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Abstract

Many important email-related tasks, such
as email classification or search, highly
rely on building quality document rep-
resentations (e.g., bag-of-words or key
phrases) to assist matching and under-
standing. Despite prior success on rep-
resenting textual messages, creating qual-
ity user representations from emails was
overlooked. In this paper, we propose
to represent users using embeddings that
are trained to reflect the email communi-
cation network. Our experiments on En-
ron dataset suggest that the resulting em-
beddings capture the semantic distance be-
tween users. To assess the quality of em-
beddings in a real-world application, we
carry out auto-foldering task where the
lexical representation of an email is en-
riched with user embedding features. Our
results show that folder prediction accu-
racy is improved when embedding fea-
tures are present across multiple settings.

1 Introduction

Email has been an important asynchronous com-
munication channel that people use on a daily ba-
sis. A large body of research has laid focus on cre-
ating intelligent systems by analyzing the content
of email messages, with a purpose to assist users in
automating their tasks (Lewis and Knowles, 1997;
Drucker et al., 1999; Kushmerick and Lau, 2005;
Tam et al., 2012). Email classification, as an ex-
ample, relies on machine learned models to cate-
gorize messages into folders by using text features
such as bag-of-words or keywords (Bekkerman et
al., 2004; Dredze et al., 2008). Similarly, tasks
such as email search (Minkov et al., 2008), email
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summarization (Carenini et al., 2008), and spam
filtering (Gee, 2003) all depend on properly rep-
resenting the content of the message body, which
then can be consumed in the target tasks. While
many of these studies have brought success in rep-
resenting textual messages, creating quality repre-
sentations of users was not fully investigated.

Considering users as nodes in a graph spanned
by email correspondences, a good representation
of users can be helpful for many tasks since in-
formation is communicated from/to these vertices.
In the email domain, the mainstream approaches
to representing users are based on bag-of-words
or keywords features (Bekkerman et al., 2004;
Dredze et al., 2008). Many previous efforts model
users and their interactions in social networks or
recommendation systems (Grover and Leskovec,
2016; Liang et al., 2016; Zhao et al., 2010).
Emails, although can be viewed as a special kind
of social platform, tend to generate interactions
within a smaller group of participants, requiring
a dense representation to help bridge the gap be-
tween even the farthest users. In this paper, we
propose to learn user embeddings to form such
representations, with an aim that these embed-
dings can bring benefits to email-related tasks.

To learn user embeddings, we consider a graph
structure formed by vertices of senders and recip-
ients, which are connected by edges of the mes-
sages they exchange. Based on this graph, our ap-
proach learns user embeddings jointly with word
embeddings in a concatenated space, which treats
users as features affecting the semantics of the
email content. The resulting user embeddings are
expected to correspond to users’ sending and re-
ceiving activities.

We conduct embedding learning using a pub-
licly available email corpus − the Enron dataset.
Our analytical results suggest that the more of-
ten users communicate, the more similar their em-
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beddings are. To study the effectiveness of user
embeddings in a real application, we apply user
embeddings to a surrogate task − email auto-
foldering, where lexical and embeddings features
are employed for folder prediction. We follow
a conventional setting (Bekkerman et al., 2004;
Dredze et al., 2008; Tam et al., 2012) where a
selected set of users are tested. Our baseline ap-
proaches take into account two most effective se-
tups from prior work where the combination of
email content and metadata is featurized. Our
experimental results show that incorporating user
embeddings consistently improves prediction ac-
curacy compared to those with only lexical fea-
tures.

2 Approach

Our approach to learning user embeddings is
based on the continuous bag-of-words (CBOW)
structure, similar to the method proposed by Le
and Mikolov (2014), which treats paragraph as an
external feature that affects, and being trained in,
the process of word embedding learning. We take
the essence of the aforementioned work, and on
the top of that add user embeddings from both
sender and recipients to learn word embeddings.
Following this design, the semantics captured by
word embedding learning are expected to be af-
fected by users who are involved in the email com-
munication.

Figure 1 shows the framework of our approach.
The projection layer is a concatenation of user and
word embeddings following the order of sender,
words and recipients. Since most email scenar-
ios usually involve more than one recipient, our
framework averages the embeddings from all re-
cipients in the projection layer. The sender and
the averaged recipient can be thought of as two
global features acting as a shared condition of the
environment when surveying the entire content of
an email. Intuitively, the word embeddings cap-
ture the senders and the recipients when they are
learned from email content.

