@inproceedings{bonadiman-etal-2017-effective,
title = "Effective shared representations with Multitask Learning for Community Question Answering",
author = "Bonadiman, Daniele and
Uva, Antonio and
Moschitti, Alessandro",
editor = "Lapata, Mirella and
Blunsom, Phil and
Koller, Alexander",
booktitle = "Proceedings of the 15th Conference of the {E}uropean Chapter of the Association for Computational Linguistics: Volume 2, Short Papers",
month = apr,
year = "2017",
address = "Valencia, Spain",
publisher = "Association for Computational Linguistics",
url = "https://preview.aclanthology.org/fix-sig-urls/E17-2115/",
pages = "726--732",
abstract = "An important asset of using Deep Neural Networks (DNNs) for text applications is their ability to automatically engineering features. Unfortunately, DNNs usually require a lot of training data, especially for highly semantic tasks such as community Question Answering (cQA). In this paper, we tackle the problem of data scarcity by learning the target DNN together with two auxiliary tasks in a multitask learning setting. We exploit the strong semantic connection between selection of comments relevant to (i) new questions and (ii) forum questions. This enables a global representation for comments, new and previous questions. The experiments of our model on a SemEval challenge dataset for cQA show a 20{\%} of relative improvement over standard DNNs."
}
Markdown (Informal)
[Effective shared representations with Multitask Learning for Community Question Answering](https://preview.aclanthology.org/fix-sig-urls/E17-2115/) (Bonadiman et al., EACL 2017)
ACL