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Abstract

The task of unsupervised lexicon induc-
tion is to find translation pairs across
monolingual corpora. We develop a novel
method that creates seed lexicons by iden-
tifying cognates in the vocabularies of re-
lated languages on the basis of their fre-
quency and lexical similarity. We apply
bidirectional bootstrapping to a method
which learns a linear mapping between
context-based vector spaces. Experimen-
tal results on three language pairs show
consistent improvement over prior work.

1 Introduction

The objective of bilingual lexicon induction is
to find translation pairs between two languages.
Specifically, we aim to pair each word in the
source vocabulary with its translation in the tar-
get vocabulary. In this paper, we assume that
the languages are sufficiently closely related to
allow some translation pairs to be identified on
the basis of orthographic similarity. Our set-
ting is completely unsupervised: we extract the
bilingual lexicons from non-parallel monolingual
corpora representing the same domain. By con-
trast, most of the prior work depend on parallel
data in the form of a small bitext (Genzel, 2005),
a gold seed lexicon (Mikolov et al., 2013b), or
document-aligned comparable corpora (Vulić and
Moens, 2015). Other prior work assumes access
to additional resources or features, such as depen-
dency parsers (Dou and Knight, 2013; Dou et al.,
2014), temporal and web-based features (Irvine
and Callison-Burch, 2013), or BabelNet (Wang
and Sitbon, 2014).

Our approach consists of two stages: we first
create a seed set of translation pairs, and then it-
eratively expand the lexicon with a bootstrapping

procedure. The seed set is constructed by identi-
fying words with similar spelling (cognates). We
filter out non-translation pairs that look similar
but differ in meaning (false friends) by imposing
a relative-frequency constraint. We then use this
noisy seed lexicon to train context vectors via neu-
ral network (Mikolov et al., 2013b), inducing a
cross-lingual transformation that approximates se-
mantic similarity. Although the initial accuracy of
the transformation is low, it is sufficient to iden-
tify a certain number of correct translation pairs.
Adding the high-confidence pairs to the seed lex-
icon allows us to refine the cross-lingual transfor-
mation matrix. We proceed to iteratively expand
our lexicon by alternating the two steps of transla-
tion pair identification, and transformation induc-
tion.

We conduct a series of experiments on En-
glish, French, and Spanish. The results demon-
strate a substantial error reduction with respect
to a word-vector-based method of Mikolov et al.
(2013b), when using the same word vectors on six
source-target pairs. We also improve on the re-
sults reported by Haghighi et al. (2008) with both
automatically-extracted and gold seed lexicons.

2 Methods

In this section, we describe the two components of
our approach: seed lexicon extraction, and lexicon
expansion via bootstrapping.

2.1 Seed Lexicon Extraction
Our seed extraction algorithm is aimed at iden-
tifying cross-lingual word pairs that exhibit high
orthographic similarity, and have comparable fre-
quency, both factors being indicators of transla-
tions (Kondrak, 2013). For each language, repre-
sented by a raw monolingual corpus, we first gen-
erate the list of word types, sorted by frequency.
For each of the m most frequent source word
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1: function EXTRACT SEED(m, p, d)
2: seed← ∅
3: for i from 1 to m do
4: s← source word such that rs = i
5: for each target word t do
6: if NED(s, t) ≤ d
7: and |rs − rt| ≤ p
8: and s 6= t then
9: seed← seed ∪ {(s, t)}

10: return seed

Figure 1: The seed lexicon extraction algorithm.
rw is the frequency rank of word w.

types, starting from the top of the frequency list,
we find all target words that satisfy the following
constraints, as described in Figure 1, with param-
eters established on the development set.

1. Normalized edit distance (NED) between the
source and target words, which is calculated
by dividing the total edit cost by the length of
the longer word, is within d = 0.25.

2. The absolute difference between the respec-
tive frequency ranks of the two words is
within p = 100.

3. The source and target words are not identical.

The set of source-target pairs that satisfy these re-
quirements form the seed lexicon. Note that there
is no one-to-one constraint, so both source and tar-
get words may appear multiple times in the seed.
The pseudo-code of the algorithm is shown in Fig-
ure 1.

