
Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers, pages 752–758,
Valencia, Spain, April 3-7, 2017. c©2017 Association for Computational Linguistics

End-to-End Trainable Attentive Decoder for Hierarchical Entity
Classification

Sanjeev Kumar Karn1,2, Ulli Waltinger2 and Hinrich Schütze1

1LMU Munich
2Siemens Corporate Technology Munich
1sanjeev.karn@campus.lmu.de

2{sanjeev.kumar karn,ulli.waltinger}@siemens.com

Abstract

We address fine-grained entity classifica-
tion and propose a novel attention-based
recurrent neural network (RNN) encoder-
decoder that generates paths in the type
hierarchy and can be trained end-to-end.
We show that our model performs better
on fine-grained entity classification than
prior work that relies on flat or local clas-
sifiers that do not directly model hierarchi-
cal structure.

1 Introduction

Many tasks in natural language processing involve
hierarchical classification, e.g., fine-grained mor-
phological and part-of-speech tags form a hierar-
chy (Mueller et al., 2013) as do many large topic
sets (Lewis et al., 2004). The task definition can
either specify that a single path is correct, corre-
sponding to a single-label classification problem
at the lowest level of the hierarchy, e.g., in fine-
grained morphological tagging; or that multiple
paths can be correct, corresponding to a multilabel
classification problem at the lowest level of the hi-
erarchy, e.g., in topic classification.

In this paper, we address fine-grained entity
mention classification, another problem with a
hierarchical class structure. In this task, each
mention can have several fine-grained types, e.g.,
Obama is both a politician and an author in a con-
text in which his election is related to his prior suc-
cess as a best-selling author; thus, the problem is
multilabel at the lowest level of the hierarchy.

Two standard approaches to hierarchical classi-
fication are flat and local classification. In flat clas-
sification (e.g., FIGER (Ling and Weld, 2012), At-
tentive Encoder (Shimaoka et al., 2016; Shimaoka
et al., 2017)), the task is formalized as a flat mul-
ticlass multilabel problem. In local classification
(Gillick et al., 2014; Yosef et al., 2012; Yogatama

et al., 2015), a separate local classifier is learned
for each node of the hierarchy. In both approaches,
some form of postprocessing is necessary to make
the decisions consistent, e.g., an entity can only be
a celebrity if they are also a person.

In this paper, we propose an attentive RNN
encoder-decoder for hierarchical classification.
The encoder-decoder performs classification by
generating paths in the hierarchy from top node
to leaf nodes. Thus, we model the structure of the
hierarchy more directly than prior work. On each
step of the path, part of the input to the encoder-
decoder is an attention-weighted sum of the states
of a bidirectional Gated Recurrent Unit (GRU)
(Cho et al., 2014) run over the context of the men-
tion to be classified. Unlike prior work on hierar-
chical entity classification, our architecture can be
trained end-to-end. We show that our model per-
forms better than prior work on the FIGER dataset
(Ling and Weld, 2012).

This paper is structured as follows. In Section 2,
we provide a detailed description of our model
PthDCode. In Section 3, we describe and analyze
our experiments. In Section 4, we discuss related
work. Section 5 concludes.

2 Model

Figure 1 displays our model PthDCode.
We use lowercase italics for variables, upper-

case italics for sequences, lowercase bold for vec-
tors and uppercase bold for matrices. Sentence
S = 〈x1, . . . , x|S |〉 is a sequence of words, rep-
resented as embeddings xi, each of dimension d.
The classes of an entity are represented as y, a vec-
tor of l binary indicators, each indicating whether
the corresponding class is correct. Hidden states
of forward and backward encoders and of the de-
coder have dimensionality p.

PthDCode extracts mention 〈xb, . . . , xr〉, right
context Rc = 〈xr+1, . . . , xr+w〉 and left context
Lc = 〈xb−1, . . . , xb−w〉 where w is a parameter.
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Figure 1: PthDCode, the attentive encoder-decoder for hierarchical entity classification

The representation m of the mention is computed
as the average of its r− b+1 vectors. The context
is represented by C, a matrix of size 2w×2p; each
column of C consists of two hidden state vectors h
(each of dimension 2p), corresponding to forward
and backward GRUs run on Lc and Rc.

The initial state s0 of PthDCode’s decoder RNN
is computed using the mention representation m
compressed to p dimensions by an extra hidden
layer (not shown in the figure). Initial output y0

is a dummy symbol SOL (Start Of Label), and ini-
tial attention weights c0 are set to zero. At each
path generation step i , attention weights αij are
computed following Bahdanau et al. (2014):

αij =
exp(eij)∑2w

j=1 exp(eij)
(1)

eij = att(si−1,C.j) (2)

where att is a feedforward network with softmax
output layer and C.j is the jth column of C. The
final context representation for the decoder is then
computed as ci =

∑2w
j=1 αijC.j . In Figure 1,

dashed objects are used for indicating involvement
in calculating attention weights.