More formally, every output word wo is ob-
tained by a softmax to maximize

p(wo|wi, ..., wi+n, s, r1, ..., rm) =
eywt∑

w∈V eyw
(1)

where s is a sender and r1, ..., rm represent
m recipients. yw refers to unnormalized log-

Figure 1: Our framework of learning user embed-
dings. Sender and recipients are mapped into cor-
responding embeddings and concatenated with the
sum of word embeddings in the project layer. wi

and wo refer to input and output words in email
content.

probability for a word w in vocabulary V by

y = Xh(wi, ..., wi+n; W, s, r1, ..., rm; U) + b (2)

where X , b are the softmax parameters. W and
U are matrix of word and user embeddings where
wi, ..., wi+n and s, r1, ..., rm are extracted from. h
is constructed by concatenating word and user em-
beddings in the order shown in Figure 1, defined
as

h = vs ⊕
i+n∑
j=i

vj ⊕ 1
m

m∑
r=1

vr (3)

where vs, vj and vr are embeddings of the sender,
content words and recipients, respectively. Partic-
ularly, embeddings from input words are summed
dimension-wise to the project layer, just like in the
CBOW structure. Averaging over the embeddings
of recipients in h is because we treat all recipients
equally important and thus so are their contribu-
tions to the projection layer. For efficiency, we
follow the hierarchical softmax optimization used
in word2vec (Mikolov et al., 2013).

In general, this framework can be considered a
step-by-step learner that traverses a user network
derived from email headers (senders and recipi-
ents), where in each step the learner learns a par-
tial network from one user node to others via edges
of email communications. We note that, like con-
ventional word embedding learning, our approach
can be considered as an offline learner since the
learned embeddings cannot represent users absent
in training data. To address this, one can always
introduce a special token to present unknown users
in the training stage, which is a commonly adopted
technique in word embedding learning.
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Set1 Set2
User #Folder #Msg #Folder #Msg
beck-s 102 1795 78 1749
farmer-d 28 3677 25 3672
kaminski-v 37 2691 32 2684
lokay-m 12 2494 11 2493
sanders-r 31 1184 29 1181
williams-w3 20 2771 17 2766

Table 1: Email statistics for a selected set of users
in Enron. Set1 removes non-topical folders while
Set2 additionally disregards small folders.

In a recent work proposed by (Yu et al., 2016),
they obtained user embeddings through learning
word embeddings from social texts. Their idea
is similar to ours in terms of using a joint learn-
ing framework, but differs in two aspects. Their
model relied on document vectors when trained di-
rectly or indirectly with word embeddings, while
our framework does not require separate document
embeddings in training. Furthermore, their user
embeddings were averaged with word embeddings
for next word prediction, which thus can be seen
as a special type of word embeddings. In our
approach user embeddings are concatenated with
word embeddings in the projection layer, so that it
can provide more explicit information when learn-
ing word embeddings.

Our work is also related to studies of learning
vertex representation in social network (Perozzi et
al., 2014; Tang et al., 2015; Cao et al., 2015). To
represent user nodes, this line of work focused on
analyzing network structure which is often formed
by semantic edges (e.g., edges that indicate friend-
ship or authorship). On the contrary, emails con-
nect users in our work, meaning that the edges
are composed of lexical content which provides
more fine-grained signals than simple relational
edges. This critical difference motivates us to de-
sign our framework, since the way prior methods
connect users may result in a large number of iso-
lated islands in email corpus, due to its lower de-
gree of connectivity. Instead, our method repre-
sents users via learning the similar content they
send/receive, which thus helps creating soft con-
nections between users as long as “they speak the
same language”.

3 Experiments

We evaluate our approach using a publicly avail-
able email corpus, the Enron dataset (Klimt and

Figure 2: The similarity between users’ embed-
dings positively correlates with the frequency that
the two users communicates. X-axis: bucketed
intervals of cosine similarity between users’ em-
beddings. Y-axis: logarithm of average number of
times emails being exchanged.

Yang, 2004)1. The entire collection is considered
for training user and word embeddings. We pre-
process the documents using our in-house normal-
izers, which replace all URLs, Date, Time, Ad-
dress, Phone Numbers with unified symbols, so as
to reduce the sparsity of the data. The dimension
of embeddings is set to 100.