2.2 Lexicon Expansion
Since our task is to find translations for each of a
given set of source-language words, which we re-
fer to as the source vocabulary, we must expand
the seed lexicon to cover all such words. We adapt
the approach of Mikolov et al. (2013b) for learn-
ing a linear transformation between the source and
target vector spaces to enable it to function given
only a small, noisy seed.

We use WORD2VEC (Mikolov et al., 2013a) to
map words in our source and target corpora to n-
dimensional vectors. The mapping is derived in a
strictly monolingual context of both the source and
target languages. While Mikolov et al. (2013b)
derive the translation matrix using five thousand
translation pairs obtained via Google Translate,

1: function LEX INDUCTION(k, c, m, p, d)
2: R←EXTRACT SEED(m, p, d)
3: for c iterations do
4: Train source-target TM T on R
5: Train target-source TM T ′ on R
6: for each source word s do
7: f [s]← arg max(score(s, t))
8: R← R ∪ {top k scoring pairs}
9: return translation mapping f

Figure 2: The lexicon induction algorithm. The
score function is defined in Section 2.2.

our fully unsupervised method starts from a small
and noisy seed lexicon extracted automatically
with the algorithm described in Section 2.1.

Given a list of source-target translation pairs
(si, ti), with associated pairs of source and tar-
get vectors (ui,vi), we use stochastic gradient de-
scent to learn a matrix T with objective T · ui =
vi for all i. In order to find a translation for a
source-language word s represented by vector u,
we search for a target-language word t represented
by vector v that minimizes the value of the cosine
similarity function sim:

v = argmin
v′∈ target word vectors

sim(T · u, v′)

We use the cosine similarity sim(T · u, v) to cal-
culate the confidence score for the corresponding
candidate translation pair (s, t).

An important innovation of our algorithm is
considering not only the fitness of t as a transla-
tion of s, but also of s as a translation of t. Distinct
translation matrices are derived in both directions:
source-to-target (T) and target-to-source (T′). We
define the score of a pair (s, t) corresponding to
the pair of vectors (u,v) as the average of the two
cosine similarity values:

score(s, t) =
sim(T · u, v) + sim(T′ · v, u)

2

Unlike Mikolov et al. (2013b), our algorithm
iteratively expands the lexicon, which gradually
increases the accuracy of the translation matri-
ces. The initial translation matrices, derived from
a small, noisy seed, are sufficient to identify a
small number of correct translation pairs, which
are added to the lexicon. The expanded lexicon is
then used to derive new translation matrices, lead-
ing to more accurate translations.
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In each iteration, we sort the candidate transla-
tion pairs by their current confidence scores, and
add the highest-scoring k pairs to the lexicon. We
exclude pairs that contain a word which is already
in the lexicon. The next iteration uses the aug-
mented lexicon to derive new translation matrices.
We refer to this approach as bootstrapping, and
continue the process for a set number of iterations,
which is tuned on development data. The output
of our algorithm is the set of translation pairs pro-
duced in the final iteration, with each source vo-
cabulary word paired (not necessarily injectively)
with one target vocabulary word.

3 Experiments

In this section we compare our method to two
prior methods, our reimplementation of the super-
vised word-vector-based method of Mikolov et al.
(2013b) (using the same vectors as our method),
and the reported results of an EM-based method
of Haghighi et al. (2008).

3.1 Data

Our experiments involve three language pairs:
Spanish–French (ES–FR), English–French (EN–
FR), and English–Spanish (EN–ES), which we
consider in both directions. The corpora are from
Europarl (Koehn, 2005; Tiedemann, 2012). In
order to exclude parallel data, for each language
pair, we take the first half of the source-language
corpus, and the second half of the target-language
corpus. (Less than 1% of sentences appear in both
halves of any corpus.)

For evaluation, we require a gold-standard bilin-
gual lexicon to decide whether a proposed source-
target pair provides a correct translation of the
source word. Following Dou and Knight (2013),
we align the full source and target Europarl cor-
pora with GIZA++ (Och and Ney, 2003). Since
such alignments are asymmetric, we take the in-
tersection of two alignments: source-to-target and
target-to-source. The pairs of words that are
aligned in both directions form our gold standard
lexicon.