The attention-weighted sum ci and the current
state si−1 are used to predict the distribution yi

over entity classes (non-dashed *-nodes in Fig-
ure 1):

yi = g (si−1, ci) (3)

where g is a feedforward network with element-
wise sigmoid. Finally, PthDCode uses prediction

yi, weighted average ci and previous state si−1 to
compute the next state:

si = f(si−1,yi, ci) (4)

The loss function at each step or level is binary
cross-entropy:

1
l

l∑
k=1

−tik log(yik)− (1− tik) log(1− yik) (5)

where yi and ti are prediction and truth and l the
number of classes. The objective is to minimize
the total loss, i.e., the sum of the losses at each
level. During inference, we compute the Cartesian
product of predicted types at each level and filter
out those paths that do not occur in train.

3 Experiments and results

Dataset. We use the Wiki dataset (Ling and Weld,
2012) published by Ren et al. (2016).1 It consists
of 2.69 million mentions obtained from 1.5 million
sentences sampled from Wikipedia articles. These
mentions are tagged with 113 types with a max-
imum of two levels of hierarchy. Ling and Weld
(2012) also created a test set of 434 sentences that
contain 562 gold entity mentions. Similar to prior
work (Ling and Weld, 2012; Ren et al., 2016; Yo-
gatama et al., 2015; Shimaoka et al., 2017), we
randomly sample a training set of 2 million and a
disjoint dev set of size 500.

1https://drive.google.com/file/d/
0B2ke42d0kYFfVC1fazdKYnVhYWs
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Figure 2: Learning curve

Evaluation. Like prior work, we use three F1

metrics, strict, loose macro and loose micro, that
differ in the definition of precision P and recall
R. Let n be the number of mentions, Ti the true
set of tags of mention i and Yi the predicted set.
Then, we define P = R = 1/n

∑n
i=1 δ(Yi = Ti)

for strict; P = 1/n
∑n

i=1(|Yi ∩ Ti|)/(|Yi|) and
R = 1/n

∑n
i=1(|Yi ∩ Ti|)/(|Ti|) for loose macro;

and P = (
∑n

i=1 |Yi ∩ Ti|)/(
∑n

i=1 |Yi|) and R =
(
∑n

i=1 |Yi ∩ Ti|)/(
∑n

i=1 |Ti|)) for loose micro.
Parameter Settings. We use pre-trained word

embeddings of size 300 provided by (Pennington
et al., 2014). OOV vectors are randomly initial-
ized. Similar to (Shimaoka et al., 2017), all hid-
den states h of the encoder-decoder were set to 100
dimension and mention lengths m to 5. Window
size is w = 15. We bracket left and right contexts
with special start and end symbols. For short left /
right contexts, we bracket with additional different
start / end symbols that are masked out for calcula-
tion of loss and attention weights. Another special
symbol EOL (End Of Label) is appended to short
paths, so that all hierarchical paths have the same
length. We use ADAM (Kingma and Ba, 2014)
with learning rate .001 and batch size 500. Fol-
lowing (Srivastava et al., 2014), we regularize our
learning by dropout of states used in computing
prediction as in Eq. 3 with probability of .5. Simi-
larly, we also drop out feedback connections used
in computing next states as in Eq. 4 with probabil-
ity of .2. We also add Gaussian noise with a proba-
bility of .1 to feedforward weights. The weights of
feedforward units are initialized with an isotropic
Gaussian distribution having mean 0 and standard
deviation .02 while weights of recurrent units are
initialized with random orthogonal matrix.

Results. As shown in Figure 2, we evaluate our
model on dev and test sets after every 2k iterations

and report the performances of the models that are
stable in all form of metrics on dev set. The rea-
son for evaluating on range of models is nature of
collection of dev and test data. We use cv = σ/µ,
the coefficient of variation (Brown, 1998), to se-
lect and combine models in application. After an
initial training stage, we compute cv for each of
the three metrics for windows of 10,000 iterations,
startpoints have the form 4000 + 6000s. For a
given window starting at iteration 2000t, we com-
pute cv of the three metrics based on the six itera-
tions 2000(t + i), 0 ≤ i ≤ 5. We select the range
with the lowest average cv; this was the interval
[40000, 50000]; cf. Figure 2. Since train and test
data are collected from different sources, the sen-
sitive strict measure varies with a larger standard
deviation compared to other metrics.