Previous work on the auto-foldering task mainly
focused on modeling message content and meta-
data to group together emails by their semantics.
Bekkerman et al. (2004) extracted bag-of-words
as document representation, whereas Dredze et al.
(2008) adopted LDA to generate summary key-
words for auto-foldering and recipient prediction.
In recent work by Tam et al. (2012), multiple
features were generated from different fields such
as subject, body and participants. Grbovic et al.
(2014) tackled email classification from a differ-
ent angle. In their setup, the target folders were
aggregated and inferred by running LDA on the
entire corpus, which is different from the work that
concentrates on predicting user defined folders.

To evaluate applying user embeddings to
auto-foldering, we follow conventional settings
(Bekkerman et al., 2004; Dredze et al., 2008; Tam
et al., 2012) where personal emails from a set of
users are adopted for prediction. Similar to pre-
vious work, we remove non-topical folders such
as Inbox, Sent-Items, Deleted Items, etc., from the
data, and further folders with a small number of
messages, i.e., ≤ 3, are disregarded. The statistics

1http://www.cs.cmu.edu/˜enron/
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Learner Approach beck-s farmer-d kaminski-v lokay-m sanders-r williams-w3 Avg
SB 0.68 0.79 0.79 0.83 0.77 0.93 0.80

LR SB+Emb 0.73 0.81 0.80 0.87 0.80 0.95 0.83
SBFT 0.73 0.82 0.81 0.87 0.82 0.95 0.83
SBFT+Emb 0.74 0.82 0.81 0.87 0.82 0.96 0.84
SB 0.52 0.77 0.73 0.80 0.68 0.91 0.74

AP SB+Emb 0.57 0.79 0.75 0.83 0.70 0.92 0.76
SBFT 0.60 0.80 0.76 0.84 0.74 0.93 0.78
SBFT+Emb 0.61 0.80 0.76 0.85 0.75 0.94 0.79
SB 0.53 0.76 0.72 0.79 0.65 0.92 0.73

SVM SB+Emb 0.57 0.78 0.73 0.83 0.68 0.93 0.75
SBFT 0.59 0.78 0.76 0.84 0.72 0.94 0.77
SBFT+Emb 0.61 0.80 0.77 0.85 0.76 0.94 0.79

Table 2: Accuracy results of classification methods on Set1 for selected Enron users. Highest accuracy
for each user is marked bold for a given learner.

of these two subsets are shown in Table 1. We note
that this Enron data set of version May 7, 2015 in-
corporates additional changes. Hence, compared
to reports of prior work (Bekkerman et al., 2004;
Tam et al., 2012), statistics in Table 1 show certain
differences2 and the absolute evaluation numbers
are not directly comparable with theirs.

Our experiments are conducted using several
popular classifiers: logistic regression (LR), av-
eraged perception (AP), and support vector ma-
chine (SVM) to predict the most likely target fold-
ers. According to Dredze et al. (2008), the high-
est accuracy is achieved when the entire message
is used in offline prediction. Tam et al. (2012) re-
ported that the best performing results take into ac-
count the content of subject, body and participants.
We reference the two findings as our baseline ap-
proaches: the first method featurizes each mes-
sage with the n-grams of subject (S) and body (B),
n ∈ {1, 2, 3}, whereas the second method further
adds n-grams of the from (F) and to (T) fields in
metadata. Our proposed approach, SB+Emb and
SBFT+Emb, represents each email using a com-
bination of lexical n-grams from SB(FT) and user
embeddings (Emb) trained with the entire corpus.

3.1 User Embeddings Analysis

To understand if the learned user embeddings re-
flect actual email correspondence, we study the re-
lation between the similarity of users’ embeddings
and the frequency they communicate. Specifically,
for each target user ui, we first identify all oth-
ers {uj |j 6=i} that he/she has had communications
with, and then bucket the cosine similarity be-
tween their embeddings into intervals. For each

2E.g., we omit data for the user kitchen-l, for the reason
that it contains only 2 folders after preprocessing.

interval, we take the average of the numbers of
times each uj communicates with ui and convert
it into logarithm space. Figure 2 shows that in
general similarity between user embeddings pos-
itively correlates with the frequency those users
send/receive emails to/from others. This implies
the learned embeddings can capture users’ interac-
tions through words, therefore forming a fair user
representation candidate.

We conduct the same analysis on user-word re-
lation additionally. The results resembles previous
observation that a word is more similar to a user
(i.e., higher cosine score) if the word appears more
often in the user’s emails. Yet when a word be-
comes very frequent, it functions like a stopword
thereby making this property no longer hold.

