirement makes this task
difficult and, while state-of-the-art systems pro-
duce remarkable results in terms of intelligibil-
ity and naturalness, the recipe for producing syn-
thetic voices which are indistinguishable from nat-
ural ones has not yet been found. This limita-
tion is caused by the fact that natural language un-
derstanding still poses serious challenges for ma-
chines and the fact that the surface form of the text
does not provide sufficient cues for the prosodic
realization of a spontaneous and expressive voice
(Taylor, 2009).

TTS synthesis involves two major steps: (a) ex-
traction of features from text and (b) conversion of
symbolic representations into actual speech. The
text processing step (step a) is usually composed
of low-level text-processing tasks such as part-of-
speech tagging, lemmatization, chunking, letter-
to-sound conversion, syllabification etc. The sig-
nal processing task (step b) consists of selecting
an optimal set of speech parameters (given the fea-
tures provided by step a) and generating an acous-
tic signal that best fits these parameters. Text pro-
cessing is performed by our in-house developed
natural language processing pipeline called Mod-
ular Language Processing for Lightweight Appli-
cations (MLPLA) (Zafiu et al., 2015). Most of
the individual modules have been thoroughly de-
scribed in our previous work (Boros, 2013; Boros
and Dumitrescu, 2015), so we only briefly list

them here: the part-of-speech tagger is a neural
inspired approach (Boros et al., 2013b) achiev-
ing 98.21% accuracy on the ”1984” novel by G.
Orwell using morphosyntactic descriptors (MSDs)
(Erjavec, 2004) in the tag-set; all the lexical pro-
cessing modules were described in (Boros, 2013)

For syllabification we used the onset-nucleus-
coda (ONC) tagging strategy proposed in (Bartlett
et al., 2009) and chunking is performed using a
POS-based grammar described in (Ion, 2007).

Our TTS implements both unit-selection (Boros
et al., 2013a) and statistical parametric speech
synthesis. For Cassandra we chose to use para-
metric synthesis with our implementation of the
STRAIGHT filter (Kawahara et al., 1999).

Our TTS system primarily supports English,
German, French and Romanian and can be ac-
cessed for demonstration purposes from our web
portal(link will be provided after evaluation). For
other languages Cassandra uses Google TTS,
which provides statistical parametric speech syn-
thesis for a large number of languages.

2.2 Cassandra’s speech recognition

Cassandra’s Automatic Speech Recognition
(ASR) service was created by our partners,
the Speech and Dialogue Research Laboratory
(http://speed.pub.ro) and it is a scalable and ex-
tensible on-line Speech-to-Text (S2T) solution. A
demo version of the Speech-to-Text (S2T) system
resides in the cloud or in SpeeDs IT infrastructure
and can be accessed on-line using the Web API
or a proprietary protocol. Client applications can
be developed using any technology that is able to
communicate through TCP-IP sockets with the
server application. The server application can
communicate with several clients, serving them
either simultaneously or sequentially.

The speech-to-text system can be configured to
transcribe different types of speech, from a num-
ber of domains and languages. It can be config-
ured to instantiate multiple speech recognition en-
gines (S2T Transcribers), each of these engines
being responsible for transcribing speech from a
specific domain (for example, TV news in Roma-
nian, medical-related speech in Romanian, coun-
try names in English, etc.). The speech recogni-
tion engines are based on the open-source CMU
Sphinx speech recognition toolkit. The ASR sys-
tems with small vocabulary and grammar lan-
guage models were evaluated in depth in (Cucu

34

et al., 2015), while the ASR system with large vo-
cabulary and statistical language model was evalu-
ated in depth in (Cucu et al., 2014). The first ones
have word error rates between 0 and 5%, while
the large vocabulary ASR has a word error rate of
about 16%.