We follow the experimental setup of Haghighi
et al. (2008). The source and target vocabularies
consist of the 2000 most frequent words from the
source and target corpora, with the exception of
the words that are in the seed lexicons. For each
of these 2000 source words, the task is to find a
translation among the 2000 target words. We de-

Pairs Accuracy
ES–FR 206 87.9%
EN–FR 191 80.1%
EN–ES 239 83.3%
FR–ES 214 93.0%
FR–EN 210 79.1%
ES–EN 252 88.9%

Table 1: The size and accuracy of extracted seed
lexicons.

fine a single test set for each language pair. Over
99% of words in the source vocabulary have trans-
lations in the target vocabulary.

3.2 Development

We performed development exclusively on the
Spanish–French language pair. Since Spanish and
French are more closely related to each other than
either is to English, this allows us to test how our
approach generalizes to more difficult language
pairs. In addition, we aim for a fair comparison to
prior work, who report results on English–Spanish
and English–French. We use these language pairs
exclusively for testing.

Based on the results of our Spanish–French de-
velopment experiments, we established the fol-
lowing parameter settings. The seed lexicon ex-
traction stage considers the m = 10, 000 most fre-
quent source words, identifying pairs with a fre-
quency rank difference of at most p = 100, and
a normalized edit distance of at most d = 0.25.
We add k = 25 word pairs to the lexicon in each
lexicon expansion iteration. The size of word vec-
tors is set to n = 200 dimensions. The number
of iterations depends on the metric we wish to op-
timize. We perform 40 iterations to optimize ac-
curacy, and 25 iterations to optimize precision, as
discussed in the next section.

During development, we found that excluding
identical word pairs from the seed lexicon im-
proves performance, so we incorporate this restric-
tion in our system. 57 such pairs were removed
from the Spanish-French seed lexicon, with most
of them being numbers and proper nouns.

Table 1 shows that our extraction method pro-
duces seed lexicons of a reasonable size and ac-
curacy, with, on average, 219 translation pairs at
85% accuracy. Less than 5% of words in any given
seed are duplicates.
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3.3 Evaluation

We evaluate the induced lexicon after 40 itera-
tions of bidirectional bootstrapping by comparing
it to the lexicon after the first iteration in a sin-
gle direction, which is equivalent to the method
of Mikolov et al. (2013b). Following Haghighi et
al. (2008), we also report the accuracy of an ED-
ITDIST baseline method, which matches words in
the source and target vocabularies. We use an im-
plementation of the Hungarian algorithm1 (Kuhn,
1955) to solve the minimum bipartite matching
problem, where the edge cost for any source-target
pair is the normalized edit distance between the
two words.

The results in Table 2 show that the method
of Mikolov et al. (2013b) (MIK13-Auto), repre-
sented by the first translation matrix derived on
our automatically extracted the seed lexicon, per-
forms well below the edit distance baseline. By
contrast, our bootstrapping approach (Bootstrap-
Auto) achieves an average accuracy of 85% on the
six datasets.

3.4 Unidirectional Scoring

In order to quantify the importance of our innova-
tion of employing translation matrices in both di-
rections, we also performed lexicon induction ex-
periments in a unidirectional, source-to-target set-
ting. The results show a consistent drop in accu-
racy on all language pairs. Error analysis reveals
that this is caused by an increase in the number of
incorrect translation pairs being added to the lexi-
con during bootstrapping, which negatively affects
the quality of the resulting translation matrices.

The accuracy on English–French is particularly
low (2.3%), which indicates that the unidirectional
approach completely breaks down when the initial
seed set contains fewer than 200 pairs. Too many
incorrect translation pairs are added in the early
stages, a problem the method never recovers from.
In fact, when the size of the EN–ES seed is ar-
tificially reduced to the same size as the EN–FR
seed (191 pairs), unidirectional scoring results in
1.2% accuracy, vs. 82% with bidirectional scoring.
These results demonstrate that our innovation of
bidirectional scoring makes the method more ro-
bust against smaller seed lexicons, allowing good
results to be attained where previously proposed
unidirectional scoring would fail.