3.2 Auto-Foldering

Table 2 shows the overall accuracy results on data
Set1. Across all learners and users, we observe a
consistent pattern that SB+Emb improves the per-
formance of SB with a varying percentage from
1% to 10%. This suggests that adding user embed-
dings provides extra signals regarding how users
may organize information.

Comparing SB and SBFT, it is clear that taking
into account participants is highly helpful for pre-
diction, as indicated by Tam et al. (2012). The per-
formance of SB+Emb is either comparable with or
worse than SBFT. We think this may be because
using n-grams of email addresses conveys more
precise information regarding who were involved
in an email communication, whereas embeddings
operate on a denser semantic space without giv-
ing exact representation. Although SB+Emb may
show some performance inferiority compared to
SBFT, it provides much higher flexibility than ex-
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Learner Approach beck-s farmer-d kaminski-v lokay-m sanders-r williams-w3 Avg
SB 0.69 0.79 0.79 0.83 0.77 0.93 0.80

LR SB+Emb 0.74 0.81 0.79 0.87 0.80 0.95 0.83
SBFT 0.75 0.82 0.81 0.87 0.83 0.95 0.84
SBFT+Emb 0.76 0.82 0.81 0.88 0.83 0.96 0.84
SB 0.52 0.77 0.72 0.80 0.67 0.92 0.73

AP SB+Emb 0.59 0.79 0.74 0.83 0.70 0.93 0.76
SBFT 0.59 0.80 0.76 0.85 0.73 0.94 0.78
SBFT+Emb 0.62 0.81 0.76 0.86 0.76 0.94 0.79
SB 0.52 0.77 0.73 0.79 0.66 0.92 0.73

SVM SB+Emb 0.58 0.78 0.75 0.83 0.69 0.93 0.76
SBFT 0.61 0.79 0.74 0.83 0.73 0.93 0.77
SBFT+Emb 0.62 0.80 0.75 0.84 0.73 0.94 0.78

Table 3: Accuracy results of classification methods on Set2 for selected Enron users. Highest accuracy
for each user is marked bold for a given learner.

act matching and can better address properties for
unseen or infrequent users. Therefore it could be
the case that SB+Emb performs better categoriza-
tion for larger audience in practice. When incorpo-
rating user embeddings on the top of all available
lexical features (i.e., SBFT+Emb), prediction ac-
curacy can be further increased compared to pure
SBFT.

At an individual level, beck-s and sanders-r
gain relatively the most when including user em-
beddings. Although these two users, especially
beck-s, have more folders than others and thus
present more challenges for classifiers, user em-
beddings has potential to effectively introduce
user-token interactions for organizing informa-
tion. On the contrary, the improvements based on
embedding features are less apparent for williams-
w3, whose folder categorization was the most un-
balanced among all (i.e., a majority of emails be-
long to the same folder, making the prediction
fairly easy with just few signals). Comparing dif-
ferent learners, we see that LR works the best in
general, with AP and SVM performing somewhat
comparable.

We conduct the same experiments on data Set2,
which removes both non-topical and small folders.
Table 3 shows that the overall trend is similar to
what is observed in Table 2.

4 Conclusions and Future Work

In this paper, we proposed an approach to learning
user embeddings from emails based on the sender-
recipient network. Our analysis suggested that the
learned embeddings reflect the interactions in the
original corpus, where frequent emails exchangers
tend to be more similar to each other. Evaluating
from an application point of view, we showed that

applying user embeddings to the auto-foldering
task resulted in improved accuracy.

Yet another advantage of our approach is it
learns meta-data in an unsupervised manner. As
email data is highly private and sensitive, eyes-off
techniques like ours not only bypass the need of
human annotations but also leverage the informa-
tion collected from the entire data. More impor-
tantly, using representations avoids leaking sensi-
tive information delivered by lexical terms.

One direct follow-up of this work is learning
user embeddings from social networks, or taking
social network features into account. Learning
task-specific embeddings is another direction to
investigate as we move forward, e.g., modeling
user-folder-words interactions for auto-foldering
task with embeddings. Other tasks such as using
embeddings for knowledge mining from emails,
or online embedding training and updating with
accumulating email data, will be interesting to ex-
plore. Finally, it will be important for us to test on
larger, more realistic email datasets in the future.
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