2.3 Natural language processing

The core of Cassandra is driven by a natural lan-
guage processing system that is responsible for re-
ceiving a text and, after analysis and parameter
extraction, acting based on a predefined scenario.
A scenario is the equivalent of a frame in frame-
based dialogue systems. At any time, the end-user
is able to alter Cassandra’s configuration by creat-
ing scenarios or editing existing ones. A scenario
is defined by its name and 3 components:

Component 1 contains a list of example sen-
tences with parameters preceded by a special char-
acter ’$’ which is used to identify them. (e.g. ”Set
the temperature on $value degrees.”)

Component 2 tells the system what to actions
to take, depending on the scenario. Actions are
described in a JSON with the following structure:
(a) gadget - a unique identifier telling the system
what module must be used for processing (e.g. a
light, an A/C unit, the security system, etc.); (b)
gadget parameters - a free-form JSON structure
that tells the system what parameters to pass on to
the gadget (e.g. turn the lights on=1 or off=0, set
A/C to X degrees, etc.). The values of these pa-
rameters can be either constants, predefined sys-
tem variables or actual values extracted from the
text. A gadget can return a text response.

Component 3 is used for feedback. After pro-
cessing, this JSON is returned to the end-point
which initiated the session and it is used to re-
lay information back to the user. This is also a
JSON with 2 attributes: (a) friendly response - a
text response that if present will be synthesized
and played back to the user; the friendly response
can include system variables, parameters extracted
from the text or the response returned by the gad-
get; (b) launch intent - a structure that informs the
end-point that it must launch an external Android
Intent with a given set of parameters; Cassandra
comes with a predefined set of Intents for image
preview, audio playback or video playback.

The methodology for scenario identification and
parameter extraction is performed in three sequen-
tial steps: (a) the scenario is identified using Long-

Short Term Memory neural networks and word
embeddings; (b) parameter start/stop markers are
then added using a deep neural network classifier
trained on a window of 4 words; (c) next, param-
eter types are added using a window of six words,
in which the parameters are ignored. Theoret-
ically, parameter identification (c) and boundary
detection (b) could be carried out simultaneously.
However, we found that splitting this task in two
steps works significantly better, mainly because it
mitigates the data sparsity issue. An interesting
observation is that using word embeddings in the
scenario identification step, allowed the system to
identify the query ”It’s too hot” as an air condi-
tioning activity, though the training data only con-
tained examples such as: ”Set AC to $value”, ”Set
the temperature to $value degrees” etc.

Because we wanted to keep the system as lan-
guage independent as possible, the only external
resources required for language adaptation is a
word embeddings file extracted using word2vec
(Mikolov et al., 2014). The process is simple and
given a large enough corpus (e.g. a Wikipedia
dump) one can obtain good embeddings by run-
ning the word2vec tool on the tokenized text.

3 Standard gadgets and usage scenarios

At submission time we have already implemented
4 demo scenarios:

Scenario 1 is a standard query system, in which
the user can ask Cassandra various questions (for
example ”how is the weather”) to which the sys-
tem will respond using a Knowledge Base (KB).
The KB was built using Wikipedia for Romanian
and English.

Scenario 2 is a home automation system that
allows the user to control home appliances using
a natural voice interface. There are several pre-
defined tasks such as multimedia, lighting, cli-
mate and security system control. Communica-
tion with these devices is performed through KNX
(EN 50090, ISO/IEC 14543), which is a purpose-
built standardized network communication proto-
col that is simple and scalable.

Scenario 3 is a set of hard-coded short ques-
tions/answers that increase Cassandra’s appeal.
For example, this Q/A set contains a game called
”shrink”. It enables the system to perform word
associations in a similar manner in which a psy-
chologist would ask a patient to do. This particular
game proved to be very appealing to the users in

35

our test group primarily because it made the sys-
tem seem more ”life-like”.