Table 1 shows performance of PthDCode on
test, based on the interval [40000, 50000]; av-
erage and standard deviation are computed for
2000(20 + i), 0 ≤ i ≤ 5, as described above.
PthDCode achieves clearly better results than
other baseline methods – FIGER (Ling and Weld,
2012), (Yogatama et al., 2015) and (Shimaoka et
al., 2017) – when trained on raw (i.e., not de-
noised) datasets of a similar size. Attentive en-
coder (Shimaoka et al., 2017) is a neural base-
line for PthDCode, to which comparison in Ta-
ble 1 suggests decoding of path hierarchy rather
than flat classification significantly improves the
performance. Ren et al. (2016) implementation of
FIGER (Ling and Weld, 2012) trained on the de-
noised corpus performs better on strict and loose
micro metrics, but as the training data are differ-
ent, results are not directly comparable. An im-
portant observation in Table 1 is that most of the
improved systems (Ren et al., 2016; Yogatama et
al., 2015) consider entity classification in a hierar-
chical setup either through denoising or classifica-
tion. One can also observe that our model achieves
relatively high increase in terms of loose macro.
The reason for this is mostly because of the macro
F1 direct dependence on average precision and av-
erage recall, which in our case is relatively high
because of large improvement in the recall.

Table 2 shows that for level-wise comparisons
on loose micro F1, PthDCode improves recall
compared to Yogatama et al. (2015)’s precision
oriented system. We attribute this increase in re-
call and F1 to the fact that PthDCode at each step
collects feedback from the preceding level and is
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strict macro F1 micro F1

FIGER, L&W .532 .699 .693
Yogatama et al. – – .723
Shimaoka et al. .545 .748 .716
PthDCode .586±.016 .793±.005 .742±.005
HYENA, Ren et al. .543 .695 .681
FIGER, Ren et al. .589 .763 .749

Table 1: Entity classification evaluation on origi-
nal data (top four rows). For comparison, we also
provide results by Ren et al. (2016) on denoised
data (bottom two rows).

Level 1 Level 2
P R F1 P R F1

Yogatama et al. .828 .704 .761 .682 .471 .557
PthDCode .788 .830 .808 .534 .641 .583

Table 2: Per-level evaluation

trained end-to-end.
Table 3 shows, for some examples, which five

words received the highest attention on level 1
(L1) and on level 2 (L2). The words are or-
dered from highest to lowest attention. We see
that PthDCode attends to “from” for the location
“Glasgow”, but not for the organization “Univer-
sity of Glasgow”. We also see that some words
appear only on one of the two levels, e.g., for the
mention “Glasgow”, the context word “Glasgow”
only appears on level 2. This indicates the bene-
fit of level-wise attention. The last row shows an
example of two types, /PEOP, /PEOP/Ethnc, that
are correct, but are not part of the gold standard,
so we count them as errors.

4 Related work

Named entity recognition (NER) is the joint prob-
lem of entity mention segmentation and entity
mention classification (Finkel et al., 2005; Mc-
Callum and Li, 2003). Most work on NER uses
a small set of coarse-grained labels like person
and location, e.g., MUC-7 (Chinchor and Robin-
son, 1998). Most work on the fine-grained FIGER
(Ling and Weld, 2012) and HYENA (Yosef et al.,
2012) taxonomies has cast NER as a two-step pro-
cess (Elsner et al., 2009; Ritter et al., 2011; Collins
and Singer, 1999) of entity mention segmentation
followed by entity mention classification. The rea-
son for two-step is the high complexity of joint
models for fine-grained entity recognition. A joint
model like CRF (Lafferty et al., 2001) has a state
space corresponding to segmentation type times
semantic types. Introducing a larger class set into

joint models already increases the complexity of
learning drastically, furthermore the multilabel na-
ture of fine-grained entity mention classification
explodes the state space of the exponential model
further (Ling and Weld, 2012).

Utilizing fine-grained entity information en-
hances the performance for tasks like named en-
tity disambiguation (Yosef et al., 2012), relation
extraction (Ling and Weld, 2012) and question
answering (Lin et al., 2012; Lee et al., 2006).
A major challenge with fine grained entity men-
tion classification is the scarcity of human anno-
tated datasets. Currently, most of the datasets
are collected through distant supervision, utilizing
Wikipedia texts with anchor links to obtain entity
mentions and using knowledge bases like Freebase
and YAGO to obtain candidate types for the men-
tion. This introduces noise and complexities like
unrelated labels, redundant labels and large sizes
of candidate label sets. To address these chal-
lenges, Ling and Weld (2012) mapped Freebase
types to their own tag set with 113 types, Yosef et
al. (2012) derived a 505-subtype fine-grained tax-
onomy using YAGO knowledge base, Gillick et al.
(2014) devised heuristics to filter candidate types
and, most recently, Ren et al. (2016) proposed a
heterogeneous partial-label embedding framework
to denoise candidate types by jointly embedding
entity mentions, context features and entity type
hierarchy.