1https://metacpan.org/pod/Algorithm::Munkres

ES–FR EN–FR EN–ES
EDITDIST 47.2 36.4 34.7

MIK13-Auto 15.2 8.5 16.1
Bootstrap-Auto 89.4 79.4 82.0

FR–ES FR–EN ES–EN
EDITDIST 46.9 36.8 35.0

MIK13-Auto 19.5 3.4 21.7
Bootstrap-Auto 89.4 83.5 84.5

Table 2: Accuracy of induced translation lexicons
(in per cent correct).

3.5 Comparison to Haghighi et al. (2008)

Unlike most of the previous work on lexicon
induction, our method is fully unsupervised,
with no dependency on additional resources or
tools. One other unsupervised method is that
of Haghighi et al. (2008), who learn transla-
tion probabilities through a complex generative
model known as matching canonical correlation
analysis (MCCA). Although most of their ex-
periments are semi-supervised, they report re-
sults obtained on English–Spanish with a ver-
sion named “MCCA-Auto”, which starts from an
automatically-extracted seed lexicon. Since we
have no access to their implementation, we at-
tempt to re-create their experimental setup and
adopt their evaluation metrics, making two accom-
modations in order to compare to the results re-
ported in the original paper.

The first accommodation is the use of preci-
sion and recall, rather than accuracy, to evaluate
the lexicons. After ranking the returned pairs by
their score, the precision at a given point in the
list is the percentage of the translation pairs that
are correct, while the recall at a point is the per-
centage of the maximum possible number of trans-
lation pairs. Haghighi et al. (2008) chose to re-
port precision values at four levels of recall: 0.1,
0.25, 0.33, and 0.5, as well as the best F1 measure
achieved at any point. Unlike accuracy, point-wise
precision assigns variable importance to the output
translation pairs depending on their relative sys-
tem score. In order to optimize the performance of
our algorithm on the development set with respect
to point-wise precision, we reduce the number of
bootstrapping iterations to 25. The other parame-
ters remain unchanged.

The second accommodation involves the re-
striction of the source and target vocabularies to
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EN–ES p0.10 p0.25 p0.33 p0.50 best F1

EDITDIST 99.0 87.3 60.4 n/a 43.6
MCCA-Auto 91.2 90.5 91.8 77.5 61.7

Bootstrap-Auto 96.1 95.9 93.2 84.9 67.9
MCCA 91.4 94.3 92.3 89.7 63.7

Bootstrap 96.6 95.6 93.6 89.9 73.7

EN–FR p0.10 p0.25 p0.33 p0.50 best F1

EDITDIST 99.0 90.2 72.3 n/a 46.5
Bootstrap-Auto 93.0 92.6 90.5 81.9 68.4

MCCA 94.5 89.1 88.3 78.6 61.9
Bootstrap 95.7 93.6 90.6 85.7 72.8

Table 3: Comparison to the reported results of Haghighi et al. (2008) on EN–ES (upper table) and EN–FR
(lower table). The best results are in bold.

the 2000 most frequent nouns. We consider a word
to be a noun if it is tagged as such by TreeTag-
ger (Schmid, 1994; Schmid, 1999). As in all of
our experiments, we ensure that there is no over-
lap between the seed lexicon and the source and
target test vocabularies.

Table 3 shows the results on English–Spanish
and English–French. The upper rows con-
tain fully-unsupervised results. The lower rows
contain results obtained with the seed sets ex-
tracted directly from the gold standard lexicons
by selecting the most frequent source language
words. We make sure that both types of the
seed sets are of equal size for each language
pair. The precision of the EDITDIST baseline
is the highest at 10% recall, but drops rapidly
at the higher levels of recall. The variants
of our method with both automatically-extracted
(Bootstrap-Auto) and gold seed sets (Bootstrap)
achieve higher precision than the corresponding
variants of MCCA at all recall points, as well as
higher best F1 scores.

4 Conclusion

We have presented a bidirectional bootstrapping
method for bilingual lexicon induction between
related languages, which requires only a mono-
lingual corpus in each language, with no assump-
tions of alignment or parallelism. We have demon-
strated improvements over prior work and a strong
baseline on three language pairs. The method has
the potential to be applied across low-resource lan-
guages.
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