Scenario 4 is a business oriented demo. We in-
tegrated Cassandra with a Document Management
System (DMS) and created an application that
filters documents based on associated meta-data.
The interaction is described using a large JSON in
which all parameters are optional, missing param-
eters being ignored by the system. By doing so
we are able to respond to queries such as: ”Give
me all invoices”, ”Give me all invoices issued to
Acme Computers”, ”Give me all invoices issued
to Acme computers that are due in two weeks” etc.
We find this scenario particularly interesting from
a commercial point-of-view, especially because it
enables users access to the DMS without being
forced to master any specific search skills. In a
similar way, an application could be built to give
users access to databases and enable them to con-
struct complex queries and reports with no SQL
knowledge whatsoever: ”Give me a list of cus-
tomers that bought tablets over the last 6 months
and group them by age”.

4 Conclusions and future development

Cassandra is an open-source, freely available per-
sonal assistant and, from our knowledge, the only
system that is extensible to several languages, not
only English, using minimal effort. We intend
to further develop this system and extend the ba-
sic set of applications to suit most common usage
scenarios, as well as to offer more complex NLP-
powered business scenarios that integrate with var-
ious existing software and hardware implementa-
tions. A necessary next step in the near future is to
create an open source repository that will enable
the creation of a community of developers around
it.

Acknowledgements: This work was supported
by UEFISCDI, under grant PN-II-PT-PCCA-
2013-4-0789, project Assistive Natural-language,
Voice-controlled System for Intelligent Buildings
(2013-2017).

References
Susan Bartlett, Grzegorz Kondrak, and Colin Cherry.

2009. On the syllabification of phonemes. In Pro-

ceedings of Human Language Technologies: North
American Chapter of the Association for Computa-
tional Linguistics, pages 308–316. Association for
Computational Linguistics.

Tiberiu Boros and Stefan Daniel Dumitrescu. 2015.
Robust deep-learning models for text-to-speech syn-
thesis support on embedded devices. In Proceedings
of the 7th International Conference on Management
of computational and collective intElligence in Dig-
ital EcoSystems, pages 98–102. ACM.

Tiberiu Boros, Radu Ion, and tefan Daniel Dumitrescu.
2013a. The racai text-to-speech synthesis system.

Tiberiu Boros, Radu Ion, and Dan Tufis. 2013b. Large
tagset labeling using feed forward neural networks.
case study on romanian language. In ACL (1), pages
692–700.

Tiberiu Boros. 2013. A unified lexical processing
framework based on the margin infused relaxed al-
gorithm. a case study on the romanian language. In
RANLP, pages 91–97.

Horia Cucu, Andi Buzo, Lucian Petrică, Dragoş
Burileanu, and Corneliu Burileanu. 2014. Recent
improvements of the speed romanian lvcsr system.
In Communications (COMM), 2014 10th Interna-
tional Conference on, pages 1–4. IEEE.

Horia Cucu, Andi Buzo, and Corneliu Burileanu.
2015. The speed grammar-based asr system for
the romanian language. ROMANIAN JOURNAL OF
INFORMATION SCIENCE AND TECHNOLOGY,
18(1):33–53.

Tomaz Erjavec. 2004. Multext-east version 3: Multi-
lingual morphosyntactic specifications, lexicons and
corpora. In LREC.

Radu Ion. 2007. Word sense disambiguation methods
applied to english and romanian. PhD thesis. Roma-
nian Academy, Bucharest.

Hideki Kawahara, Ikuyo Masuda-Katsuse, and Alain
De Cheveigne. 1999. Restructuring speech rep-
resentations using a pitch-adaptive time–frequency
smoothing and an instantaneous-frequency-based f0
extraction: Possible role of a repetitive structure in
sounds. Speech communication, 27(3):187–207.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2014. word2vec.

Paul Taylor. 2009. Text-to-speech synthesis. Cam-
bridge university press.

Adrian Zafiu, Tiberiu Boros, and Stefan Daniel Du-
mitrescu. 2015. Modular language processing for
lightweight applications. In Proceedings of Lan-

guage & Technology Conference.

36