We address fine-grained entity mention classi-
fication in this paper. A related problem is fine-
grained entity typing: the problem of predicting
the complete set of types of the entity that a men-
tion refers to (Yaghoobzadeh and Schütze, 2017).
For the sentences “Obama was elected president”
and “Obama graduated from Harvard in 1991”,
fine-grained entity mention classification should
predict “politician” for the first and “lawyer” for
the second. In contrast, given a corpus contain-
ing these two sentences, fine-grained entity typing
should predict the types {“politician”, “lawyer”}
for “Obama”.

A common approach for solving hierarchical
problems has been flat classification, i.e., not mak-
ing direct use of the hierarchy. But exploiting
the hierarchical organization of the classes reduces
complexity, makes better use of training data in
learning and enhances performance. Gillick et
al. (2014) showed that addressing the entity clas-
sification problem with a hierarchical approach
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mention predict types left context right context L1 attention L2 attention
Lexar /ORG,

/ORG/Comp
According to Photogra-
phyBlog , SanDisk and

have no immediate plans
to produce XQD or WiFi
SD cards .

to cards Ac-
cording San-
Disk .

According
. SanDisk
cards and

University
of Glasgow

/ORG,
/ORG/ED-
INST

The study is from the
College of Medical , Vet-
erinary & Life Sciences ,

, Glasgow , UK . The . Sci-
ences Glas-
gow ,

The . Veteri-
nary Sciences
study

Glasgow /LOC,
/LOC/city

from the College of Med-
ical , Veterinary & Life
Sciences , University of
Glasgow ,

, UK . from . Uni-
versity the
UK

from . Glas-
gow College
Veterinary

South
Asian

/LOC,
/PEOP,
/PEOP/Ethnc

“ The student groups and cul-
tures are very different
than the East Asian stu-
dent groups and cultures

cultures “ stu-
dent cultures
The

cultures “ stu-
dent The cul-
tures

Table 3: Top 5 Attention per level (L1/L2). ORG = organization, Comp = company ED-INST =
educational institution, LOC = Location, PEOP = People, Ethnc = ethnicity

through local classifiers for each label in the hier-
archy and enforcing their outputs to follow a sin-
gle path in it improved performance. Similarly,
Yosef et al. (2012) used a set of support vector ma-
chine classifiers corresponding to each node in the
hierarchy and then postprocessed them during in-
ference through a metaclassifier. Yogatama et al.
(2015), using a kernel enhanced WSABIE embed-
ding method (Weston et al., 2011), learned an em-
bedding for each type in the hierarchy and during
inference filtered out predicted types that exceeded
a threshold limit and did not fit into a path. Ren et
al. (2016) showed that mapping a set of correla-
tions, more specifically correlations of the types
in the hierarchy, into an embedding space gener-
ates embeddings for mentions and types. These
embeddings were then used for filtering the noisy
candidate types and for denoising the train corpus.
Ren et al. (2016) also showed that using the de-
noised corpus with baseline methods of (Ling and
Weld, 2012; Yosef et al., 2012) enhanced the per-
formance of those baseline methods significantly.

Recurrent neural networks (RNN) have been
a successful model for sequence modeling tasks.
Introduction of RNN based encoder-decoder ar-
chitectures (Cho et al., 2014; Sutskever et al.,
2014) addressed the end to end sequence to se-
quence learning problem that does not highly
depend on lengths of sequences. Bahdanau
et al. (2014) included attention mechanism to
an encoder-decoder architecture and subsequently
several other methods used them to improve per-
formance on a range of tasks, e.g., machine trans-
lation (Bahdanau et al., 2014), image captioning
(Xu et al., 2015), question answering (Kumar et
al., 2016), morphological reinflection (Kann and

Schütze, 2016). Recently, Shimaoka et al. (2016)
and Shimaoka et al. (2017) included attention
weighted contextual information into their logistic
classification based entity classification model and
showed improvement over traditional and non-
attention based LSTM models.

In this paper, we describe the first decoder for
hierarchical classification. It is trained end-to-end
to predict paths from root to leaf nodes and also
leverages attention-weighted sums of hidden state
vectors of context when predicting classes at each
level of the hierarchy.

5 Conclusion

We introduced an entity mention classification
model that learns to predict types from an en-
tity type hierarchy using an encoder-decoder with
a level-wise contextual attention mechanism. A
clear improvement in performance is observed at
each level as well as in overall type hierarchy
prediction compared to models trained in a com-
parable setting and performance close to models
trained on datasets that have been denoised. We
attribute this good performance to the fact that our
method is the first neural network model for hier-
archical classification that can be trained end-to-
end while taking into account the tree structure of
the entity classes through direct modeling of paths
in the hierarchy.
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